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Abstract

This paper introduces PaZO, a preconditioned accelerated zeroth-order optimization
algorithm for fine-tuning large language models (LLMs). First, we theoretically
demonstrate the necessity of preconditioning in zeroth-order optimization, proving
that zeroth-order stochastic gradient descent (ZO-SGD) alone fails to achieve the
ideal convergence rate. Building on this, we propose a Preconditioned Simultaneous
Perturbation Stochastic Approximation (PSPSA) and theoretical version of PaZO,
and demonstrate that setting the order of preconditioner as —1/2 in PSPSA yields
the improved convergence rate for PaZO. Moreover, we design a practical version
of PaZO that stabilizes training via diagonal Hessian estimate and moving average
technique. Extensive experiments on diverse downstream tasks with models like
RoBERTa-large and OPT show PaZO’s effectiveness. Compared to other zeroth-
order baselines, PaZO achieves better performance across models and tasks. Code
is available at/Code.

1 Introduction

Fine-tuning pre-trained large language models (LLMs) has become one of the dominant method-
ologies for adapting models to specialized downstream tasks [19] and aligning them with human
instructional preferences [42]]. However, as models are scaled up [1]], the memory overhead extremely
increases during fine-tuning, since computing gradients during backpropagation needs to cache model
activations and historical gradients (e.g., for Adam-based optimization [28]]). Parameter-efficient
fine-tuning (PEFT) methods [29, 31} 23| reduce memory overhead by fine-tuning only a small number
of extra parameters but still need to cache large quantities of activations. Recently, zeroth-order
optimization algorithms (ZO) [37, |59} [58]] have enabled the fine-tuning of LLMs with billions of
parameters on a single consumer-grade GPU, due to their requirement for only forward passes to
estimate gradients, without backpropagation and the storage of activations. Lightweight memory has
solidified its role as a critical methodology for fine-tuning tasks in resource-constrained scenarios.

As research on zeroth-order optimization methods for fine-tuning LLMs advances, whether precondi-
tioning zeroth-order algorithms with higher-order information can enhance optimization efficiency
has become a pivotal challenge, since adaptive first-order optimizers such as Adam [28] and AdamW
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[35], which can be regarded as preconditioned algorithms with (diag{gog})~'/? as a preconditioner,

show improvement on convergence speed. However, for zeroth-order optimization, one cannot
directly estimate the Hessian by first-order information. Direct adaptation of Adam to zeroth-order
algorithms (e.g., ZO-Adam [58]]) introduces large variances and has a significant impact on the
fine-tuning performance [59]. Moreover, Hessian-informed perturbation for estimating zeroth-order
information [|59,|55] is a significant methodological advancement, but how to incorporate Hessian
information into the perturbation process to obtain the best convergence speed and performance
remains a significant challenge.

When we delve into and rethink the preconditioned zeroth-order optimization problems, the more
pressing challenge lies in whether preconditioned zeroth-order optimization methods can truly
achieve a provable convergence rate from a theoretical perspective. This problem may appear
counterintuitive, but mature theoretical research [24}/17]] on first-order methods has substantiated the
following facts: for least squares regression, only SGD can achieve the near-optimal convergence
rate O(d/T') and match the lower bound when ignoring the logarithmic term, which indicates that
at least for this problem, preconditioning techniques provide no improvement on convergence, as
SGD has already attained the information-theoretic limit of the problem. Therefore, whether this
conclusion for zeroth-order optimization remains determines the effect of preconditioning techniques
in zeroth-order optimization. Moreover, even if we posit that precondition holds effectiveness for
zeroth-order optimization, how to appropriately apply preconditioning techniques emerges as another
challenge. Specifically, determining the optimal order of the preconditioner to guarantee the fastest
convergence rate becomes a critical consideration. Finally, from the practical perspective, how to
estimate Hessian information through zeroth-order perturbation stochastic approximation to integrate
abundant information, ensure stability and control memory overhead is also a challenge in practice.
Based on the three above, we think that the following three problems demand reasonable resolution
in preconditioned zeroth-order optimization for fine-tuning LLMs:

A. Do we truly need preconditions in zeroth-order optimization?

B. If the answer to question A is “yes”, how to achieve the fastest convergence by
selecting the optimal order of the preconditioner?

C. How to effectively estimate Hessian information through zeroth-order perturbations
in practice and improve fine-tuned model performance on downstream tasks?

In this paper, we provide reasonable answers to the three questions above. We propose a precondi-
tioned accelerated zeroth-order optimization algorithm PaZO, with a theoretical guarantee to obtain
a faster convergence rate by selecting the optimal order of preconditioner, and better empirical
performance on a wide range of downstream tasks for fine-tuning LLMs. Our contributions are:

1. (Answer to Question A.) We construct a general Preconditioned Simultaneous Perturbation
Stochastic Approximation (PSPSA) and corresponding algorithm PaZO (Theoretical Form
with any given order of Hessian information H™¢. Our theoretical analysis on quadratic
functions in Theorem [3.5] demonstrates that only ZO-SGD (o = 0) cannot achieve the
fastest convergence rate. We need preconditions in zeroth-order optimization.

2. (Answer to Question B.) We provide the convergence analysis of PaZO for general objective
functions. The result in Theorem [3.§] demonstrates that PaZO can achieve the fastest
convergence rate if and only if we select « = 1/2. In other words, we need to use H'/2in
PSPSA (or H™! as the preconditioner) to accelerate zeroth-order optimization.

3. (Answer to Question C.) We propose PaZO (Practical Form, Algorithm|[T) for fine-tuning
LLMs, with unbiased diagonal Hessian estimation incorporating current zeroth-order gradi-
ent information and moving average techniques to ensure stability in practice. We conduct
extensive experiments across different models (RoBERTa-large, OPT-1.3B), different meth-
ods (FT, LoRA, prefix), and different downstream tasks to verify the effect of the PaZO.
Results show PaZO achieves better performance across models, tasks and PEFT methods.

Notations. Let O(-) and Q(-) denote upper and lower bounds, respectively, with a universal constant,
while O(-) and €(-) ignore polylogarithmic dependencies. For functions f and g: f < g denotes
f=0(g); f Z gdenotes f = Q(g); f < g indicates g < f < g. We use Aoz (-) and A\ () to



denote the largest and smallest eigenvalue of a matrix, respectively. Let ||@|| o denote the Mahalanobis
(semi) norm where A is a positive semi-definite matrix as ||@]|a = V0T AO. We use 8* to denote

C A .,
the minimizer, i.e. 0* = argming f(0).

2 Related Work

Zeroth-order Optimization: Zeroth-order optimization, is to estimate the gradient by just forward
passes. A substantial body of theoretical research has been devoted to the detailed analysis of conver-
gence rates in zeroth-order optimization in convex settings [3} 16} 26} 39| 44| 46| and non-convex
[53]]. Representative method SPSA [48] demonstrates strong performance in challenging settings
like non-convex multi-agent optimization [21, 50] and black-box adversarial example generation
[11},/10,33]. Notably, MeZO [37] pioneers the adaptation of classical ZO-SGD for LLM fine-tuning,
matching conventional performance while drastically cutting memory consumption. Then various
following works [58 |59} 12} 49] try to improve zeroth-order optimizers for efficient fine-tuning.
However, whether and how precondition works in zeroth-order optimization is still lack of discussion.

Enhanced Optimizers with Hessian: Researchers focus on how to incorporate second-order infor-
mation to provide acceleration for gradient descent during the training. For example, [9, |40] utilized
curvature information as the preconditioner; [|38] applied diagonal Hessian as the preconditioner; [36]]
estimated the Hessian information with conjugate gradient. Sophia [32] introduced a lightweight esti-
mate of the diagonal Hessian for pre-training. However, these methods can only be used for first-order
methods with a heavy GPU-memory overhead. HiZOO [59] has been proposed as a preconditioned
zeroth-order optimizer for fine-tuning LLMs. However, how to effectively leverage preconditioning
information in zeroth-order optimization to accelerate convergence remains understudied.

3 Theoretical Insights of PaZO

Preconditioned methods in first-order optimization have been generally studied [40, |4, 28| 32].
However, few works discuss the necessity, potential and limitation of preconditioned zeroth-order
optimization. In this section, we try to clarify two questions below from the theoretical perspective.

A. Do we truly need preconditions in zeroth-order optimization?

B. If the answer to question A is “yes”, how to achieve the fastest convergence by
selecting the optimal order of the preconditioner?

We provide theoretical insights into the two questions A and B. First, we show the necessity of
using preconditions in zero-order optimization, since only ZO-SGD [48]] cannot achieve the potential
ideal convergence rate (’j(d2 /T) for least squares (as stated in Theorem , while the first-order
SGD can match the optimal rate O(d/T") without preconditions [[17]. This difference indicates
that preconditions play a key role in ZO, especially. Second, we propose a general Preconditioned
Simultaneous Perturbation Stochastic Approximation (PSPSA) using H™® as preconditioner with
any given order o and Hessian H to extend traditional SPSA [48]] for zeroth-order gradient estimate.
We provide the convergence analysis of the preconditioned zeroth-order optimization with PSPSA in
Theorem [3.8] The results explicitly direct us to choose the optimal « to obtain the fastest rate.

