
PseuZO: Pseudo-Zeroth-Order Algorithm for Training
Deep Neural Networks

Pengyun Yue1,*, Xuanlin Yang1,5,*, Mingqing Xiao1,4, Zhouchen Lin1,2,3,†
1State Key Lab of General AI, School of Intelligence Science and Technology, Peking University

2Institute for Artificial Intelligence, Peking University
3 Pazhou Laboratory (Huangpu), Guangzhou, Guangdong, China

4 Microsoft Research Asia
5 Zhongguancun Academy

yuepy@pku.edu.cn,xuanlinyang@stu.pku.edu.cn,{mingqing_xiao,zlin}@pku.edu.cn

Abstract

Zeroth-order Optimization (ZO) has received wide attention in machine learning,
especially when computing full gradient is expensive or even impossible. Recently,
ZO has emerged as an important paradigm for memory-efficient fine-tuning of large
language models (LLMs), circumventing the memory overhead of backpropagation.
However, existing ZO gradient estimators exhibit dimension-dependent variance
scaling as !(d), leading to dimension-dependent convergence rates without fur-
ther assumptions on the objective function, which is prohibitive for large-scale
LLM parameters. To address this problem, we present a Pseudo-Zeroth-Order
(PseuZO) framework for optimizing composite objective functions, especially
large-scale models: minx→X F(x) = Ezg → h(x; z), where h represents complex,
high-dimensional representations and g is a task-specific loss. While existing
zeroth-order methods estimate gradients with final loss functions, our PseuZO algo-
rithm estimate the Jacobian matrix of h(x) with the model output o = h(x), and
the gradient of the loss function on model output e = ↑og(o), and apply exponen-
tial moving average on Jacobian estimators to reduce the variance. Moreover, we
use the sliding window technique to reduce memory costs. Our algorithm achieves
an O

(
max

{
ω1Lε

↑2
,ω1Lϑ

2
2ε

↑4
})

convergence rate, where ω1 is the effective di-
mension of F . Experimental results demonstrate that PseuZO outperforms MeZO
and MeZO-SVRG in classification, multiple choice and generation tasks in both
full-parameter and PEFT fine-tuning settings by boosting convergence in the early
stages of training. For instance, under the same computation time, with respect to
SST2 task, PesuZO gets 9.8% higher accuracy than MeZO (91.2% v.s. 82.4%).
With the sliding window technique, our PseuZO achieves 70% ↓ 80% memory re-
duction compared to FO-SGD for different model sizes as PseuZO only introduced
a small dimension-independent memory overhead, which enables efficient scaling
of the model size. The code is available at https://github.com/YangBigMn/PseuZO.

1 Introduction

Zeroth-order optimization [45, 20, 36] has served as a core technique for problems where gradient
calculations are impractical. These methods rely solely on function evaluations, making them
uniquely suited for black-box scenarios like adversarial attacks [6, 59], reinforcement learning [8, 14],
and hyperparameter tuning [23, 37]. Compared to first-order and higher-order optimization methods,

*Equal contribution.
†Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/YangBigMn/PseuZO


their key strength lies in avoiding gradient computations—a critical advantage when optimizing
complex systems where automatic differentiation is infeasible or prohibitively expensive. For
modern deep neural networks, this approach significantly reduces memory demands by eliminating
backpropagation’s computational and memory cost. Recent advances have reinvigorated zeroth-order
methods as practical tools for deep neural network training, particularly in resource-constrained
environments where traditional optimization strategies struggle to scale.

Large language models (LLMs) represent the pinnacle of deep neural network architectures, achieving
state-of-the-art performance across diverse language understanding and generation tasks [48, 50, 5,
16]. The standard paradigm of pretraining on web-scale corpora followed by task-specific fine-tuning
has become ubiquitous, enabling these models to adapt to specialized domains. However, conventional
first-order fine-tuning approaches employing full-parameter optimization through backpropagation
face critical scalability barriers: the memory overhead for storing optimizer states and activation
values grows with model parameters and context length, becoming prohibitive for large-scale models.
This challenge has driven the emergence of parameter-efficient fine-tuning (PEFT) techniques [31,
25, 35, 55] that strategically update only subsets of model weights. Another way to reduce memory
costs is using memory-efficient zeroth-order optimization (MeZO)[34]. MeZO introduces a paradigm
shift by operating purely through forward-pass evaluations. By eliminating backpropagation while
maintaining competitive task adaptation capability, MeZO addresses the dual requirements of memory
conservation and optimization stability in resource-constrained scenarios, enabling the deployment of
massive LLMs in practical applications.

While zeroth-order optimization provides a gradient-free alternative for fine-tuning large neural
networks, its practical adoption faces fundamental limitations. Zeroth-order algorithms exhibit
catastrophic performance when training from scratch. Even for fine-tuning tasks, the convergence rate
of classical zeroth-order methods scales linearly with parameter dimension d, becoming prohibitive
for modern architectures where d routinely exceeds 1010. This dimension dependence persists in
practice even when leveraging low-effective dimensionality theories [56] or the sparsity of the model
structure [24].

