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Abstract

Zeroth-order Optimization (ZO) has received wide attention in machine learning,
especially when computing full gradient is expensive or even impossible. Recently,
ZO has emerged as an important paradigm for memory-efficient fine-tuning of large
language models (LLMs), circumventing the memory overhead of backpropagation.
However, existing ZO gradient estimators exhibit dimension-dependent variance
scaling as !(d), leading to dimension-dependent convergence rates without fur-
ther assumptions on the objective function, which is prohibitive for large-scale
LLM parameters. To address this problem, we present a Pseudo-Zeroth-Order
(PseuZO) framework for optimizing composite objective functions, especially
large-scale models: minx→X F(x) = Ezg → h(x; z), where h represents complex,
high-dimensional representations and g is a task-specific loss. While existing
zeroth-order methods estimate gradients with final loss functions, our PseuZO algo-
rithm estimate the Jacobian matrix of h(x) with the model output o = h(x), and
the gradient of the loss function on model output e = ↑og(o), and apply exponen-
tial moving average on Jacobian estimators to reduce the variance. Moreover, we
use the sliding window technique to reduce memory costs. Our algorithm achieves
an O

(
max

{
ω1Lε

↑2
,ω1Lϑ

2
2ε

↑4
})

convergence rate, where ω1 is the effective di-
mension of F . Experimental results demonstrate that PseuZO outperforms MeZO
and MeZO-SVRG in classification, multiple choice and generation tasks in both
full-parameter and PEFT fine-tuning settings by boosting convergence in the early
stages of training. For instance, under the same computation time, with respect to
SST2 task, PesuZO gets 9.8% higher accuracy than MeZO (91.2% v.s. 82.4%).
With the sliding window technique, our PseuZO achieves 70% ↓ 80% memory re-
duction compared to FO-SGD for different model sizes as PseuZO only introduced
a small dimension-independent memory overhead, which enables efficient scaling
of the model size. The code is available at https://github.com/YangBigMn/PseuZO.

1 Introduction

Zeroth-order optimization [45, 20, 36] has served as a core technique for problems where gradient
calculations are impractical. These methods rely solely on function evaluations, making them
uniquely suited for black-box scenarios like adversarial attacks [6, 59], reinforcement learning [8, 14],
and hyperparameter tuning [23, 37]. Compared to first-order and higher-order optimization methods,
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their key strength lies in avoiding gradient computations—a critical advantage when optimizing
complex systems where automatic differentiation is infeasible or prohibitively expensive. For
modern deep neural networks, this approach significantly reduces memory demands by eliminating
backpropagation’s computational and memory cost. Recent advances have reinvigorated zeroth-order
methods as practical tools for deep neural network training, particularly in resource-constrained
environments where traditional optimization strategies struggle to scale.

Large language models (LLMs) represent the pinnacle of deep neural network architectures, achieving
state-of-the-art performance across diverse language understanding and generation tasks [48, 50, 5,
16]. The standard paradigm of pretraining on web-scale corpora followed by task-specific fine-tuning
has become ubiquitous, enabling these models to adapt to specialized domains. However, conventional
first-order fine-tuning approaches employing full-parameter optimization through backpropagation
face critical scalability barriers: the memory overhead for storing optimizer states and activation
values grows with model parameters and context length, becoming prohibitive for large-scale models.
This challenge has driven the emergence of parameter-efficient fine-tuning (PEFT) techniques [31,
25, 35, 55] that strategically update only subsets of model weights. Another way to reduce memory
costs is using memory-efficient zeroth-order optimization (MeZO)[34]. MeZO introduces a paradigm
shift by operating purely through forward-pass evaluations. By eliminating backpropagation while
maintaining competitive task adaptation capability, MeZO addresses the dual requirements of memory
conservation and optimization stability in resource-constrained scenarios, enabling the deployment of
massive LLMs in practical applications.

While zeroth-order optimization provides a gradient-free alternative for fine-tuning large neural
networks, its practical adoption faces fundamental limitations. Zeroth-order algorithms exhibit
catastrophic performance when training from scratch. Even for fine-tuning tasks, the convergence rate
of classical zeroth-order methods scales linearly with parameter dimension d, becoming prohibitive
for modern architectures where d routinely exceeds 1010. This dimension dependence persists in
practice even when leveraging low-effective dimensionality theories [56] or the sparsity of the model
structure [24].