3.1 Problem Setup

We consider the standard stochastic unconstrained minimization problem as:

min f(0) = E ) ~p|F(0; (%, , 1
i £(6) = Byl (6 (x,9)) (M)
where the expectation is taken over the data distribution (x,y) ~ D. Given the Hessian matrix H; at
the decision point 8;, we first define the following general Preconditioned Simultaneous Perturbation
Stochastic Approximation (PSPSA) as:

Definition 3.1 (Preconditioned Simultaneous Perturbation Stochastic Approximation (PSPSA)).
Given a model with parameters @ € R and the loss function I, PSPSA estimates the zeroth-order



stochastic gradient VF(8;) at (x;,y;) as

~ F(0; + pH; “u; (x4, — F(0; — pH; “u; (xy,
VE(O,; (x0,31)) = (6; + pHy (% yt))zu (6, — pH, (xt,9¢))

where u € R% and u ~ N(0,1y), p is the perturbation scale, H, is the Hessian matrix at 6;, and

= [—%, %} is the precondition order.

‘Hy %, (2)

With the estimated zeroth-order stochastic gradient generated by PSPSA, the preconditioned zeroth-
order optimization algorithm can be stated as follows:

Definition 3.2 (Preconditioned Accelerated Zeroth-order Optimization, PaZO (Theoretical Form)).
PaZO is an optimizer with learning rate 1 that updates parameters as

0111 = 0, — NV F(0y; (x4, 1)), 3)
where @F(Ot; (x¢,y1)) is the PSPSA gradient estimate at 6; with H,.

PSPSA and PaZO can be regarded as the general preconditioned extension of the existing zeroth-order
perturbation approximation and algorithms. Intuitively, ignoring the higher-order infinitesimal term
of u, we obtain the expectation of the PSPSA gradient estimate as

. [mvmet) H;u

E[VF(B:; (x00))| = H;%u| =H;°Vf(6,), @

2p

which indicates that the PSPSA gradient estimate is equivalent to a H, 2o preconditioned gradient.
When a = 0, PSPSA degenerates to SPSA [48]] and PaZO is reduced to ZO-SGD.

We introduce the assumption below to construct the relation between the outer product of the gradient
and the Hessian for our analysis.

Assumption 3.3 (Unbiased Estimate of Hessian). We assume that the expectation of the outer product
of F(0*,(x,y)) is the unbiased estimate of H* as:

E [VF(0% (x,y)V F(8%;(x,y))] = H", Q)
where 0* is a minimizer of the objective f(0), and H* is the Hessian defined at 6*.

Assumption[3.3]is a common assumption when considering stochastic gradient descent [[17, 24, [5| 23],
especially for least squares regression [17,|24], whose Hessian is fixed and can be exactly calculated.

3.2 Case Study: Least Squares Regression

First, we try to provide an intuitive answer to the question A. We consider a representative case of f:
least squares regression, whose optimization dynamic can be clear and meticulously calculated due
to the fixed Hessian as: 1
2
F(0:(x,y)) = 5 (v = (0.%))°. ©
We have access to stochastic gradients zeroth-order obtained by PSPSA with sampling a new example
(x¢,y:) ~ D. These examples satisfy

y=(0"x)+e
where e is a noise on the example pair with E[e] = 0 and E[¢?] = 02, and 6* is a minimizer of

the objective. Note that the Hessian of the objective H* Lt g2 f(0) = LE[xxT]. The following
estimate holds

2
E[VF(0': (x.9)VTF(0"; (x.))] = ogElxT] = SH" )
By setting C' = o2, we exactly obtain the result in Assumption The analytical tractability
of () offers deeper theoretical insights. Specifically, previous studies [I7] demonstrate that for
first-order algorithms the optimal rate achieves O(d/T') and construct the lower bound, where d is
the dimension of problems and 7’ is the iteration steps. Moreover, the studies show that only SGD can
match the near-optimal rate with only the difference of logarithmic terms. In other words, for least



squares regression and first-order stochastic algorithms, only SGD is enough with any precondition
making no effect of acceleration. When turning to zeroth-order optimization, intuitively, we think
the ideal convergence rate achieves O(d?/T) since in zeroth-order optimization we can only access
one-dimension information per step. Varieties of theoretical studies of zeroth-order algorithms [2}
41]] also show d times slower convergence rate than first-order ones. However, the results stated in
Theorem [3.5]indicate that only ZO-SGD is not enough.

Assumption 3.4 (Fourth Moment Conditions). Suppose B is a positive semi-definite matrix, and
consider data vector x. It satisfies Ex [xxBxx' | < O (tr (H*B) H*).

Theorem 3.5 (Convergence Rate of PaZO on Least Squares). Suppose we are given access to the
PSPSA, running PaZO for least squares regression (6) satisfying Assumption[3.4|with a learning rate n)

. . 1 . 1 Axnin(H*)
satisfying 5 ——meyrrayr S 1S Mmin { Nz ()T 2 Romn (VR ((H) 29 () 729 }for 2T

Vi *\—2a r *\1—2a
steps with T' 2, )‘maxg\H A)t( ((IEII;I)I),QQ )); ((3{2 ) ) allows PaZO to achieve the following convergence
ate: in min
2T —1 x\1—2a\\ T
1 * (1 - 77/\min ((H ) )) * (12 D,

where Do, = tr (H*)?*71) - tr (H*)'=2%) and o is the precondition order defined in PSPSA.

Theorem [3.3] provides an affirmative answer to question A. Since the first term decays exponentially
with 7', the rate depends on the second term D, /T, which is a trade-off between tr ((H*)2>~!)
and tr ((H*)'~2*). Through Cauchy-Schwarz inequality, we have D, > d?, where the equality
holds if and only if &« = 1/2. In other words, only ZO-SGD is not enough to match the ideal rate
(’N)(d2 /T). Therefore, Theorem [3.5|demonstrates that different from first-order algorithms, we need
preconditions in zeroth-order optimization.

Moreover, we consider the convergence analysis with approximate Hessian H, in PSPSA. When the

gap between I:It and H; can be well controlled, we can also achieve the fastest rate when o = 1/2.
The detailed assumption and analysis are shown in Appendix B}

3.3 General Functions

Second, we propose the theoretical analysis for general smooth functions. Based on the affirmative
answer to question A provided by Theorem [3.5] we conducted a more in-depth analysis of general
functions, thereby establishing a more reasonable solution to question B. We may also obtain the
results under approximate Hessian. For convenience, we assume its exact.

Assumption 3.6 (Gradient Uniform Continuity). For any given sample pair (x,y) ~ D, the stochastic
gradient of the objective VF(0; (x,y)) satisfies uniform continuity.

Assumption 3.7 (General Hessian Smooth). For any given 01, 05 and o' € [—1, 1], the Hessian of
the objective H(01) and H(602) are invertible and satisfy

[ @)~ 1102 | < plel 1 — 021

Assumption[3.7]is the generalization form of Lipschitz continuity of Hessian. When o = 1, it reduces
to Hessian Lipschitz continuity. We use it to limit the gap between H, 2o jn PSPSA and (H*) 2,
When the objective is strongly convex, the Hessian is naturally invertible, while for others we assume
its invertible property. We propose the convergence rate of general functions in Theorem [3.8]

Theorem 3.8 (Convergence Rate of PaZO on General Functions). Suppose we are given access to the
PSPSA, running PaZO for general functions (1) satisfying Assumption[3.3| B.6land[3.7|with a learning

NP . Amas ((H*)T 72
rate n Satlsf_‘ylng W g n S m‘for 2T Steps with T z m

where H* is full-rank and E||0; — 0*||P < €b for any t € [T, 2T — 1] and p € (0, 3] allows PaZO to
achieve the following asymptotic convergence rate:

2T -1 o i *\1—2a\\2T
fGZ&ﬂﬁw§1MWM)”|%wﬁww
t=T

E 0212

)]

N 50 R (029 )

T + E_rr,



Algorithm 1 PaZO (Practical Form)

Require: parameters © = {0; € R%}, loss £ : R? — R, running steps 7', perturbation scale ,
learning rate schedule 7;, smooth scale 31, 32, initialized diagonal Hessian ¥y = I, random seed
s, a random number generator, Hessian reset frequency 7}
fort=1,....,T do
Step 1: Perturb Parameters through Diagonal Hessian
Sample batch B C D and random seed s

< L(0;8)

0 < PerturbParameters(0, p, 2:1/ 2, s)

4+ L(6;B)

0 + PerturbParameters(8, —2, E;_ll/ 2, s)

l_ + L(6;B)

6 < PerturbParameters(6, u, Ef_ll/ 2, s) {Reset parameters before descent}
Step 2: Estimate Diagonal Hessian

g (by — 1)« Z,} / 2u/ 2u {Estimate unbiased zeroth-order gradient}

Y= ((1-8)%2, + 5 - diag’(go g))1/2 {Adding information from ZO gradient }

3, = 2/%(&_ +0_—20) (f) (diag(uu’) — I)) {Estimate unbiased diagonal Hessian }
Step 3: Take Moving Average and Reset Diagonal Hessian

Y (1= 52)%-1+ P |f]t| { Take moving average of diagonal Hessian}
if t%Ty = 0 then

31 {Frequently reset diagonal Hessian}
end if
Step 4: Update the Parameters

Reset random number generator with seed s {For sampling u; }

preconditioned_grad +— (¢4 —{_)x X, 1/2 /2 {Using X! as preconditioner}
for 6, € © do

Sample u; ~ N (0,14,)
0; <+ 0; — nyx preconditioned_grad *u;
end for
end for

where Err = O (77,068 + npeg‘alJr1 +n%eg + 772p6(2J

‘al) represents the higher-order infinitesimal

term, and « is the precondition order defined in PSPSA.