In this paper, we propose a Pseudo-Zeroth-Order (PseuZO) framework for optimizing composite
objective functions:

min
x→X

Ez↓Dg → h(x; z). (1)

This problem formulation is prevalent in deep neural network training, where h represents complex,
high-dimensional representations and g is a task-specific loss. Unlike traditional zeroth-order methods,
PseuZO methods estimate the Jacobian matrix of h(x) with the model output o = h(x). Compared
to the value of the composite function g → h, the output of h provides more information about the
function h. We also apply exponential moving average on Jacobian estimators to reduce the variance.
Finally, we obtain the gradient estimator with the Jacobian estimator and the gradient of the loss
function on model output e = ↑og(o), which can often be computed explicitly. We demonstrate
the efficacy of PseuZO methods both theoretically and empirically. In theory, we prove that PseuZO
method finds an ε-stationary point with O

(
max

{
ω1Lε

↑2
,ω1Lϑ

2
2ε

↑4
})

function evaluations, where
ω1 is the effective dimension of the objective function F . In our experiments, PseuZO not only
converges faster, but also attains a precision improvement of up to 9.8% compared to MeZO. With
the sliding window technique, PseuZO only needs a small dimension-independent extra memory
overhead compared to MeZO, which enables efficient scaling of the model size. Additionally, we
incorporate PseuZO with LoRA and prefix-tuning to show that PseuZO is also compatible with PEFT
techniques.

We summarize our main contributions below:

1. We propose PseuZO optimization framework, which uses the differentiation of model
outputs to compute a stochastic Jacobian estimator, and apply exponential moving average
to reduce the variance. In practice, we use the sliding window technique to reduce memory
costs.

2. We proved that the convergence rate of PseuZO method is not explicitly dependent on
the parameter size. We theoretically prove that our PseuZO optimization method finds an
ε-stationary point in O

(
max

{
ω1Lε

↑2
,ω1Lϑ

2
2ε

↑4
})

function evaluations, where ω1 is the
effective dimension.

2



3. We conduct solid and comprehensive experiments which show that PseuZO outperforms ICL
and MeZO across multiple tasks, including classification, multi-classification and generation
in terms of convergence speed. With the sliding window technique, PseuZO only shows
a small parameter-size-independent memory overhead compared to MeZO for instruction
fine-tuning tasks. Moreover, we find that PseuZO is compatible with PEFT like LoRA and
prefix-tuning, and results show that PseuZO+PEFT also outperforms MeZO+PEFT across
classification, multi-classification and generation tasks in terms of convergence speed.

2 Related work

Zeroth-order optimization. Zeroth-order optimization [45, 20, 36] has been widely studied in the
field of machine learning, and has been used in black-box optimization [22, 6, 59], adversarial attacks
[9, 49], etc. Most zeroth-order methods are designed based on first-order [36] or higher-order methods
[56], and are often d times slower where d is the dimension of the problem. To mitigate the curse of
dimensionality, several works proposed effective dimension [56, 34], and characterize the convergence
rate with the effective dimension of the problem. Many studies also consider reformulating the neural
network at a relatively small scale to solve a simpler optimization problem [30, 47, 7], and then
utilize block coordinate descent (BCD) [6] or ADMM [33] without the need for gradients. Recently,
MeZO [34] successfully applied zeroth-order optimization to fine-tuning extremely large language
models by efficiently estimating gradients in memory. After that, many works attempt to improve the
performance of MeZO by reducing variance [19] or introducing estimated second-order information
[60]. In the research of Spike Neural Network (SNN), [54] used the model output to estimate the
Jacobian matrix, but their work was designed from biological applicability, and was not able to save
memory costs. Inspired by [54], we designed our PseuZO optimization framework.

Memory-efficient backpropagation. As LLMs are typically fine-tuned by first-order algorithms
like SGD [42] and Adam [28], many new methods or techniques have been proposed to solve the
memory overhead problem, e.g. sparsifying gradients [46, 53] and quantization [15]. Other useful
techniques to save memory for activation values or optimizer states like Gradient Checkpoint [18],
Flash Attention [12] and Zero Redundancy Optimizer (ZeRO) [41, 39, 40]. However, these methods
either sacrifice precision or require more computation time.

Gradient-free adaptation of LLMs. Language models can understand language and learn to
communicate with humans after the pre-training phase. They can then generalize to tasks without
training and this form adaptation that requires appropriate prompt designs is called in-context learning
(ICL). Another paradigm is to estimate first-order or second-order information only using inference.
Besides MeZO estimating first-order information by two forward processes, HiZOO leverages three
forward processes to estimate second-order information considering heterogeneous curvatures across
different parameter dimensions [60].

3 Pseudo-Zeroth-order algorithm framework

3.1 Zeroth-order algorithms

Zeroth-order algorithms are a class of optimization algorithms that do not require the computation of
gradients. Instead, they rely on noisy function value oracles to update the parameters. This makes
them useful for problems where the computation of gradients is expensive or infeasible. Typically,
zeroth-order methods use noisy function values to generate gradient estimators. Suppose the objective
function is f : Rd ↔ R. Two most common gradient estimators are RGE [36] and CGE [1]:

RGE : ↑̃µf(x) =
1

q

q∑

i=1

f(x+ µωi)↗ f(x)

µ
ωi, CGE : ↑̃µf(x) =

1

d

d∑

i=1

f(x+ µei)↗ f(x)

µ
ei,

(2)
where ωi ↓ N(0, I) and {ei} is a set of standard basis vector. When µ ↔ 0, CGE become the full
gradient, and RGE tends to

↑̂f(x) =
1

q

q∑

i=1

↘↑f(x), ωi≃ ωi. (3)

3



This is an unbiased estimation of ↑f(x), with variance !
(

d
q

)
. Without further assumptions on

objective functions, optimizing with RGE or CGE needs d times more zeroth-order oracles than
optimizing with first-order methods using gradient oracles, severely limiting their applicability in
high-dimensional scenarios. However, if the objective function has low effective dimension or sparsity
structures, zeroth-order methods can achieve a faster convergence rate [56, 60].