In this paper, we propose a Pseudo-Zeroth-Order (PseuZO) framework for optimizing composite
objective functions:

min
x→X

Ez↓Dg → h(x; z). (1)

This problem formulation is prevalent in deep neural network training, where h represents complex,
high-dimensional representations and g is a task-specific loss. Unlike traditional zeroth-order methods,
PseuZO methods estimate the Jacobian matrix of h(x) with the model output o = h(x). Compared
to the value of the composite function g → h, the output of h provides more information about the
function h. We also apply exponential moving average on Jacobian estimators to reduce the variance.
Finally, we obtain the gradient estimator with the Jacobian estimator and the gradient of the loss
function on model output e = ↑og(o), which can often be computed explicitly. We demonstrate
the efficacy of PseuZO methods both theoretically and empirically. In theory, we prove that PseuZO
method finds an ε-stationary point with O

(
max

{
ω1Lε

↑2
,ω1Lϑ

2
2ε

↑4
})

function evaluations, where
ω1 is the effective dimension of the objective function F . In our experiments, PseuZO not only
converges faster, but also attains a precision improvement of up to 9.8% compared to MeZO. With
the sliding window technique, PseuZO only needs a small dimension-independent extra memory
overhead compared to MeZO, which enables efficient scaling of the model size. Additionally, we
incorporate PseuZO with LoRA and prefix-tuning to show that PseuZO is also compatible with PEFT
techniques.

We summarize our main contributions below:

1. We propose PseuZO optimization framework, which uses the differentiation of model
outputs to compute a stochastic Jacobian estimator, and apply exponential moving average
to reduce the variance. In practice, we use the sliding window technique to reduce memory
costs.

2. We proved that the convergence rate of PseuZO method is not explicitly dependent on
the parameter size. We theoretically prove that our PseuZO optimization method finds an
ε-stationary point in O

(
max

{
ω1Lε

↑2
,ω1Lϑ

2
2ε

↑4
})

function evaluations, where ω1 is the
effective dimension.

2



3. We conduct solid and comprehensive experiments which show that PseuZO outperforms ICL
and MeZO across multiple tasks, including classification, multi-classification and generation
in terms of convergence speed. With the sliding window technique, PseuZO only shows
a small parameter-size-independent memory overhead compared to MeZO for instruction
fine-tuning tasks. Moreover, we find that PseuZO is compatible with PEFT like LoRA and
prefix-tuning, and results show that PseuZO+PEFT also outperforms MeZO+PEFT across
classification, multi-classification and generation tasks in terms of convergence speed.

2 Related work

Zeroth-order optimization. Zeroth-order optimization [45, 20, 36] has been widely studied in the
field of machine learning, and has been used in black-box optimization [22, 6, 59], adversarial attacks
[9, 49], etc. Most zeroth-order methods are designed based on first-order [36] or higher-order methods
[56], and are often d times slower where d is the dimension of the problem. To mitigate the curse of
dimensionality, several works proposed effective dimension [56, 34], and characterize the convergence
rate with the effective dimension of the problem. Many studies also consider reformulating the neural
network at a relatively small scale to solve a simpler optimization problem [30, 47, 7], and then
utilize block coordinate descent (BCD) [6] or ADMM [33] without the need for gradients. Recently,
MeZO [34] successfully applied zeroth-order optimization to fine-tuning extremely large language
models by efficiently estimating gradients in memory. After that, many works attempt to improve the
performance of MeZO by reducing variance [19] or introducing estimated second-order information
[60]. In the research of Spike Neural Network (SNN), [54] used the model output to estimate the
Jacobian matrix, but their work was designed from biological applicability, and was not able to save
memory costs. Inspired by [54], we designed our PseuZO optimization framework.

Memory-efficient backpropagation. As LLMs are typically fine-tuned by first-order algorithms
like SGD [42] and Adam [28], many new methods or techniques have been proposed to solve the
memory overhead problem, e.g. sparsifying gradients [46, 53] and quantization [15]. Other useful
techniques to save memory for activation values or optimizer states like Gradient Checkpoint [18],
Flash Attention [12] and Zero Redundancy Optimizer (ZeRO) [41, 39, 40]. However, these methods
either sacrifice precision or require more computation time.

Gradient-free adaptation of LLMs. Language models can understand language and learn to
communicate with humans after the pre-training phase. They can then generalize to tasks without
training and this form adaptation that requires appropriate prompt designs is called in-context learning
(ICL). Another paradigm is to estimate first-order or second-order information only using inference.
Besides MeZO estimating first-order information by two forward processes, HiZOO leverages three
forward processes to estimate second-order information considering heterogeneous curvatures across
different parameter dimensions [60].