We observe that the dominant term of the rate in Theorem [3.8]aligns with the rate in Theorem[3.3]
which further demonstrates the generalized validity of our analysis on the role of preconditioning in
zeroth-order optimization: for general problems, selecting o = 0 alone induces a slower convergence
rate than the optimal choice o = 1/2. Moreover, the Err is defined as the higher-order infinitesimal
term O (npeg + npeg‘o‘l+1 +n%eg + 772/)6(2)'0“) that negligibly impacts the convergence rate of the
dominant term. When 7' grows, we can choose the smaller 7 to obtain the controlled Err.Thus,
Theorem 3.5]can be regarded as a special case of Theorem 3.8] and we propose the proof in detail in
Appendix [Al By selecting o = 1/2, PaZO achieves the fastest convergence rate O (d2 /T ) compared
with MeZO for general functions, providing a reasonable answer to question B.

4 Algorithm for Fine-Tuning LLMs in Practice

In this section, we introduce PaZO (Practical Form) in Algorithm|I]for fine-tuning LLMs in practice.
We provide an answer to the question below.

C. How to effectively estimate Hessian information through zeroth-order perturbations
in practice and improve fine-tuned model performance on downstream tasks?




Algorithm 2 PerturbParameters

Require: model parameters © = {0; € R%}, perturbation scale y, diagonal Hessian 3, 1/ 2,
random seed s, a random number generator

Reset random number generator with seed s {For sampling u; }
for 6; € © do

Sample u; ~ N (0,14,)

0, < 0;,+ux, Y 2ui {Modify parameters in place}
end for

Specifically, we apply the theoretically optimal order of preconditioner H~'/2 in the PSPSA process.
Then we estimate diagonal Hessian with incorporating the current zeroth-order gradient information
and moving average techniques through the same PSPSA process for estimating the preconditioned
zeroth-order gradient. Our algorithm can be divided into four steps.

Step L. Perturb Parameters through Diagonal Hessian. First, we apply PSPSA to our practical
algorithm to obtain the preconditioned zeroth-order gradient. Inspired by our theoretical results, we
use X~ 1/2 as the preconditioner in the PSPSA process, where 3 is the estimated diagonal Hessian.
Through twice forward passes of PSPSA we obtain

ly = F(O+p=Pu;(x,y)), € = F(0—puZ " u;(x,y)).

Moreover, we run another additional forward pass before adding perturbation to obtain ¢ =
F(0; (x,y)) for estimating 3 in the following steps.

Step II. Estimate Diagonal Hessian. We try to estimate the diagonal Hessian through ¢, ,¢_ and /,
with O(d) memory cost against O(d?) for the full Hessian. Specifically, in the theoretical analysis of
the Hessian-aware zeroth-order optimization [55]], they demonstrate that

1
Eun(0.1) [QuTA%HAéu- (A—%uuTA—% - A‘l)] —H, (10)

where H is the Hessian matrix, and A is any given positive definite matrix. Thus, letting 3 be a
positive definite diagonal matrix and setting A = X ~!, we obtain the diagonal version of (I0) as

E [; W S THS Zu.S (diag(uuT) - I)} — diag(H). an
—_—
T

We use ¢, ¢_ and ¢ to estimate Z. Through Talyor expansion, we have

0= F(8: (x,9)) + n (VF(0: (x.9)). B 3u) + E-T+ 0,

(12)
2
0= F(0;(x,)) — 1 (VF(8; (x.9)), B~ 4u) + LT+ 0.
Thus, we can obtain Z by the combination of ¢, ,¢_ and ¢ as
by +0_—2¢
4= =T+0(n). (13)
1

Moreover, incorporating the current gradient information into the preconditioner is demonstrated to

be effective in first-order optimizers [28| 35]]. We additionally estimate

Ei 2q
2

as an unbiased zeroth-order gradient and incorporate diag(g o §) as a correction item to integrate
local first-order estimated information into 3J; through a moving average mechanism as

= . 172
2= (1-B)1 + b1 - diag’(g0g)) .
Then we use (I1)) to update the diagonal Hessian as
- 1
Et - 272
%

g=(0y —L)x =uu' VF(6; (x,y)) + O(n)

(6 +0_ —20) (i (diag(uuT) — I)) . (14)



Step III. Take Moving Average and Reset Diagonal Hessian. In practice, we empirically discover
the instability of the estimated diagonal Hessian. To solve this problem, we take the moving average
of the historical estimate and the current one to maintain the smoothness and stability of 3; as

5= (1—-B2)i 1 + BB, (15)

where |ﬁ]t\ means taking the absolute values of f]t to maintain positive definite. Moreover, when
the iteration step exceeds a threshold, excessive accumulated historical information may no longer
positively contribute. Therefore, we reset the 3 frequently after some steps.

Step IV. Update the Parameters. Finally, we layer-wisely compute the preconditioned gradient by
PSPSA, where the gradient estimate is equivalent to a X! preconditioned zeroth-order gradient.

Remark 4.1. For 31, we first clarify that the correction term g o g is introduced to mitigate training
instability caused by outliers from the stochastic zeroth-order oracle. Specifically, since the precondi-
tioner order is set to o = 1/2, excessively small values in the diagonal Hessian estimate can lead to
numerical instability (e.g., NaN values) during training. This correction term promotes numerical
alignment between gradient magnitudes and adaptive curvature scaling, similar to the mechanism in
Adam. However, applying such a correction introduces bias into Eq. (14). By choosing a small 31
to constrain this bias, we observe that this nearly negligible term enhances estimation robustness
against outliers and ensures training stability. As shown in Appendix|C.7} setting (1 too large (e.g.,
1 or 1072) causes optimization divergence and results in NaNs, as the correction term introduces
non-negligible bias. Conversely, when (1 is too small (e.g., 0 or close to 0), the correction fails to
take effect, potentially leading to numerical instability and NaNs. Only within an appropriate range
(around 108 to 10719) does the algorithm achieve stable and reasonable performance.

For (s, it is designed to reduce the high variance in Hessian estimates from the zeroth-order oracle.
For the Hessian estimate X, at step t, a small By ensures that the cumulative variance from the
sequence {f]k}fc_:h remains controlled, thereby enabling lower-variance and more stable updates
during training. A similar hyperparameter configuration is adopted in other zeroth-order fine-tuning
optimizers, such as in [59)]. Our experimental results further confirm that, under identical parameter
settings, PaZO improves the performance of fine-tuned model across tasks.

5 Experiment

We conduct experiments on both masked LMs (RoBERTa-large, 350M [34])) and large-scale generative
LMs (OPT-1.3B [57]) with zero-shot learning, linear probing (LP [22]), in-context learning (ICL [8])),
full-parameter tuning and PEFT including LoRA [23]] and prefix-tuning [31]] (see Appendix for
details). We compare PaZO with other representative zeroth-order optimizers including MeZO and
HiZOO (see Appendix [C.4]for details). We first show that PaZO achieves significant improvement
over zero-shot, ICL, and LP. Compared with first-order optimizers (FT), PaZO drastically reduces
the memory cost while maintaining comparable performance. Moreover, PaZO realizes better
performance compared with MeZO and HiZOO. Detailed settings are presented in Appendix [C.2]

5.1 Masked Language Models

We conduct experiments for RoOBERTa-large (350M) on sentiment classification, natural language
inference, and topic classification tasks. We sample k examples per class for £ = 16, running zeroth-
shot learning, LP, fine-tuning, MeZO and PaZO. We summarize the results in Table E} First, we
show that: (1) PaZO works significantly better than zero-shot and LP; (2) PaZO achieves comparable
performance to FT. Moreover, we show the better performance of PaZO compared with MeZO.

PaZO achieves better performance compared with MeZO. As shown in Table[I] PaZO achieves
improved performance on average across all the datasets, tasks and PEFT (we choose the best results
from LoRA and prefix-tuning). For sentiment tasks, the improvement of PaZO is universal, while for
NLI and topic tasks the improvement is evident on MNLI and TREC with 9.3% and 5.4%.

5.2 Generative Language Models

We extend the experiments to the OPT 1.3B model [57] on classification and multiple-choice tasks on
different datasets (see Appendix for details). We randomly sample 1000, 500, and 1000 examples



Table 1: Experiments on RoBERTa-large (350M parameters, k=16). We use zero-shot learning, linear
probing (LP), full-parameter fine-tuning with Adam, MeZO and PaZO on six downstream tasks. We
also test PEFT methods including LoRA and prefix tuning with Adam, MeZO and PaZO respectively.
All reported numbers are averaged accuracy (standard deviation) across 5 runs.