3.2 Pseudo-zeroth-order algorithms

In this paper, we study the composite optimization problem:

min
x→X

F(x) := Ezg(h(x; z)), where X ⇐ Rdp , (4)

where h : X ↔ H ⇐ Rdout defines the representation mapping and g : H ↔ R+ is a loss function. In
machine learning, the representation mapping h : Rdp ↔ Rdout is typically parameterized as a neural
network h(x; z), where x denotes the learnable parameters and z ↓ D denotes the stochastic input
data. The exact stochastic gradient admits the theoretical decomposition:

↑xF(x) = Ez↓D

[
J
↔
h (x; z)︸ ︷︷ ︸

Stochastic Jacobian
dout→dp

·↑hg(h(x; z))︸ ︷︷ ︸
Upstream gradient

dout↑R

]
. (5)

The implementation of stochastic first-order methods requires efficient computation of ↑xF(x) via
backpropagation through the compositional structure g → h. While the outer loss g admits tractable
gradient computation (↑hg is typically closed-form), the inner mapping’s Jacobian Jh(x; z) becomes
computationally intractable for deep nonlinear parameterizations.

Unlike standard zeroth-order (ZO) methods that solely utilize function evaluations of g → h, our
key insight stems from the asymmetric differentiability inherent in composite optimization: While
acquiring exact gradients through the inner mapping h(x; z) remains computationally prohibitive due
to computational constraints or non-differentiable operators, the gradient of the outer function g can
be explicitly or efficiently computed.

Our method exploits composite structure’s asymmetric differentiability:

• Outer gradient: Closed-form e = ↑og(o) for o = h(x; z);

• Inner estimation: Zeroth-order approximation for h’s Jacobian.

The PZO gradient estimator combines both components:

↑
PZO
µ F(x; z) = ω

(
h(x+ µω; z)↗ h(x; z)

µ

)↔
e, (6)

where ω ↓ N(0, I). As µ ↔ 0, this converges to ↑
PZO

F(x; z) = (ω↔J↔
h e)ω = ωω↔J↔

h e, which is
an unbiased estimation of ↑F(x). To reduce the variance introduced by the random vector ω, we
propose a momentum-accelerated variant through exponential smoothing:

A = (1↗ ϖ)

(
h(x+ µω; z)↗ h(x; z)

µ

)
ω↔ + ϖA, (7)

↑̂
PZO
µ F(x; z) = A

↔
e. (8)

The full algorithm is shown in Algorithm 1.

Remark 1. The gradient estimator of PseuZO ↑̂
PZO
µ F(x; z) = A

↔
e theoretically outperforms

MeZO and its momentum variant in terms of both bias and variance, as detailed in Appendix D.
PseuZO has smaller variance compared to MeZO and MeZO with momenetum, and MeZO has
an extra bias term caused by the curvature of g. These theoretical advantages demonstrate the
effectiveness of the exact outer gradient and exponential smoothing of Jacobian estimations.

4



Algorithm 1 Matrix-based PseuZO Algorithm

Require: Momentum factor ϱ ⇒ (0, 1), smoothing coefficient µ > 0, max iterations T , initial point
x0

Ensure: Gradient estimate ↑̂
PZO
µ F(x; z)

1: Initialize momentum buffer A↑1 ⇑ 0 ⇒ Rdout↗dp

2: for t = 0 to T do
3: Sample random vector ωt ↓ N (0, I)

4: Compute forward difference ”ot ⇑
h(xt+µωt;zt)↑h(xt;zt)

µ

5: Receive noisy Jacobian estimator Bt = ”otω↔t
6: Momentum update:
7: At ⇑ (1↗ ϖt)Bt + ϖtAt↑1 ς Exponential moving average
8: Compute outer gradient et ⇑ ↑og(h(x; zt))
9: Gradient projection: ↑̂PZO

µ F(xt; zt) ⇑ A
↔
t et

10: Update x: xt+1 ⇑ xt ↗ φ↑̂
PZO
µ F(x; zt)

11: end for

3.3 Convergence of PseuZO algorithm

In this subsection, we deviate from the exact realization of stochastic Jacobian estimators, and assume
that the PseuZO algorithm receives a noisy Jacobian estimator in each step. Under this more general
setting, we prove the convergence of PseuZO method. We first list some assumptions which are
necessary for our analysis and has been widely adopted in research works on optimization:
Assumption 2. F has continuous Hessian matrices H(x), and satisfy the following equations:

⇓H(x)⇓op ⇔ L, tr (H(x)) ⇔ ω1L, (9)

where ω1 is the effective dimension of F . In the worst case, ω1 = dp.

Assumption 3. Denote ↑̂F(xt) = ↑xg(h(xt; zt)). The randomness of the Jacobian estimator Bt

can be decoupled into the following parts:

Bt = (Jt +Dt)Nt +Mt, (10)

where Jt is the true Jacobian matrix of h at xt, and:

• Nt represents the randomness introduced by the PZO Jacobian estimator:

ENt = I, E⇓N↔
t a⇓

2
M

⇔ 3tr (M) · ⇓a⇓2, (11)

where a is an arbitrary vector.