3 Pseudo-Zeroth-order algorithm framework

3.1 Zeroth-order algorithms

Zeroth-order algorithms are a class of optimization algorithms that do not require the computation of
gradients. Instead, they rely on noisy function value oracles to update the parameters. This makes
them useful for problems where the computation of gradients is expensive or infeasible. Typically,
zeroth-order methods use noisy function values to generate gradient estimators. Suppose the objective
function is f : Rd ↔ R. Two most common gradient estimators are RGE [36] and CGE [1]:

RGE : ↑̃µf(x) =
1

q

q∑

i=1

f(x+ µωi)↗ f(x)

µ
ωi, CGE : ↑̃µf(x) =

1

d

d∑

i=1

f(x+ µei)↗ f(x)

µ
ei,

(2)
where ωi ↓ N(0, I) and {ei} is a set of standard basis vector. When µ ↔ 0, CGE become the full
gradient, and RGE tends to

↑̂f(x) =
1

q

q∑

i=1

↘↑f(x), ωi≃ ωi. (3)

3



This is an unbiased estimation of ↑f(x), with variance !
(

d
q

)
. Without further assumptions on

objective functions, optimizing with RGE or CGE needs d times more zeroth-order oracles than
optimizing with first-order methods using gradient oracles, severely limiting their applicability in
high-dimensional scenarios. However, if the objective function has low effective dimension or sparsity
structures, zeroth-order methods can achieve a faster convergence rate [56, 60].

3.2 Pseudo-zeroth-order algorithms

In this paper, we study the composite optimization problem:

min
x→X

F(x) := Ezg(h(x; z)), where X ⇐ Rdp , (4)

where h : X ↔ H ⇐ Rdout defines the representation mapping and g : H ↔ R+ is a loss function. In
machine learning, the representation mapping h : Rdp ↔ Rdout is typically parameterized as a neural
network h(x; z), where x denotes the learnable parameters and z ↓ D denotes the stochastic input
data. The exact stochastic gradient admits the theoretical decomposition:

↑xF(x) = Ez↓D

[
J
↔
h (x; z)︸ ︷︷ ︸

Stochastic Jacobian
dout→dp

·↑hg(h(x; z))︸ ︷︷ ︸
Upstream gradient

dout↑R

]
. (5)

The implementation of stochastic first-order methods requires efficient computation of ↑xF(x) via
backpropagation through the compositional structure g → h. While the outer loss g admits tractable
gradient computation (↑hg is typically closed-form), the inner mapping’s Jacobian Jh(x; z) becomes
computationally intractable for deep nonlinear parameterizations.

Unlike standard zeroth-order (ZO) methods that solely utilize function evaluations of g → h, our
key insight stems from the asymmetric differentiability inherent in composite optimization: While
acquiring exact gradients through the inner mapping h(x; z) remains computationally prohibitive due
to computational constraints or non-differentiable operators, the gradient of the outer function g can
be explicitly or efficiently computed.

Our method exploits composite structure’s asymmetric differentiability:

• Outer gradient: Closed-form e = ↑og(o) for o = h(x; z);

• Inner estimation: Zeroth-order approximation for h’s Jacobian.

The PZO gradient estimator combines both components:

↑
PZO
µ F(x; z) = ω

(
h(x+ µω; z)↗ h(x; z)

µ

)↔
e, (6)

where ω ↓ N(0, I). As µ ↔ 0, this converges to ↑
PZO

F(x; z) = (ω↔J↔
h e)ω = ωω↔J↔

h e, which is
an unbiased estimation of ↑F(x). To reduce the variance introduced by the random vector ω, we
propose a momentum-accelerated variant through exponential smoothing:

A = (1↗ ϖ)

(
h(x+ µω; z)↗ h(x; z)

µ

)
ω↔ + ϖA, (7)

↑̂
PZO
µ F(x; z) = A

↔
e. (8)

The full algorithm is shown in Algorithm 1.