Task Type SST-2 SST-5 SNLI MNLI RTE TREC Average
sentiment natural language inference — topic —
Zero-shot 79.0 355 50.2 48.8 51.4 32.0 49.5
LP 76.0 (£2.8) 403 (£1.9) 66.0(£2.7) 56.5(£2.5) 59.4(£53) 51.3(£5.5) 58.3
FT 909 (£1.7) 44.8(£1.6) 67.5(£2.4) 582(%£3.1) 66.4(£7.2) 85.0(£2.5) 68.8
FT (PEFT) 919 (£1.0) 43.2(x£l.1) 655(£1.8) 57.1(£1.3) 655(£1.9) 79.8(£1.5) 67.2
MeZO 90.5 (£1.2) 423 (£2.1) 66.7(£3.3) 51.6(£3.0) 64.0(£3.3) 70.2(£14) 64.2
MeZO (PEFT) 913 (£1.0) 424 (£2.5) 62.7(£2.8) 55.6(£2.0) 60.5(£3.6) 73.4(£3.6) 64.3
PaZO 91.4 (£0.8) 44.6 (£1.7) 66.7 (£2.6) 56.4 (+2.1) 63.2(£52) 70.8(£2.0) 65.6

PaZO (PEFT) 91.3(£0.3) 429(40.5) 624 (£1.6) 558(x1.7) 61.5(£2.2) 77.4(£3.)5) 65.2

Table 2: Performance comparison with MeZO and HiZOO. We fine-tune OPT-1.3B on different
downstream datasets and evaluate the performance, applying LoRA and prefix-tuning.

Task Type SST-2 BoolQ CB ReCoRD RTE WIC WSC COPA MultiRC Average
—— - classification ——M8 — multiple choice —
MeZO 88.5 634 678 72.3 66.1 60.6 57.6 76.0 56.3 67.6
MeZO (LoRA) 88.5 63.0 60.7 70.6 599 582 548 77.0 589 65.7
MeZO (prefix) 91.3 641 679 71.0 625 542 512 75.0 57.2 66.0
HiZOO 88.5 614 679 71.9 643 622 625 73.0 59.3 67.9
HiZOO (LoRA)  88.5 63.1  69.6 72.5 646 60.6 5438 76.0 58.9 67.6
HiZOO (prefix)  91.3 63.6 679 70.9 632 538 577 75.0 54.5 66.4
PaZO 89.0 63.4  69.6 72.1 66.4 632 615 75.0 57.6 68.6
PaZO (LoRA) 88.5 634 732 72.1 628 582 5438 77.0 58.9 67.7
PaZO (prefix) 91.3 634 679 71.0 623 538 577 75.0 57.2 66.6

for training, validation, and test sets, respectively, for each dataset. We run MeZO, HiZOO and PaZO
for 20K steps, and compare the performance with different zeroth-order optimizers in Table [2]

PaZO achieves SOTA performance compared with other zeroth-order optimizers. As shown
in Table 2} PaZO achieves SOTA performance compared to other zeroth-order optimizer baselines
including MeZO and HiZOO. Specifically, for average performance, PaZO achieves all-round
improvement beyond MeZO and HiZOO, no matter the full-parameter version, the LoRA version or
the prefix-tuning version. For single-task performance, PaZO and its peft version show advantages in
the vast majority of tasks and have little gaps in other tasks.

5.3 Memory Usage and Wall-clock Time Analysis

Memory Usage. As shown in Figure |I} PaZO has more memory overhead compared to MeZO
because of the storage of the diagonal Hessian, and maintains the memory overhead compared to
HiZOO. However, PaZO also exhibits extreme saving of memory compared to first-order optimizers,
specifically, up to 6 x compared to standard FT and 3 x compared to FT (prefix-tuning).

Wall-clock Time. As shown in Figure[2] PaZO spends 1.5x time per step compared with MeZO, and
the same time per step compared with HiZOO, since preconditioned optimizers need an additional
forward pass for estimating diagonal Hessian. In Figure 2} Modell means we use LoRA and Model2
means we use prefix-tuning. Considering the accelerated convergence rate of PaZO with fewer steps
to obtain the same loss, PaZO achieves better performance with an acceptable extra time cost.



1000

Peak Memory (GB)

100

Zero-shot

IFCTL MeZO | HiZOO PazZO

- FT(prefin) RoBERTa-L ~ 0.2091s | 0.3020s  0.3046s
—= o 7 'ex  ROBERTa-Ll1 0.1338s | 0.1993s 0.2013s
o sx : RoBERTa-L2  0.1254s | 0.1869s  0.1892s

OPT-1.3B 0.2564s | 0.3812s  0.3837s

OPT-1.3B1 0.1664s | 0.2798s 0.2857s
OPT-1.3B2 0.1572s | 0.2374s  0.2419s

Figure 2: Wallclock time per step among MeZO,

e zFE:aramete?; ¢ 138 HiZOO and PaZO. The increase in Wallclogk
time per step for PaZO compared to MeZO is

Figure 1: GPU peak memory overhead with dif- less than 1.5 times across different model sizes.
ferent OPT models and tuning methods on Mul- ~ All results are measured on the same dataset
tiRC (400 tokens per example on average). See  (SST-2) and GPUs (24GB 3090), with each result
Appendix for details. averaged over 100 steps.

6 Conclusion

In this work, we propose PaZO, a preconditioned accelerated zeroth-order optimization method for
fine-tuning LLMs. We theoretically analyze the necessity of preconditions in ZO, and demonstrate
the optimal order of preconditioners to achieve the fastest convergence rate. We propose the practical
form of PaZO and extensive experiments on different models and tasks show the effectiveness.
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A Proof of Theorem 3.5 and Theorem

We prove Theorem 3.5]and Theorem [3.8] by three steps below. First, we rewrite the update form to
obtain the coupled recursive formula of (8;, — 6*)(8;, — 8*) T ignoring higher-order infinitesimal

terms. Second, we obtain the estimation of the sum of (8;, — 6*)(8;, — 8*) T with ¢, and ¢, from T'

to 27" — 1. Finally, by Taylor expansion of f (% fz; 16, on 6%, we obtain the results in Theorem

and Theorem[3.8]

Specifically, Theorem [3.5] can be regarded as a special case of Theorem [3.8] Thus we employ a
generalized proof framework to establish the proofs of the two Theorems above. The main body of
our proof addresses general function (as stated in Theorem [3.8)), while the least squares (Theorem
[3.3) is distinctly labeled as "Least Squares" for clarity.

Proof. Step 1. We first rewrite the update rule from
0111 =60, —nVF(0;; (x1,01)) (16)
to separate the decay term and higher-order term as below :
0111 —0"=0,—0"—n (ﬁF(eﬁ (x¢,9)) — (H*)_2“Vf(0*))
= (I-n(H")'72*)(0; — 0)
()28, — 0%) — B [VF (05 (xi,30))] + (H) "2V (6"))

+n (E [@F(Gt; (Xt yt))} - @F(aﬁ (Xuyt))) .

7

Denoting Q* = I — n(H*)' 72, with n < 5

W we have Q* = 0. Forany T < ty <
t1 < 2T, by recursive formula (T7), we have

0, — 0" = (Q*)" (6, —0*)+B+C
A

(18)

where

ty—ta

B=n 3 Q)7 () 70y = 07) ~ B [TF (00 b ves-5)| + () V7 0)),

and

t1—t2

C=n Y Q)Y (E[VFOu i (%t ta-i))| = VFOu—ji (Ktajoyn—s))) - (19)
j=1

Then we denote V¢, 4, := (6;, — 0%)(0,, — 6*) T, by the recursive formula (32) from 6;, to 6, we
obtain the expectation of Vy, ;, as below. When t; > ¢, we have

E [thﬂfz] = (Q*)tlitzE [Vt27t2} + O(Wﬁg : I)a

(20)
= (Q")" " E[Vy,,] + Err
where the second term in the first equality is from B(6;, — 6*)T. We obtain
E[B(6:;, —0*)"] <E|B(6, —6")7| 1
(a) o2
Lo [noe | S (160 -0 12+ 10, —0°2) - o, — 07| | -1
j=1

<0 (np (eﬁ'“‘“ + 68)) -1
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In (a) we apply the Assumption E [@F(Gt; (xt, yt))} = (H*)"22Vf(0;) and Vf(0*) = 0 to
B and obtain that for any ¢ € [t,t; — 1] we have
[|(H,) 724V £(6,) — (H*) 72V f(07) — (H*)' (8, — 67|
< ()72 = (1)) V£ (6,
+[|(H)T* (VF(8:) — VF(0") — H* (6, — 67))]]

<O (pllo - "1 + pl6, — 6°]2).