• Dt represents the randomness of data:

(Jt +Dt)
↔
et = ↑̂F(xt), EDt = 0, E⇓D↔

t et⇓
2
⇔ ϑ

2
2 ; (12)

• Mt represents the noise introduced by the two-point estimation of the function value,
controlled by µ:

E⇓M↔
t et⇓

2
⇔

µ
2
L
2
hL

2
g

2
(dp + 6)3. (13)

According to the analysis on the two-point gradient estimators in [36], Bt =
(

h(x+µω;z)↑h(x;z)
µ

)
ω↔

satisfies Assumption 3, where ω ↓ N(0, I). Now, we propose the informal version of our convergence
theorem in Theorem 4. For the formal version and the proof of Theorem 4, please refer to the Appendix
C.
Theorem 4 (Informal). Under Assumption 2 and 3, if µ, ε and ϱt satisfy certain conditions, Algorithm
1 finds an ε-stationary point with O

(
max

{
ω1Lε

↑2
,ω1Lϑ

2
2ε

↑4
})

function value computations.
Remark 5. The convergence rate of Algorithm 1 is ω1 times slower than the standard SGD algorithm,
where ω1 is not explicitly dependent on the dimension of the problem.

5



3.4 Sliding window-based PseuZO algorithm

As it is memory inefficient to store such a large-scale tensor At (outer product of Gaussian noise and
an output tensor) introduced in PseuZO, we propose several techniques to reduce the memory cost
and obtain Sliding Window-based PseuZO shown in Algorithm 2.

tt-L+3t-L+2t-L+1

(a) The sliding window (b) lambda curve

Figure 1: (a) is a schematic diagram of the sliding window with length L. We can obtain the
corresponding coefficients of all sliding window units by expanding the iterative L times. (b) is a ϖ

variation curve with three cycles. Each cycle means a restart operation and when ϖ is close to zero,
we set ϖ = 0 to reduce time consumption.

Sliding window technique. To tackle the memory overhead of PseuZO, we use a sliding window
to store random seeds and output tensors in the last few steps. When the sliding window shown in
Figure 1a is determined, the corresponding coefficient for each unit in the sliding window can be
obtained by expanding the EMA formula. On the one hand, we can resample the same Gaussian
noise ω with the same seed so there is no need to store these random vectors [34]. On the other hand,
as 0 < ϖ < 1, especially when ϖ is smaller, the weight for older information is close to zero in the
EMA step of PseuZO method. Therefore, we truncate outdated information with the sliding window
technique.

Changing the storage target. However, storing several output tensors with a shape of the vocabulary
size is still unacceptable, as the vocabulary size is generally large among LLMs. So we choose to
store the last hidden state with a much smaller size and trace its path to the final loss to obtain its
gradient without excessive memory overhead. For OPT1.3B, the last hidden state (i.e. the input
tensor for lm_head) size is 2048 while the vocabulary size is larger than 50000 [58]. Thus we can
further reduce memory overhead caused by the sliding window.

Periodic dynamic changing of ϖ. To meet the convergence requirements, ϖ needs to gradually
decrease to zero. We take advantage of a restart operation to further boost convergence and thus
ϖ is designed in a periodic changing manner as shown in Figure 1b. When ϖ approaches zero,
PseuZO gradually degenerates to ZO method and thus we directly transform to MeZO instead. If we
consistently use PseuZO throughout the entire process, the time cost is roughly 2↖ that of MeZO.
However, with appropriate design for ϖ, the time cost can be reduced to almost the same as MeZO.

4 Experiments

In this section, we evaluate Sliding Window-based PseuZO on a variety of typical fine-tuning tasks
by comparing performance against MeZO [34], MeZO-SVRG [19], HiZOO-L [60] and memory
overhead against MeZO-SVRG as well as FO-SGD. Experimental results show that: 1) The peak
memory usage of PseuZO is significantly smaller than MeZO-SVRG and FO-SGD; 2) Through
the sliding window technique, with a fixed memory overhead that is independent of the model size
compared to MeZO, PseuZO has much better performance than MeZO, MeZO-SVRG and HiZOO-L.
3) PseuZO is also compatible with PEFT techniques like LoRA [25] and prefix-tuning [31].

Setup. We implement PseuZO, MeZO-SVRG and HiZOO-L in the MeZO framework with appropri-
ate adjustment for fair comparison. We conduct comprehensive experiments in various tasks on large
auto-regressive language models like opt-1.3B [58] and the same prompt design as MeZO is utilized
which is effective and fair for comparison for various datasets including GLUE [52] and SuperGLUE

6



Algorithm 2 Sliding Window-based PseuZO Algorithm

Require: Momentum factor formula ϖ(t) ⇒ (0, 1), smoothing coefficient ε > 0, max iterations T ,
initial point ↼0, sliding window length L, coefficients {uk}

L
k=1

Ensure: Gradient estimate ↑̂
PZO
ω F(x; z)

1: Initialize the sliding window as a deque D(maxlen=L)
2: for t = 0 to T do
3: Update ϖ ⇑ ϖ(t)
4: Compute coefficients uk ⇑ ϖ

k↑1(1↗ ϖ)
5: Sample random seed st and corresponding vector ωt ↓ N (0, I; st)

6: Compute forward difference ”ot ⇑
h(xt+ωωt;zt)↑h(xt;zt)