Remark 1. The gradient estimator of PseuZO ↑̂
PZO
µ F(x; z) = A

↔
e theoretically outperforms

MeZO and its momentum variant in terms of both bias and variance, as detailed in Appendix D.
PseuZO has smaller variance compared to MeZO and MeZO with momenetum, and MeZO has
an extra bias term caused by the curvature of g. These theoretical advantages demonstrate the
effectiveness of the exact outer gradient and exponential smoothing of Jacobian estimations.
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Algorithm 1 Matrix-based PseuZO Algorithm

Require: Momentum factor ϱ ⇒ (0, 1), smoothing coefficient µ > 0, max iterations T , initial point
x0

Ensure: Gradient estimate ↑̂
PZO
µ F(x; z)

1: Initialize momentum buffer A↑1 ⇑ 0 ⇒ Rdout↗dp

2: for t = 0 to T do
3: Sample random vector ωt ↓ N (0, I)

4: Compute forward difference ”ot ⇑
h(xt+µωt;zt)↑h(xt;zt)

µ

5: Receive noisy Jacobian estimator Bt = ”otω↔t
6: Momentum update:
7: At ⇑ (1↗ ϖt)Bt + ϖtAt↑1 ς Exponential moving average
8: Compute outer gradient et ⇑ ↑og(h(x; zt))
9: Gradient projection: ↑̂PZO

µ F(xt; zt) ⇑ A
↔
t et

10: Update x: xt+1 ⇑ xt ↗ φ↑̂
PZO
µ F(x; zt)

11: end for

3.3 Convergence of PseuZO algorithm

In this subsection, we deviate from the exact realization of stochastic Jacobian estimators, and assume
that the PseuZO algorithm receives a noisy Jacobian estimator in each step. Under this more general
setting, we prove the convergence of PseuZO method. We first list some assumptions which are
necessary for our analysis and has been widely adopted in research works on optimization:
Assumption 2. F has continuous Hessian matrices H(x), and satisfy the following equations:

⇓H(x)⇓op ⇔ L, tr (H(x)) ⇔ ω1L, (9)

where ω1 is the effective dimension of F . In the worst case, ω1 = dp.

Assumption 3. Denote ↑̂F(xt) = ↑xg(h(xt; zt)). The randomness of the Jacobian estimator Bt

can be decoupled into the following parts:

Bt = (Jt +Dt)Nt +Mt, (10)

where Jt is the true Jacobian matrix of h at xt, and:

• Nt represents the randomness introduced by the PZO Jacobian estimator:

ENt = I, E⇓N↔
t a⇓

2
M

⇔ 3tr (M) · ⇓a⇓2, (11)

where a is an arbitrary vector.

• Dt represents the randomness of data:

(Jt +Dt)
↔
et = ↑̂F(xt), EDt = 0, E⇓D↔

t et⇓
2
⇔ ϑ

2
2 ; (12)

• Mt represents the noise introduced by the two-point estimation of the function value,
controlled by µ:

E⇓M↔
t et⇓

2
⇔

µ
2
L
2
hL

2
g

2
(dp + 6)3. (13)

According to the analysis on the two-point gradient estimators in [36], Bt =
(

h(x+µω;z)↑h(x;z)
µ

)
ω↔

satisfies Assumption 3, where ω ↓ N(0, I). Now, we propose the informal version of our convergence
theorem in Theorem 4. For the formal version and the proof of Theorem 4, please refer to the Appendix
C.
Theorem 4 (Informal). Under Assumption 2 and 3, if µ, ε and ϱt satisfy certain conditions, Algorithm
1 finds an ε-stationary point with O

(
max

{
ω1Lε

↑2
,ω1Lϑ

2
2ε

↑4
})

function value computations.
Remark 5. The convergence rate of Algorithm 1 is ω1 times slower than the standard SGD algorithm,
where ω1 is not explicitly dependent on the dimension of the problem.
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3.4 Sliding window-based PseuZO algorithm

As it is memory inefficient to store such a large-scale tensor At (outer product of Gaussian noise and
an output tensor) introduced in PseuZO, we propose several techniques to reduce the memory cost
and obtain Sliding Window-based PseuZO shown in Algorithm 2.

tt-L+3t-L+2t-L+1

(a) The sliding window (b) lambda curve

Figure 1: (a) is a schematic diagram of the sliding window with length L. We can obtain the
corresponding coefficients of all sliding window units by expanding the iterative L times. (b) is a ϖ

variation curve with three cycles. Each cycle means a restart operation and when ϖ is close to zero,
we set ϖ = 0 to reduce time consumption.