2n

Thus, we denote Err = O (np (eﬁ‘“'“ + 68) : I) to represent the higher-order infinitesimal term.
Similarly, when ¢ < to, we have

E [th’tQ] =E [th,tl] ((Q*)t2_t1>T + Err. (22)

Then we compute the recursive formula when ¢; = to. Applying to = t; — 1 to the recursive formula
(32) and take the expectation of two sides, we have

E [Vh,tl] = Q*E [thflytlfl] (Q*)T + 772E[65T] + Err, (23)
where £ = E [@F(Otl_l; (xtl_l,ytl_l))} — VF(0;, _1;(Xt,1,Y:,-1)). The second term is

from E [CC"]; the third term Err is form E [ABT + BAT + BB'|, which is on the order of
O(npl|@ — 0*||* - T);and E [ACT + BCT + CA" +CB'] = 0. We calculate the second term as

EET =¢g€T —grer Ty ErET, (24)
where £* = E {@F(G*; (X¢y-1, ytl_l))} — VF(6*;(x¢,—1,4:,-1)). Then we obtain that
E|EET — &E*E *T} is on the order of O(¢g) due to the gradient uniform continuity in Assumption
Q For simplicity, we denote VF(8y; (x¢, —1,ys,-1)) = VF; and VF(0*; (x4, _1,9,-1)) = VF*

E|eeT —g e | =E|VEV R -VFVTF'| ~E|[VR|E[VTR|, @5
For the first term we have
E|[VEVF - VYV F]
—E [(Ht)*auuT(Ht)*QVFthFt(Ht)*auuT(Ht)*a]

) [(H*)—auuT(H*)—QVF*VTF*(H*)—auuT(H*)—a}

=E |(H) “uu’ (H,) “VEF, (VTFt(Ht)_auuT(Ht)_“ - VTF*(H*)_“uuT(H*)_“)

<1

~E ((Ht)_auuT(Ht)_”VFt - (H*)_”uuT(H*)_aVF*) VT F*(H") “uu (H*)

¢2

Due to Assumption[3.6] we have
B¢ <E|VTF ((H) “uu’ (H;)™* — (H*) “uu’ (H*)~)||
+E|[(VTF, = V'F*) (H*) “uau’ (H*)™*||
<E|(V'F-V'F) ((H,) *au’ (H,) - (H*) “uu’ (H*)" )|
+E||VTF* ((H) “uu' (H,)™* — (H*) *uu’ (H*)")||
+E||(V'F - V'F*) (H*) *uu' (H*)
<O (E[pIVF[116. - 0"2°!] +E [p]l6, — 6° 21| + EJl6, - 67])

<0 (pegla‘ + 60) .

(26)
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Similarly we have
E[lGo]l < O (peg*! + <o) )

Thus E [@Ft@TFt — @F*@TF*} =0 ((pegla‘ + 60) . I). For the term E {@Ft} E [@TFJ we
have

E [@Ft] E [@m} = (H,) 22V f(0,)V f(8,)(H,)~>

<O (|V£(6:) — Vf(69)]? 1) (28)
< 0|6, - 6*|]* - 1)
j 0(60 . I)

Thus we have E {SET - S*E*T} =0 ((pegla‘ + eo) . I). Then we obtain

EleeT] =E|ee | + 0 (g + ) 1)
= E [(H") “uu (H*) °VF*V| F*(H") “uu' (H)"°] + O ((pegla' + 60) : 1)
= Eu [(H) " uaT (H) =" (H)~un (H) 7] + 0 ((p” + ) - 1),

where in the second equality we use E [@F(B*; (xtl_l,ytl_l))} = 0 and VF(0*; (x¢,_1,

ye,—1)) = (H*) “uu' (H*)"*VF(0*;(x¢,-1,%:, 1)) when ignoring the higher-order in-
finitesimal term of y; in the third equality we use Assumption [3.3] Denoting M* =
Ey [(H*)"®uu’ (H*)"*H*(H*)"“uu' (H*) %], we have

E Vi) = QE[Ve-1,0-11(Q)T +7°M* + Err + 0 (i (pg* + o) - 1)

- (29)
=QE[Vi_14-1](Q")" +7*M* + Err.
In summary, we obtain the recursive formula of E [V, ,,] as
(Q*)tl_t2]E [Vtg,tz] + E}‘I‘ if t1 > tQ,
E[Vit] = QEVy14-11(Q)" +7’M" + Err  ifty =t, (30)
Vi ] ((Q)=7")" +Err it < 2,

where Exr = O ((npef + npeg ™" + neo + n?peg!) - ).

Least Squares. For least squares regression (6) with C' = o2, we notice that the Hessian matrix is
fixed as H* = L E[xx '] and the gradient can be written as

1 1
VF(0,,(x¢,y)) = 52 (ye — (01, %¢)) X = ﬁ«at — 0%, %) + €)%y

B xx; (6, — 0%) Xy

3D
o2 o2’

Thus we have E[VF (0, (x;,:))] = (H*)"2*H*(0; — 0*). Thus the second term in the second
equality in (I7) is 0. The recursive formula of 6;, and 0;, can be exactly obtained as

0, 0" = (Q)" (0, 0")

A
t1—t2

1 3 (@Y (E[VEO i (i va-i))| = VEO s (x5 v0a-4)))
j=1

C
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forany T' < t¢; < to < 27'. Then we similarly obtain the expectation of Vy, ;, when t; > ¢, as
E [Vtth] = (Q*)tlib]E [Vt2,t2] ) (32)
due to E[C(0;, — 0*) "] = 0 without Err. When ¢; = t,, we obtain

E [Vh’h] = Q*E [thfl’h*l] (Q*)T + 772E [ggT] ) (33)

where £ = E {@F(Otl_j; (%43 -5, ytl_j)):| — VF(8:,_j; (%¢,—j,9t,;)). For quadratic functions,
we have Hy = H*. Thus we directly obtain

E[tr (H*€ET)] < tr? (H)' 72) tr (H'E [V, —1,0, 1)) + tr (H* M), (34)

where the last inequality is derived from the assumption that B, [x;x, Bx;x; | < O (tr (H*B) H*)
when B and H* share the same orthonormal basis for least squares regression. Thus we obtain the
exact recursive formula of E[V, ,,] for least squares regression as

(Q*)tl_t2]E [Vtz,tz] lf tl > t2’
E[Vi ] XS QE[Vy, 14 -1] (Q*_)rT +02p(Vi—14,-1)  ifty = 1o, (35)
E [Vthh] ((Q*)tz_tl) ift; <tg,

where ¢(Vt1—17t1_1) =0 (Hetl—l _ 0*”2) (H*)Qa 4+ M*,

Step II. In this step, we obtain the estimate of the sum of E [V, ;,] for t1 and t5 from T to 27" — 1.
First, by the recursive formula (30), we have

min{tl,tg}fl

E[Vi, ) = Q)" TE Vo] (Q)2T) 412 o) v (@)= " +Err
t=T

Liy,ty

In this step, we try to estimate Zfth; 1:T T4, +,- Specifically, for any ¢ € [T,2T — 1], we denote
Tty 1, (1) = n(QF) 17 IM* ((Q*)trt*l)T. Thus we have

2T—-1 2T—-1 T
Y Tuw®=9" Y (Q)"TIM(I-(Q)T)I-QY) )
ty,to=t+1 t1=t+1

T

=2 (1= Q)1 (T— Q) ) M* (I— (Q) 1) 1-Q) ),

where we first calculate the sum of ¢, from ¢ + 1 to 27" — 1 given ¢;; then compute the sum of ¢; from
t+ 1to 27 — 1. Both use the matrix-formed summation formula for geometric series. We obtain that

2T—-1 2T-1

Yo Y Lne®=TP0-Q) 'M"(1-Q)7)

t=T tq,ta=t+1

T

2T—-1 .
- 772 Z (Q*)QT_t_l(I — Q*)_lM* ((I _ Q*)—l)
t=T
2T—-1
_ 7}2 Z (I o Q*)flM* ((I i Q*),l)T ((Q*)QTftfl)
2T—-1
+ 772 Z (Q*)2T7t*1(1 _ Q*)flM* ((I o Q*)71)T ((Q*)QTftfl)T ,

t=T

T
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where Ztl =1 Lt = At fi;lztﬂ T, t,(t). Then, applying Lemma with M =
I- Q*and M = M* to (36), we obtain
2T-1 271

> > L) =TE) IM ((H*)*<1f2a>>T

t=T t,ta=t+1
—(I—(@Q)") - Q) (H*)~ (-2 M* ((H*)—(1—2a))T
e (o) (om0 0@’

2T—-1

+ Z 2T t— 1 H*) (17204)M* ((H*)7(17204))T ((Q*)2T7t71)—r.

We notice that with n 2 W’ Q* < (1 — NAmin ((H*)I—Qa)) I < I. Thus we have
2T—-1 2T-1

5 <y e (g )

t=T t1,to=t+1
27-1

+ Z (Q*)2T7t71(H*)7(1—2a)M* ((H*)f(l—m))—r ((Q*)sztﬂ)T

t=T

1-— (1 - nAmzn ((H*)1_2a))2T> w0\ —(1—2a) |\ f* #\—(1—2a) T
T H M*((H
: < T (1 = 9 Agnin ((H*)1-20))° ) <( ) )

= (T+ - ((L*)l_m)> (H*)—(1_2Q)M* ((H*)_(1_2a)>T

The last equality is due t0 9Apin ((H*)'72) < nhpae (H*)172) < 1

Step II1. In this step, we finish the convergence analysis of Theorem [3.8] We first utilize the Taylor
. 1 2T —1 *
expansion of f (T =T Ot) at 0* as below:

271 . 2 ) T ) | 201 )
( 20t><f0 ( Z(eta)> H(TZ(0t0)>, (36)

t=T t=T
since V f(6*) = 0. Then we take the expectation of both sides of and obtain

PEE e 2 e () ()
%tr <H*E 2TZ_1 2TZ_1 th,t2‘|>

t=T ty,to=t+1
® 1 .