ω
7: Compute outer gradient et ⇑ ↑og(h(xt; zt))
8: Update sliding window D.append(st,”ot)
9: Gradient projection initialization: ↑̂PZO

ω F(xt; zt) ⇑ 0
10: for k = 1 to L do ς Iterate sliding window
11: s,”o ⇑ Dk

12: Resample ω ↓ N (0, I; s)
13: Accumulate ↑̂

PZO
ω F(xt; zt) ⇑ ↑̂

PZO
ω F(xt; zt) + uk ↘”o, et≃ ω

14: end for
15: Update ↼: ↼t+1 ⇑ ↼t ↗ φ↑̂

PZO
ω F(↼t;xt)

16: end for

Task SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD DROP
Task type classification multiple choice generation

Zero-shot 53.5 53.0 39.3 45.7 43.3 51.5 45.4 75.0 70.5 11.2
ICL 80.0 53.0 46.4 58.7 47.1 51.1 46.2 69.0 71.0 20.4

MeZO-SVRG 61.5 55.5 74.0 60.3 52.0 50.0 53.0 54.0 50.1 0.0
MeZO (10K steps) 82.4 54.3 76.0 60.7 51.0 50.9 54.9 74.0 57.6 20.3
MeZO (20K steps) 88.4 58.8 76.0 63.8 53.0 51.3 53.9 73.0 58.9 20.3
HiZOO-L 88.1 54.9 69.0 64.8 51.2 58.0 58.2 73.0 58.8 23.3
PseuZO (10K steps) 91.2 58.0 77.0 64.3 58.0 54.5 54.7 78.0 60.0 23.5
PseuZO (20K step) 90.7 63.3 75.0 67.0 57.0 59.7 60.6 76.0 60.9 24.5
FO-SGD 92.4 67.8 94.0 60.8 52.6 47.4 53.8 76.0 57.2 26.0

Table 1: Experiments on OPT-1.3B with 1024 training samples and 512 evaluation samples. When
training, for WSC, CB and COPA, they have much less total samples and thus we set aside 100
evaluation samples and use the rest for training. The bold number represents the highest evaluation
performance excluding FO-SGD.

[51] benchmarks. We run all experiments for 10K steps and evaluate performance of the model every
2K steps for HiZOO-L and MeZO-SVRG. In order to ensure that MeZO and PseuZO are sufficiently
convergent, we run PseuZO and MeZO for 10K and 20K steps, respectively. We choose K = 16 as
the batch size and randomly select 1024 samples for training and 512 samples for evaluation. All
experiments are run on a single Nvidia A800 40GiB GPU.

Task SST-2 RTE CB BoolQ WSC WIC COPA
MeZO 84.4 58.0 76.0 64.0 54.0 52.5 88.0

PseuZO (ours) 91.8 58.4 77.0 68.9 58.0 55.3 90.0

Table 2: Experiments on OPT-6.7B for PseuZO versus MeZO. The bold number represents the better
evaluation performance.

7



Task SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD DROP
Task type classification multiple choice generation

MeZO+LoRA 90.8 59.1 76.0 64.6 50.0 52.7 54.5 81.0 59.5 22.9
PseuZO+LoRA 91.2 58.8 79.0 65.8 51.0 51.8 54.3 83.0 60.2 25.7
MeZO+prefix 71.0 51.7 45.0 57.6 54.0 50.6 50.8 75.0 57.4 15.5
PseuZO+prefix 80.7 53.1 71.0 61.7 49.0 51.0 52.7 75.0 57.8 21.2

Table 3: Experiments on OPT-1.3B for comparison between MeZO+PEFT and PseuZO+PEFT. PEFT
is either LoRA or prefix fine-tuning.

4.1 Auto regressive model performance

PseuZO performs much better than MeZO, MeZO-SVRG and HiZOO-L in the classification,
multiple choice and generation tasks shown in Table 1. As MeZO-SVRG needs to traverse all
samples to obtain the full-batch gradient [19], large numbers of iterations are required or it will
have an expensive memory overhead. However, MeZO-SVRG still performs worse than PseuZO,
especially for multiple choice and generation tasks with a small batch size and a large full batch
size. For HiZOO-L [60], it not only requires three forward propagations, but also requires low-rank
processing of matrix parameters, which increases the time overhead. In fact, running HiZOO-L and
MeZO-SVRG for only 10K steps takes much longer than running PseuZO for 20K steps. As shown
in Appendix D, PseuZO takes advantage of the small bias and variance to achieve fast convergence,
further reducing the gap with FO-SGD and even outperforms FO-SGD in many tasks.

PseuZO is also compatible with other memory efficient techniques, like LoRA and prefix tuning,
and the corresponding results are shown in Table 3. As both LoRA and prefix tuning have much
fewer parameters to optimize (0.1% and 0.01% of the original number of parameters respectively
for OPT1.3B) so that the number of convergence steps required will be lower, the performance gap
between MeZO+PEFT and PseuZO+PEFT is much smaller than that of MeZO and PseuZO.

4.2 Memory usage and time computation

Figure 2: Memory overhead for different mod-
els under various ZO algorithms and FO-SGD.
↽ means out of memory.

tPseuZO OPT1.3B OPT2.7B OPT6.7B

10 9300 9600 9900

20 8700 9400 9700

50 6800 8400 9300

100 3600 7000 8700

150 400 5100 8000

Table 4: tPseuZO and its corresponding num-
ber of the total steps to guarantee the time
that does not exceed 10K execution time for
MeZO.