Sliding window technique. To tackle the memory overhead of PseuZO, we use a sliding window
to store random seeds and output tensors in the last few steps. When the sliding window shown in
Figure 1a is determined, the corresponding coefficient for each unit in the sliding window can be
obtained by expanding the EMA formula. On the one hand, we can resample the same Gaussian
noise ω with the same seed so there is no need to store these random vectors [34]. On the other hand,
as 0 < ϖ < 1, especially when ϖ is smaller, the weight for older information is close to zero in the
EMA step of PseuZO method. Therefore, we truncate outdated information with the sliding window
technique.

Changing the storage target. However, storing several output tensors with a shape of the vocabulary
size is still unacceptable, as the vocabulary size is generally large among LLMs. So we choose to
store the last hidden state with a much smaller size and trace its path to the final loss to obtain its
gradient without excessive memory overhead. For OPT1.3B, the last hidden state (i.e. the input
tensor for lm_head) size is 2048 while the vocabulary size is larger than 50000 [58]. Thus we can
further reduce memory overhead caused by the sliding window.

Periodic dynamic changing of ϖ. To meet the convergence requirements, ϖ needs to gradually
decrease to zero. We take advantage of a restart operation to further boost convergence and thus
ϖ is designed in a periodic changing manner as shown in Figure 1b. When ϖ approaches zero,
PseuZO gradually degenerates to ZO method and thus we directly transform to MeZO instead. If we
consistently use PseuZO throughout the entire process, the time cost is roughly 2↖ that of MeZO.
However, with appropriate design for ϖ, the time cost can be reduced to almost the same as MeZO.

4 Experiments

In this section, we evaluate Sliding Window-based PseuZO on a variety of typical fine-tuning tasks
by comparing performance against MeZO [34], MeZO-SVRG [19], HiZOO-L [60] and memory
overhead against MeZO-SVRG as well as FO-SGD. Experimental results show that: 1) The peak
memory usage of PseuZO is significantly smaller than MeZO-SVRG and FO-SGD; 2) Through
the sliding window technique, with a fixed memory overhead that is independent of the model size
compared to MeZO, PseuZO has much better performance than MeZO, MeZO-SVRG and HiZOO-L.
3) PseuZO is also compatible with PEFT techniques like LoRA [25] and prefix-tuning [31].

Setup. We implement PseuZO, MeZO-SVRG and HiZOO-L in the MeZO framework with appropri-
ate adjustment for fair comparison. We conduct comprehensive experiments in various tasks on large
auto-regressive language models like opt-1.3B [58] and the same prompt design as MeZO is utilized
which is effective and fair for comparison for various datasets including GLUE [52] and SuperGLUE
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Algorithm 2 Sliding Window-based PseuZO Algorithm

Require: Momentum factor formula ϖ(t) ⇒ (0, 1), smoothing coefficient ε > 0, max iterations T ,
initial point ↼0, sliding window length L, coefficients {uk}

L
k=1

Ensure: Gradient estimate ↑̂
PZO
ω F(x; z)

1: Initialize the sliding window as a deque D(maxlen=L)
2: for t = 0 to T do
3: Update ϖ ⇑ ϖ(t)
4: Compute coefficients uk ⇑ ϖ

k↑1(1↗ ϖ)
5: Sample random seed st and corresponding vector ωt ↓ N (0, I; st)

6: Compute forward difference ”ot ⇑
h(xt+ωωt;zt)↑h(xt;zt)

ω
7: Compute outer gradient et ⇑ ↑og(h(xt; zt))
8: Update sliding window D.append(st,”ot)
9: Gradient projection initialization: ↑̂PZO

ω F(xt; zt) ⇑ 0
10: for k = 1 to L do ς Iterate sliding window
11: s,”o ⇑ Dk

12: Resample ω ↓ N (0, I; s)
13: Accumulate ↑̂

PZO
ω F(xt; zt) ⇑ ↑̂

PZO
ω F(xt; zt) + uk ↘”o, et≃ ω

14: end for
15: Update ↼: ↼t+1 ⇑ ↼t ↗ φ↑̂

PZO
ω F(↼t;xt)

16: end for

Task SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD DROP
Task type classification multiple choice generation

Zero-shot 53.5 53.0 39.3 45.7 43.3 51.5 45.4 75.0 70.5 11.2
ICL 80.0 53.0 46.4 58.7 47.1 51.1 46.2 69.0 71.0 20.4