2T—1 2T-1
1 _
4+ ————tr ((H*)‘m*lE [VTyT]) + Err

Z Z Itlﬂfz (t)

t=T ti1,to=t+1

20272
© (1 = pAmin (H*)'72))*T \da—
S ,’72T2 tr ((H )4 'E [V070])

1 1
— Dy + ——D,, + Fr
+ (2T T ((H*)l?a)) + e e TR

where Da = tr (H*(H*)7(17204>M* ((H*)f(lfQQ))T and E_I'I' o 2]al+1

o (W)Go +npey T+
n%eo + n?pe ‘al) To obtain the inequality (a), we use a' Ha = tr (HaaT) for any vector a and
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matrix H. (b) is derived from combining (36) with the recursive expression of E [V 1| in (30) when

given T'. By integrating (36) with the recursive computation procedure for tr ((H*)**~'E [V 1)),
we have the inequality (c).

Next, we compute the trace expression tr (H* (H*)~ (=200 MV ((H*)*“*M))T) through the fol-
lowing derivation:

i (H*<H*>_(1_QQ)M* ((H*)—(l—za))T> i ((H*)4a_1 M*) 7 37

where M* satisfies:

M* = EuNN(OA,Id) [(H*)fauuT (H*)faH* (H*)fauuT(H*)fa
(d) (38)
< 10) ((H*)—Qatr ((H*)1—2o¢)) .

Inequality (d) is derived from the fact that El[Auu'Buu'AT] < O (AATtr(B)) when u ~

N(0,1;) and A, B € R?*4 share the same orthonormal basis. Thus, combing (37) and (38)), we
obtain

tr (H*(H*)—(l—Qa)M* ((H*)—(l_Qa))T> <t ((H*)Qa—l) tr ((H*)1—2a) . (39)

In the end, we have
27—1

* (1 _n)‘min((H*)l_Qa))2T 1 \1—2a

( Z m)] £(0°) S T2 ot ((H*)'—2%)

tr ((H*)2a—1) Str ((H*)1—2a>
T

(40)

+ + Err.

We complete the proof of Theorem [3.8]

Least Squares. For least squares regression, we obtain

271 1 201 2 T
< Z etﬂ —f(e") f]E tr | H* (T Z(et—e*)> (T > (9t—0*)>

t=T t=T
® 1 !
e D tr (HY)*E[Vi4))
t=T

© (1= i (H) )"

T tr ((H*)**E [Vo,0]) +

(41)

T
where D, = tr (H*(H*)*(l’%‘)M* ((H*)’(lf%‘))T). By a'Ha = tr (Haa") for any vector

a and matrix H, we have inequality (a). (b) follows from the recursive expression of E [V, 1,] in
(33) and (c) is obtained from the estimation

tr ((H)PE [V, /) <t (H)2(Q)'E [Vo] ((@)) ")

T

. (& 16 - 61] ) <<H*>2“<Q*>f-1-t’ (1) ((Q*)ﬁ‘l")T)
t’'=0

4o ti‘i tr <(H*)2a(Q*)tlt'M* ((Q*)tlt’)T>
=0

IT

(d)
< (1 - nAmin ((H*)172a))Ttr ((H*)QQE [VO,OD + 77DO¢7 (42)
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forany ¢t € [T : 2T — 1], where (d) is derived from combining the following recursion

E[16, ~ °F] = tr (E[Via)) <tr (QE[Vio1,-11(Q"))
+ 0 [tr (H*)72) tr (H*)' %) tr (H'E [Vi—1,4-1]) + tr (M7)]

(e)
< (1 — NAmin ((H*)li%é)) tr (E [Vt—l,t—l}) + 772‘51" (M),
43)

with explicit computational procedures applied to parameters Z and ZZ, where (e) is achieved through

the setting of step size that n < X (H*)tr(();IISI)‘EI;I‘:))tr((H*)1*2”)' According to @, we complete

the proof of Theorem [3.5] O

B Extensive Analysis under Approximate Hessian

In this section, we further consider the PSPSA using approximate Hessian H, to replace H;. Previous
Workﬂ shows that without exact calculation, approximate Hessian can be obtained through zeroth-
order oracles with a controlled gap between H; and H,. Specifically, for least squares regression,
due to H; = H*, we formally propose the Assumption[B.T|below to characterize the approximate
error of Hessian.

Assumption B.1. Given a > 0, the Hessian estimation matrix Hy satisfies

Hflfa — (=) < ac. (44)

With Assumption[B.T] we obtain the convergence rate of PaZO with approximate Hessian for least
squares regression in Theorem [B.2] The complexity of estimating Hessian can be lower bounded
by the rate in Theorem [B.2]since we only need to estimate the Hessian one time for least squares
regression due to H, = H*.

Theorem B.2. Suppose o € [0,1/2] and the Hessian approximation error € defined in Assumption
satisﬁes e<O ((/@(H*))_l/@a)> Amin (H*) where K(H*) = Apax (H*) /Amin (H*). Consider
running PaZO with approximate Hessian I:It satisfying Assumption @lfor the least squares regression
problem (6) under Assumption with a learning rate 1 satisfying n = O (()xmin(H*))QO‘_1 T_1>
for T iterations. Then PaZO achieves the following convergence rate:

. w20\ T . 3d202 (k(H*))> 4
E (107~ 03] < (10 Q) 2%) " 0 — 07, + 22U )

where « is the precondition order defined in PSPSA.

In Theorem the first term decays exponentially as 7', and the dominant term of the rate is
3d202 (k(H*))* ** /T. Since & is defined as the condition number of a given positive definite

matrix, we notice that (x(H*))?>~*® > 1 and the equality holds if and only if v = 1/2. This result
amazingly aligns with the results in Theorem [3.5] which demonstrates that the optimal selection of «

in PSPSA is 1/2. Without an effect preconditioner, ZO-SGD only achieves O(d20? (k(H*))* /T),
not matching the ideal rate O(d?0/T). We provide the proof of Theorem as follows.

Proof. According to the update rule

0111 = 0; — )V F (0 (x1,51)), (46)

"Qian Yu et al. “Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian:
Minimax Sample Complexity”. In: arXiv preprint arXiv:2406.19617 (2024).
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we have
E |[[@11 — 9*”?1*} (%)E [Hgt - B*H%{} — 2nE Ket — 6", H,*"H'(0; - 9*)>H}

e (H20H ) E (16, - 0713 | +nPo*n® (B, 0 H")

< (1 2 (B ) E [0, - 07

)\max(H*)GQQ
(Adn (H7) — €2) AZD, (H*

%112
e2a)2]E [Het -0 HH*}

+ 2n

JE [||9t - 0*||§{*]
2 tr®(H*)

+ 27]20,2 [trQ ((H*)172a) + <(>\2a (Hf§(fl;)§)a)\2a (H*)) ]

min min

2 (1= (B ) E[ 6, - 07|
+3n20?te? ((H*)12)
where (a) is derived from Assumption , (b) follows the fact \in (FI; %) < (A2%, (H*) — €2%) -
and HI:I;QO‘ — (H*)72|| < e/ [(A29, (H*) — €2¥) A22 (H*)], and (c) is obtained from the
setting of 7 and Assumption According to the recursive expression of E {HBt - 0" ||i1*} , we
obtain

£ (107~ 0" 3] < (1 Qi) 7) 60 - 0°

3no® 2 1-2
+ ————tr* (H* “). 47
e () “
By applying the chosen value of 7 to (7)), we complete the proof. O

C Experiment Setup

C.1 Dataset

For RoBERTa-large, we consider classification datasets: SST-2 [47], SST-5 [47]], TREC [51]], MNLI
[54], SNLI [7], and RTE [20, |14} 18| |6]. We follow [37] to limit the test set with 1,000 examples for
fast iteration. For training and validation, we set £ = 16, which means that we have 16 examples per
class for both training and validation.

For OPT-1.3B, we consider the SuperGLUE dataset collection [52]], including: BoolQ [13]], CB [[15],
COPA [45]], MultiRC [27]], ReCoRD [56], RTE [20, |14} [18[6], WiC [43]], and WSC [30]]. We also
consider SST-2 [47] and report the results on the above 9 dataset with randomly sampling 1,000
examples for training, 500 examples for validation, and 1,000 examples for testing.

C.2 Hyperparameters

We use the hyperparameters in Table 3| for experiments on RoBERTa-large. Previous work [37]
shows that the choice of € seems to not significantly impact the performance, and using a larger batch
size consistently yielded faster optimization. We use the hyperparameters in Table ] for zeroth-order
methods on OPT-1.3B. We use linear learning scheduling for first-order fine-tuning methods with
backpropagation, and constant learning rate for all zeroth-order methods.