PseuZO scales up to almost the same model size as MeZO can scale up to as PseuZO only
introduces a small dimension-independent memory overhead. Memory usage for different scale
models is illustrated in Figure 2 which verifies our conclusion that compared to MeZO, excessive
memory overhead of PseuZO is independent of the model size. Additionally, we also compare
memory overhead for the different batch size and max length. As shown in Table 5, the memory
requirement of PseuZO is more sensitive to the batch size and max length due to the sliding window.
However, as model size has a greater impact on memory, PseuZO still needs less memory than
MeZO-SVRG (MeZO-SVRG needs to store full parameters during training [19]).

The computation time required for each epoch of PseuZO is approximately twice that of each
epoch of MeZO for OPT-1.3B but the gap for large scale models will gradually decrease. We
fix the total steps of MeZO as 10K and obtain the corresponding total steps of PseuZO for different

8



Memory Usage in GiB for OPT-1.3B Memory Usage in GiB for OPT-6.7B
Fixed context length (cl=128) Fixed batch size (bs=16) Fixed context length (cl=128) Fixed batch size (bs=16)

Method bs=16 bs=32 bs=64 cl=256 cl=512 bs=16 bs=32 bs=64 cl=256 cl=512

FO-SGD 30.30 OOM

MeZO 5.35 7.58 11.87 9.06 17.03 17.09 20.35 27.51 21.28 27.01
MeZO-SVRG 10.55 12.76 17.55 12.46 19.67 OOM
PseuZO 7.61 10.58 17.85 11.69 19.36 18.08 23.22 33.52 25.16 32.74

Table 5: Memory usage (GiB) comparison on BoolQ for different ZO methods with OPT1.3B and
OPT-6.7B showing that PseuZO can scale up to larger models as MeZO.

Dataset SPSA ZOsp PseuZO PseuZO (w/LL) BP

MNIST 86.4± 0.15 87.8± 0.09 98.7± 0.02 / 98.5± 0.02
CIFAR-10 41.3± 0.74 42.6± 0.69 82.5± 0.15 88.7± 0.13 89.9± 0.06
CIFAR-100 5.39± 0.69 7.61± 0.73 61.4± 0.14 68.5± 0.13 71.9± 0.09

Table 7: Training from scratch on typical computer vision classification datasets for various feedback
methods. We do not use local loss for MNIST as there are only two hidden layers.

tPseuZO under the same computation time where tPseuZO is the number of total epochs using PseuZO
and results are shown in Table 4.

4.3 Ablation study

As introduced before, our sliding window has four key factors denoted as 1) L: sliding window
length; 2) tPseuZO: number of epochs to execute PseuZO for each cycle; 3) R: number of cycles; 4)
ϖ(t): the formula for ϖ to descend with respect to epoch t. We perform ablation studies on SST2 to
explore their individual impact on precision and the results are shown in Figure 3 and Table 6. If
we keep ϖ a small constant like ϖmin = 0.1, the accuracy is close to that of MeZO. In fact, when
ϖ ↔ 0, PseuZO gradually degenerates to MeZO without momentum. More ablation experiments,
including MeZO with momentum and PseuZO without momentum, can be found in Appendix A. We
empirically found that performance is largely insensitive to the sliding window parameters. Since
there is no need to set L, tPseuZO and R too large, smaller values are chosen to balance low memory
and time overhead.

Figure 3: Ablation studies for L, tPseuZO and R. "full"
means using PseuZO for all epochs.

ϖ(t) Accuracy(%)

Constant1 ϖ(t) = ϖmax 83.9

Constant2 ϖ(t) = ϖmin 82.7

Linear ϖ(t) = ϖmax(1↗
t

tPseuZO
) 90.3

Reciprocal ϖ(t) = ϖmax
1

1+0.5t 91.2

Table 6: Ablation study for different de-
scent formula ϖ(t) when t < tPseuZO.

4.4 Training from scratch

During ZO optimization, the variance introduced by the large number of parameters is difficult
to control and thus an appropriate prompt design is significant to guide generation [34, 19] for
instruction fine-tuning. Furthermore, it remains a problem for ZO algorithms like SPSA to train from
scratch even for small datasets. However, with a simple reformulation named Node Perturbation [32],
PseuZO shows great performance on these tasks. The reformulation details and further explanation

9



can be found in Appendix B. As shown in Table 7, PseuZO in Node Perturbation manner outperforms
SPSA and other signal feedback methods and with incorporation of local learning [26], PseuZO can
even perform as well as BP. It demonstrates the potential of PseuZO to be used for more difficult but
significant settings.

5 Conclusion

In this paper, we propose a new algorithm framework PesuZO and apply it to various instruction
fine-tuning tasks for LLMs. According to our theoretical analyses, PseuZO finds an ε-stationary
point in O

(
max

{
ω1Lε

↑2
,ω1Lϑ

2
2ε

↑4
})

function evaluations. Experimental results demonstrate that
PseuZO outperforms MeZO and MeZO-SVRG among various tasks. We propose sliding window
technique, making the memory overhead independent of the model size. As a limitation, PseuZO
needs to store the sliding window and the extra memory is sensitive to the batch size and max length.
A possible fix to this problem is to add an low-dimension auxiliary layer as the new storing target.
Though this method can further reduce memory overhead, it changes the model structure which might
reduce its representation capability.

Acknowledgments and Disclosure of Funding

Z. Lin was supported by National Key R&D Program of China (2022ZD0160300), the NSF China
(No. 62276004) and the State Key Laboratory of General Artificial Intelligence.

References
[1] Zeyuan Allen-Zhu, Zheng Qu, Peter Richtárik, and Yang Yuan. Even Faster Accelerated

Coordinate Descent Using Non-Uniform Sampling, May 2016. arXiv:1512.09103 [cs, math,
stat].

[2] Stephen H Bach, Victor Sanh, Zheng-Xin Yong, Albert Webson, Colin Raffel, Nihal V Nayak,
Abheesht Sharma, Taewoon Kim, M Saiful Bari, Thibault Fevry, et al. Promptsource: An
integrated development environment and repository for natural language prompts. arXiv preprint
arXiv:2202.01279, 2022.

[3] Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth pascal recognizing
textual entailment challenge. TAC, 7(8):1, 2009.

[4] Andrew Brock, Soham De, and Samuel L Smith. Characterizing signal propagation to close the
performance gap in unnormalized resnets. arXiv preprint arXiv:2101.08692, 2021.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

[6] HanQin Cai, Yuchen Lou, Daniel McKenzie, and Wotao Yin. A zeroth-order block coordinate
descent algorithm for huge-scale black-box optimization. In International Conference on
Machine Learning, pages 1193–1203. PMLR, 2021.

[7] Miguel Carreira-Perpinan and Weiran Wang. Distributed optimization of deeply nested systems.
In Artificial Intelligence and Statistics, pages 10–19. PMLR, 2014.

[8] Yekun Chai, Shuohuan Wang, Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang. Clip-
tuning: Towards derivative-free prompt learning with a mixture of rewards. arXiv preprint
arXiv:2210.12050, 2022.

[9] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute models.
In Proceedings of the 10th ACM workshop on artificial intelligence and security, pages 15–26,
2017.

10



[10] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions.
arXiv preprint arXiv:1905.10044, 2019.

[11] Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment
challenge. In Machine learning challenges workshop, pages 177–190. Springer, 2005.

[12] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in Neural Information Processing
Systems, 35:16344–16359, 2022.

[13] Marie-Catherine De Marneffe, Mandy Simons, and Judith Tonhauser. The commitmentbank:
Investigating projection in naturally occurring discourse. In proceedings of Sinn und Bedeutung,
volume 23, pages 107–124, 2019.

[14] Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng
Song, Eric P Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforce-
ment learning. arXiv preprint arXiv:2205.12548, 2022.

[15] Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. arXiv preprint arXiv:2110.02861, 2021.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pages 4171–4186, 2019.

[17] Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gard-
ner. Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs.
arXiv preprint arXiv:1903.00161, 2019.

[18] Jianwei Feng and Dong Huang. Optimal gradient checkpoint search for arbitrary computa-
tion graphs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11433–11442, 2021.

[19] Tanmay Gautam, Youngsuk Park, Hao Zhou, Parameswaran Raman, and Wooseok Ha.
Variance-reduced zeroth-order methods for fine-tuning language models. arXiv preprint
arXiv:2404.08080, 2024.

[20] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM journal on optimization, 23(4):2341–2368, 2013.

[21] Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and William B Dolan. The third pascal
recognizing textual entailment challenge. In Proceedings of the ACL-PASCAL workshop on
textual entailment and paraphrasing, pages 1–9, 2007.

[22] Jean-Bastien Grill, Michal Valko, and Rémi Munos. Black-box optimization of noisy functions
with unknown smoothness. Advances in Neural Information Processing Systems, 28, 2015.

[23] Bin Gu, Guodong Liu, Yanfu Zhang, Xiang Geng, and Heng Huang. Optimizing large-scale
hyperparameters via automated learning algorithm. arXiv preprint arXiv:2102.09026, 2021.

[24] Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, Xinyu Yang, Yide Ran, Jacob R Gardner,
Osbert Bastani, Christopher De Sa, Xiaodong Yu, et al. Zeroth-order fine-tuning of llms with
extreme sparsity. arXiv preprint arXiv:2406.02913, 2024.

[25] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR,
1(2):3, 2022.

[26] Jacques Kaiser, Hesham Mostafa, and Emre Neftci. Synaptic plasticity dynamics for deep
continuous local learning (decolle). Frontiers in Neuroscience, 14:424, 2020.

11



[27] Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan Roth. Looking
beyond the surface: A challenge set for reading comprehension over multiple sentences. In
Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages
252–262, 2018.

[28] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[29] Hector J Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. KR,
2012:13th, 2012.

[30] Jia Li, Cong Fang, and Zhouchen Lin. Lifted proximal operator machines. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pages 4181–4188, 2019.

[31] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190, 2021.

[32] Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synap-
tic feedback weights support error backpropagation for deep learning. Nature communications,
7(1):13276, 2016.

[33] Zhouchen Lin, Risheng Liu, and Zhixun Su. Linearized alternating direction method with
adaptive penalty for low-rank representation. Advances in Neural Information Processing
Systems, 24, 2011.

[34] Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and
Sanjeev Arora. Fine-tuning language models with just forward passes. Advances in Neural
Information Processing Systems, 36:53038–53075, 2023.

[35] Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. Advances in Neural Information Processing
Systems, 37:121038–121072, 2024.