For RoBERTa-large experiments, we evaluate the model on validation sets every 1/10 of total training
steps and save the best validation checkpoint. All FT experiments use 1K steps and zeroth-order
methods use 100K steps. For OPT-1.3B experiments, we evaluate the model on validation sets every
1/5 of the total training steps and save the best validation checkpoint. All zeroth-order methods in
experiments use 20K steps.
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Algorithm 3 MeZO

Require: parameters © = {0; € R%}, loss £ : R? — R, running steps 7', perturbation scale ,
learning rate schedule 7,, random seed s, a random number generator
fort=1,....,T do

Step 1: Perturb Parameters through Diagonal Hessian
Sample batch B C D and random seed s
0 + PerturbParameters(0, u, I, s)
0 « PerturbParameters(0, —2u, I, s)
(_ + L(6;B)
0 < PerturbParameters(0, u, I, s)

Step 2: Update the Parameters
Reset random number generator with seed s
projected_grad < (¢4 — (_)/2u

for 8, € © do
Sample u; ~ N(0,14,)
0; <+ 0; — nyx projected_grad *u;

end for

end for

C.3 Parameter-efficient Fine-tuning

Storing and fine-tuning a large language model for each downstream task can be quite costly.
Parameter-efficient fine-tuning (PEFT) techniques help mitigate this issue: instead of fine-tuning all
model parameters, PEFT only modifies a small percentage of additional parameters (usually less than
1%) and often achieves comparable or better performance [23| 31]]. The zeroth-order optimizer is
compatible with PEFT methods because it can operate on any subset of the model parameters. We
conduct experiments with the following two common PEFT methods: LoRA [23]] and prefix-tuning
[31].

LoRA [23] enhances a linear layer during fine-tuning by adding a tunable low-rank delta. Initially,
the linear layer is defined as Wx + b during pre-training, where W € R™*™. During fine-tuning,
LoRA introduces two smaller matrices A € R™*” and B € R"*" such that » < min{m,n}.
Consequently, the modified linear layer becomes

(W T %AB) x +b, (48)

where « and r are hyperparameters. Aand B are trained on the downstream tasks while W is frozen
at its pre-trained value. r is empirically small and we choose r = 8 and a = 16 in our experiments.

Prefix-tuning [31] is a technique where a prefix of m tunable representations is added at each layer,
while the remaining parts of the model are frozen. These added representations function as new keys
and values, serving as additional context during the attention operation. The initialization of these
tunable representations involves randomly sampling tokens from the vocabulary and passing them
through the LLMs to obtain their keys and values at various attention layers. In our experiments,
setting m = 5 proved sufficient to achieve good performance on most tasks.

C.4 Zeroth-order Optimziers

Zeroth-order optimization for fine-tuning LLMs has become a matter of concern recently, showing
great potential for reducing the memory overhead during fine-tuning tasks. We introduce two
representative zeroth-order optimizers: MeZO [37] and HiZOO [59], and explain that they are both
special case of the PSPSA we propose with a specific choice of a.

MeZO [37] is stated in Algorithm 3] with Simultaneous Perturbation Stochastic Approximation or
SPSA [48] to estimate the zeroth-order stochastic gradient with two forward passes. When p — 0,
it can be regarded to use an 1-rank stochastic gradient for the update. From the perspective of
PSPSA, MeZO can be regarded to set & = 0 in PSPSA, as we state in Algorithm [3|with T as a
“preconditioner”.
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Table 3: The hyperparameter grids used for RoBERTa-large experiments. MeZO and PaZO uses a
constant learning rate schedule. All MeZO and PaZO experiments use 100K steps.

Experiment Hyperparameters Values
MeZO Batch size 64
Learning rate  {le—7,1le—6,le—5}
n le—3
Weight Decay 0
MeZO (prefix) Batch size 64
Learning rate  {le—2,5e—3, le—3}
o le—1
Weight Decay 0
# prefix tokens 5
MeZO (LoRA) Batch size 64
Learning rate  {le—5, 5e—5, le—4}
n le—3
Weight Decay 0.1
(r,a) (8,16)
PaZO Batch size 64
Learning rate  {le—7,1le—6,le—5}
n le—3
Weight Decay 0
PaZO (prefix) Batch size 64
Learning rate  {le—2,5e—3, le—3}
n le—1
Weight Decay 0
# prefix tokens 5
PaZO (LoRA) Batch size 64
Learning rate  {le—5, 5e—5, le—4}
n le—3
Weight Decay 0.1
(r,a) (8,16)
FT Batch size {2,4,8}
Learning rate  {le—5, 3e—5,5e—5}
Weight Decay 0
FT (prefix) Batch size {8,16,32}
Learning rate ~ {le—2,3e—2, 5e—2}
Weight Decay 0
# prefix tokens 5
FT (LoRA) Batch size {4,8,16}
Learning rate  {le—4, 3e—4,5e—4}
(r,) (8,16)

HiZOO [59] is stated in Algorithm with preconditioned SPSA with H~'/2 as the preconditioner
in the perturbation, and H as the preconditioner in the estimated stochastic gradient. In other words,
HiZOO can be regarded as setting @ = 1/2 in PSPSA. In our theoretical analysis, the optimal
selection of « is 1/2, however, we empirically show the best performance of PaZO compared with
MeZO and HiZOO with the same hyperparameter setting through our experiments.

C.5 Details about Memory Usage

We show the detailed peak memory overhead results in Table[5] We set the per-device batch size to 1
to obtain the minimum peak memory overhead of the corresponding models and methods, We also
do not turn on any advanced memory-saving options, e.g., gradient checkpointing. We directly use
Nvidia’s nvidia-smi command to monitor the GPU peak memory overhead.
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Experiment Hyperparameters Values
MeZO Batch size 16
Learning rate  {le—6,5e—7,1le—7}
m le—3
MeZO (prefix) Batch size 16
Learning rate ~ {5e—2, le—2, 5e—3}
7 le—1
# prefix tokens 5
MeZO (LoRA) Batch size 16
Learning rate  {le—4,5e—5,le—5}
n le—2
(r, o) (8,16)
HiZOO Batch size 16
Learning rate  {le—6,5e—7,le—7}
m le—3
HiZOO (prefix) Batch size 16
Learning rate  {5e—2,1le—2, 5e—3}
7 le—1
# prefix tokens 5
HiZOO (LoRA) Batch size 16
Learning rate  {le—4,5e—5,le—5}
7 le—2
(r,a) (8,16)
PazZO Batch size 16
Learning rate  {le—6,5e—7,1le—T7}
I le—3
PaZO (prefix) Batch size 16
Learning rate ~ {5e—2, le—2, 5e—3}
7 le—1
# prefix tokens )
PaZO (LoRA) Batch size 16
Learning rate  {le—4,5e—5,le—5}
m le—2
(r, o) (8,16)

Table 4: The hyperparameter grids used for OPT-1.3B experiments. All weight decay is set to 0.
PaZO uses 20K steps and constant learning rates.

Table 5: Peak memory on the MultiRC (average tokens=400) dataset.

Method zero-shot/MeZO PaZO ICL FT FT (prefix)
1.3B 1xA6000 (4GB)  1xA6000 (9GB)  1xA6000 (6GB)  1xA6000 (27GB)  1xA6000 (19GB)
2.7B 1XxA6000 (7GB)  1xA6000 (14GB)  1xA6000 (8GB)  2xA6000 (55GB)  1xA6000 (29GB)
6.7B 1xA6000 (14GB)  1xA6000 (30GB)  1xA6000 (16GB) 4xA6000 (156GB)  1xA6000 (46GB)
13B 1xA6000 (26GB)  2xA6000 (54GB)  1xA6000 (29GB) 8xA6000 (316GB)  4xA6000 (158GB)

Wall-clock Time

We report the steps and wall-clock time required to reach 60% accuracy on a representative task
RTE in Table[6] These results support our claim that PaZO achieves better convergence speed than
existing zeroth-order methods by leveraging an ideal choice of the preconditioner order. Both the
required number of steps and the total training time to reach the target accuracy are smaller for
PaZO0, validating our theoretical insights. Moreover, although the per-step cost of PaZO is slightly
higher than MeZO—as we transparently report in Figure [2}—this is more than offset by its improved
convergence rate. In particular, PaZO reduces the total wall-clock time by approximately 10%
compared to MeZO, demonstrating that it is efficient in practical settings.
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Algorithm 4 HiZOO

Require: parameters © = {0; € R%}, loss £ : R? — R, step budget 7', perturbation scale ,
learning rate schedule 7;, smooth scale 3;, diagonal Hessian X
cfort=1,...,7T do
: Sample batch B C D and random seed s
: L+ L(6;8)

1

2

3

4: 0 < PerturbParameters(0, p, Ei 1 21 s)

50 Uy <+ L(6;8)

6 6 < PerturbParameters(6, —2, Ei 1 21, s)

7 (_ + L(6;B)

8 0 < PerturbParameters(6, u, Etl i 21, s)

90 X =5k 0y + 00 —20(Z P uuTn )
10 37 = (1-a)E + B |diag(D))]

11:  projected_grad + (¢4 — ¢_) 22/2/2/L
12:  Reset random number generator with seed s
13:  for 8, € © do

14: Sample u; ~ N (0,14,)

15: 0; <+ 0; — nyx projected_grad *u;
16:  end for

17: end for

Table 6: Steps and wall-clock time required to reach 60% accuracy for OPT-1.3B on RTE.
| MeZO HiZOO PaZO
Steps | 15000 10000 9000
Wall-clock Time (s) | 3848 3785 3453

C.7 Ablation Experiments

We conduct experiments to research the influence of 81 and 3 in the practical version of PaZO in
Algorithm|[I] Specifically, we use PaZO to fine-tune OPT-1.3B model on SST2. We fix 3; = le—8
and change (5 from 0 to 1e—10 first. Then we fix f2 = 1le—8 and change ; from 0 to 1e—10. We
report the results in Table

The results show that PaZO is sensitive to the smooth hyperparameters 5; and 32. The excessive
choice of 31 will seriously affect the convergence, due to the large variance of g o g, while too small
choice of 3; also affects the performance since it takes little information of g. The choice of 35 is
relatively lenient, but still needs to be on the same order of the learning rate n. The best choice of 35
may vary across different dataset. In our experiment, we uniformly set 3; and 32 as 1le—8 for fair
comparison.

We also conduct an ablation study on the effect of the reset period T in Table[8] In this experiment,
we fine-tune the OPT-1.3B model and evaluate its performance on the SST2 dataset, while varying
the value Ty € {64, 128,256,512} and oo (without resetting). We aim to examine how the frequency
of resetting the moving average of the preconditioning matrix influences training stability and final
accuracy. The results show that as the number of iterations increases, the error in the Hessian
estimation obtained from the zeroth-order oracle tends to accumulate over steps. This accumulated
error may grow with the number of iterations. Therefore, when no resetting mechanism is used (as in
the case of co in the table above), the performance drop when overly old historical accumulated error
may mislead the current update direction, ultimately harming final performance. On the other hand,
considering that X is initialized as the identity matrix I, there exists a gap between I and the Hessian
H*. When the resetting frequency is too small (e.g., 128), the information accumulated in 3, is
insufficient to effectively bridge this gap. The inaccurate estimation similarly leads to worse final
model performance. The hyperparameter T plays the role of a trade-off between error accumulation
and Hessian estimation accuracy. Our experimental results also indicate that the model achieves the
best performance when Ty falls within a certain range.
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Table 7: Influence of 51 and j35 in Algorithm[I|for OPT-1.3B on SST2.
B1 (B2) | 1 le—2 le—4 le—6 le—8 le—10
fixed 3 = le—8 | NaN NaN NaN 889 (+0.3) 89.0(£0.2) 89.0(40.2)
fixed f2 = le—8 | NaN  NaN  NaN NaN 89.0 (£0.1) 88.9(£0.2)
Table 8: Influence of Ty in Algorithm|[I]for OPT-1.3B on SST2.
To | 64 128 256 512 oo
| 885 888 89.0 883 877

D Auxiliary Lemmas

Lemma D.1. For a matrix A € R™*™ and vectors u € R™,v € R™, if A +uv ' is invertible, we
have

(A + uvT)71 =AT — (v] vo) tvgu] AT — (ug uy) T ATu ug
+ (v v2) Nug u2) 7t (1 + v Afug) voug . (49)
where u = wuy + uy with u; € col(A), us L col(A) and v = vy + vy with vy € col(AT), vy L
col(AT). In addition, we can obtain that (A + Muv ") "tu = A\~ (vy v3) vy for any A > 0.

Lemma D.2. We assume matrix M = M ® I; — ~(c1¢5 ) ® M where M € R™*™ ¢, € R™,
cs € R™ and M € R4 s symmetric, and matrix M € R¥*? is positive semi-definite. Given
positive semi-definite matrix B, we suppose that the max singular value of M is strictly smaller

than 1, and matrices B and M share a common set of orthonormal eigenvectors. Specifically, their
spectral decompositions can be expressed as:

B=PAP !, M=PAP !,
where P € R4*4 is an orthogonal matrix, and A and A are real diagonal matrices. Then we obtain
tr ((In @ B)M' ((dd") ® M) (M")") < Oml|Bll2/ldl3(1 — yuna)*t2(M),  (50)

where Cny and pn > 0 are two positive constants depend on M.

Proof. We prove estimation Eq. (50) at first. There exists an orthonormal matrix P € R%*? such that
M = PAP ! where A = diag{\y,-- -, \q}. Therefore, we have that

M=(1,,®P) Q' diag {M — 'yAlclcQT, RV ’y)\dclc;} Q (Im ® Pfl) , (51)

where Q € R™*™d js an orthogonal matrix. For simplicity, we denote D := diag{M —
yAieieq - M —y)Ageieq and D; = M — y)\;c;cg . Therefore, we can obtain

M’ ((dd7) @ M) (M) 2(1,, o P)Q D! (P"'MP~ " @ (dd")) (D7)'Q (L, ®P")

=1,2P)Q'AQ (I,®P"), (52)
where
All Tt Ald
A=
Ay - Agg

with A;; € R™>™ satisfies A;; = (P’ll\f/IP*T)ij]ADl-(ddT)]A)jT forany ¢, 5 € [1: d], (a) is derived
from the fact that

I, oP ") ((dd")oM) (1, P ") =(dd") @ P"'MP™ ",
and

Q((dd")@P'MP ")Q" =P 'MP" " ® (dd").

25



According to the property of Q, we have
tr (L, © B) (I, ® P) Q"AQ (I, 2 PT)) = tr (BPAPT ), (53)

where A € R?*? satisfies A;; = (P~'MP~");;(D!d,Did) for any i,j € [1 : d]. Since
PTBP = A, we derive that

« ~ () _
tr (BPAPT) < [PTBP|>tx(A) < COm[[ P3P~ [4dl3IBlla(1 — yng)*tr(M)  (54)
for any positive semi-definite matrix B € R%*¢, where (b) follows from the fact that
Did= (L, P ') QM' (1,2 P)Q"e; @ d, (55)

where e; € R? denotes a vector whose element at the i-th position is equal to 1, while the elements in
all remaining positions are equal to 0, and the assumption that the max singular value of M is strictly
smaller than 1. O

Lemma D.3. We assume matrix M = M @ I + (cic) ) @ M where M € R™*™, ¢; € R™,
¢y € R™ and M € R and matrix M € R4%4 jg symmetric. If Ml is also symmetric, and both M
and M are invertible, we have

M ((ere]) @ M) M7 = Jleas 5 (ez00dy) @ (MMM T) (56)
where co = €91 + €29, Co1 € COI(MT) and coo L COI(MT).

Proof. Similarly, there exists an invertible matrix P € R%*? such that M = PAP~! where
A = diag{\1,- -, Aq}. Therefore, we have that

M= (I, ® P) Q' diag {M +Meiey - M+ Adclcl} Q(IL,oP"), (57
where Q € R™?*™d js an orthogonal matrix. For simplicity, we denote D := diag{M +
Aicicy -+, M+ A\geieq }. Furthermore, we can obtain that

M! ((clclT) ® 1\7[) M7
=I,®P)Q'D'Q((cic] ) ® (P'MP~ ")) Q"D " (I, o P"). (58)
Since Q is, in fact, a coordinate transformation matrix, we have
Q((cic] )@ (P'MP ")) Q" = (P'MP ") ® (ci¢] ) .
Therefore, we can derive that

All et Ald
D' (P '™MP )@ (cic]))D T=| : .. |, (59)
A - Ay

by using Lemmawhere A;; € R™*™ and

A= {PﬂMP*T}ij (M + )\iclc;) - (cie]) (M + Ajclc;)
=[lezz ]l AT IATH{PTIMPT T} enegy, (60)

According to the property of QQ, we obtain
QD ((PTMP ) @ (e16])) DTQ = fleaallz” (ezed) @ (AT PTMPTTATY) . 61)
Combining Eq. and Eq. (61), we complete the proof. O
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract, we briefly introduce our contribution while in the Introduction
we propose the three problems we focus on and our three contributions followed behind
“Our contributions are”.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In the experiment part we compare the per-step time cost and analyze the
reason our method is slower than the baseline per-step due to an additional forward pass.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We provide all the assumptions in the “Theoretical Insights of PaZO” section,
and provide a complete proof in Appendix [A]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the details of our experiments in Appendix[C] including the models,
dataset, methods and hyperparameters we use for reproducibility.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We are organizing our code and will make it public after the organization is
completed.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide the details of our experiments in Appendix [C|
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report the average results with the form (4std) in Table T}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Appendix [C.5] we provide the compute resources to reproduce the experi-
ments with different scales and methods.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research is with the NeurIPS Code of Ethics in every respect.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss that our algorithm can save memory cost when fine-tuning LLMs.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited the paper that produced the models and dataset we use.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will make our algorithms and fine-tuned models public after the organiza-
tion is completed with formal documents and codes.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The aim of our research is to efficiently fine-tune pre-trained LLMs with lower
memory cost, with faster speed compared with other zeroth-order methods.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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