[36] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

[37] Anthony Nguyen and Krishnakumar Balasubramanian. Stochastic zeroth-order functional con-
strained optimization: Oracle complexity and applications. INFORMS Journal on Optimization,
5(3):256–272, 2023.

[38] Mohammad Taher Pilehvar and Jose Camacho-Collados. Wic: the word-in-context dataset for
evaluating context-sensitive meaning representations. arXiv preprint arXiv:1808.09121, 2018.

[39] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimiza-
tions toward training trillion parameter models. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–16. IEEE, 2020.

[40] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-
infinity: Breaking the gpu memory wall for extreme scale deep learning. In Proceedings of the
international conference for high performance computing, networking, storage and analysis,
pages 1–14, 2021.

[41] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang,
Minjia Zhang, Dong Li, and Yuxiong He. {Zero-offload}: Democratizing {billion-scale} model
training. In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pages 551–564,
2021.

[42] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951.

[43] Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. Choice of plausible alterna-
tives: An evaluation of commonsense causal reasoning. In AAAI spring symposium: logical
formalizations of commonsense reasoning, pages 90–95, 2011.

12



[44] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural
language processing, pages 1631–1642, 2013.

[45] James C Spall. A stochastic approximation algorithm for large-dimensional systems in the
kiefer-wolfowitz setting. In Proceedings of the 27th IEEE Conference on Decision and Control,
pages 1544–1548. IEEE, 1988.

[46] Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang. meprop: Sparsified back propa-
gation for accelerated deep learning with reduced overfitting. In International Conference on
Machine Learning, pages 3299–3308. PMLR, 2017.

[47] Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel, and Tom Goldstein.
Training neural networks without gradients: A scalable admm approach. In International
conference on machine learning, pages 2722–2731. PMLR, 2016.

[48] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[49] Chun-Chen Tu, Paishun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh,
and Shin-Ming Cheng. Autozoom: Autoencoder-based zeroth order optimization method for
attacking black-box neural networks. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 742–749, 2019.

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
!ukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

[51] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose
language understanding systems. Advances in Neural Information Processing Systems, 32,
2019.

[52] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

[53] Bingzhen Wei, Xu Sun, Xuancheng Ren, and Jingjing Xu. Minimal effort back propagation for
convolutional neural networks. arXiv preprint arXiv:1709.05804, 2017.

[54] Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Online
pseudo-zeroth-order training of neuromorphic spiking neural networks. arXiv preprint
arXiv:2407.12516, 2024.

[55] Yibo Yang, Xiaojie Li, Zhongzhu Zhou, Shuaiwen Song, Jianlong Wu, Liqiang Nie, and Bernard
Ghanem. Corda: Context-oriented decomposition adaptation of large language models for
task-aware parameter-efficient fine-tuning. Advances in Neural Information Processing Systems,
37:71768–71791, 2024.

[56] Pengyun Yue, Long Yang, Cong Fang, and Zhouchen Lin. Zeroth-order optimization with weak
dimension dependency. In The Thirty Sixth Annual Conference on Learning Theory, pages
4429–4472. PMLR, 2023.

[57] Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng Gao, Kevin Duh, and Benjamin Van Durme.
Record: Bridging the gap between human and machine commonsense reading comprehension.
arXiv preprint arXiv:1810.12885, 2018.

[58] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022.

13



[59] Yimeng Zhang, Yuguang Yao, Jinghan Jia, Jinfeng Yi, Mingyi Hong, Shiyu Chang, and Sijia
Liu. How to robustify black-box ml models? a zeroth-order optimization perspective. arXiv
preprint arXiv:2203.14195, 2022.

[60] Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai, Yi Qian, and Ivor W Tsang. Second-order
fine-tuning without pain for llms: A hessian informed zeroth-order optimizer. arXiv preprint
arXiv:2402.15173, 2024.

14



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our Abstract and Introduction section do not claim any contribution out of
scope. All the contributions mentioned are supported in the later sections, see Section 1
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of this work in Section 5
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

15



Justification: We provide the full set of assumptions in Section 3 and a complete (and
correct) proof can be found in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The complete implementation details to reproduce our experimental results are
described in the Appendix A, B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our code is available at https://github.com/YangBigMn/PseuZO.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details in the Appendix A,B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the mean and standard deviation values in Table 7 by running
each result for 5 times with different seeds. For the other results, repeated experiments of
fine-tuning for various tasks will consume too much time and computing resource.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

17

https://github.com/YangBigMn/PseuZO
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the GPU type in the Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We obey the NeurIPS Code of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our study is about a new Zeroth-order algorithm for neural networks. No
societal impact is concerned by our work.

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

18

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all the papers whose datasets are used in our experiment. Details
can be found in the Appendix A,B.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

19



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No experiment involves crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No experiment involves crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

20

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: We only use LLMs for writing, editing or formatting purposes.

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related work
	Pseudo-Zeroth-order algorithm framework
	Zeroth-order algorithms
	Pseudo-zeroth-order algorithms
	Convergence of PseuZO algorithm
	Sliding window-based PseuZO algorithm

	Experiments
	Auto regressive model performance
	Memory usage and time computation
	Ablation study
	Training from scratch

	Conclusion
	Auto Regressive Model Fine-tuning
	Datasets
	Hyperparameters
	More Results for OPT-6.7B
	More Ablation Experiments

	Node Perturbation
	Formal statement and proof of Theorem 4
	Theoretical advantage of PseuZO gradient estimator
	Variance analysis
	Bias analysis