MeZO-SVRG 61.5 55.5 74.0 60.3 52.0 50.0 53.0 54.0 50.1 0.0
MeZO (10K steps) 82.4 54.3 76.0 60.7 51.0 50.9 54.9 74.0 57.6 20.3
MeZO (20K steps) 88.4 58.8 76.0 63.8 53.0 51.3 53.9 73.0 58.9 20.3
HiZOO-L 88.1 54.9 69.0 64.8 51.2 58.0 58.2 73.0 58.8 23.3
PseuZO (10K steps) 91.2 58.0 77.0 64.3 58.0 54.5 54.7 78.0 60.0 23.5
PseuZO (20K step) 90.7 63.3 75.0 67.0 57.0 59.7 60.6 76.0 60.9 24.5
FO-SGD 92.4 67.8 94.0 60.8 52.6 47.4 53.8 76.0 57.2 26.0

Table 1: Experiments on OPT-1.3B with 1024 training samples and 512 evaluation samples. When
training, for WSC, CB and COPA, they have much less total samples and thus we set aside 100
evaluation samples and use the rest for training. The bold number represents the highest evaluation
performance excluding FO-SGD.

[51] benchmarks. We run all experiments for 10K steps and evaluate performance of the model every
2K steps for HiZOO-L and MeZO-SVRG. In order to ensure that MeZO and PseuZO are sufficiently
convergent, we run PseuZO and MeZO for 10K and 20K steps, respectively. We choose K = 16 as
the batch size and randomly select 1024 samples for training and 512 samples for evaluation. All
experiments are run on a single Nvidia A800 40GiB GPU.

Task SST-2 RTE CB BoolQ WSC WIC COPA
MeZO 84.4 58.0 76.0 64.0 54.0 52.5 88.0

PseuZO (ours) 91.8 58.4 77.0 68.9 58.0 55.3 90.0

Table 2: Experiments on OPT-6.7B for PseuZO versus MeZO. The bold number represents the better
evaluation performance.
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Task SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD DROP
Task type classification multiple choice generation

MeZO+LoRA 90.8 59.1 76.0 64.6 50.0 52.7 54.5 81.0 59.5 22.9
PseuZO+LoRA 91.2 58.8 79.0 65.8 51.0 51.8 54.3 83.0 60.2 25.7
MeZO+prefix 71.0 51.7 45.0 57.6 54.0 50.6 50.8 75.0 57.4 15.5
PseuZO+prefix 80.7 53.1 71.0 61.7 49.0 51.0 52.7 75.0 57.8 21.2

Table 3: Experiments on OPT-1.3B for comparison between MeZO+PEFT and PseuZO+PEFT. PEFT
is either LoRA or prefix fine-tuning.

4.1 Auto regressive model performance

PseuZO performs much better than MeZO, MeZO-SVRG and HiZOO-L in the classification,
multiple choice and generation tasks shown in Table 1. As MeZO-SVRG needs to traverse all
samples to obtain the full-batch gradient [19], large numbers of iterations are required or it will
have an expensive memory overhead. However, MeZO-SVRG still performs worse than PseuZO,
especially for multiple choice and generation tasks with a small batch size and a large full batch
size. For HiZOO-L [60], it not only requires three forward propagations, but also requires low-rank
processing of matrix parameters, which increases the time overhead. In fact, running HiZOO-L and
MeZO-SVRG for only 10K steps takes much longer than running PseuZO for 20K steps. As shown
in Appendix D, PseuZO takes advantage of the small bias and variance to achieve fast convergence,
further reducing the gap with FO-SGD and even outperforms FO-SGD in many tasks.

PseuZO is also compatible with other memory efficient techniques, like LoRA and prefix tuning,
and the corresponding results are shown in Table 3. As both LoRA and prefix tuning have much
fewer parameters to optimize (0.1% and 0.01% of the original number of parameters respectively
for OPT1.3B) so that the number of convergence steps required will be lower, the performance gap
between MeZO+PEFT and PseuZO+PEFT is much smaller than that of MeZO and PseuZO.

4.2 Memory usage and time computation

Figure 2: Memory overhead for different mod-
els under various ZO algorithms and FO-SGD.
↽ means out of memory.

tPseuZO OPT1.3B OPT2.7B OPT6.7B

10 9300 9600 9900

20 8700 9400 9700

50 6800 8400 9300

100 3600 7000 8700

150 400 5100 8000

Table 4: tPseuZO and its corresponding num-
ber of the total steps to guarantee the time
that does not exceed 10K execution time for
MeZO.

PseuZO scales up to almost the same model size as MeZO can scale up to as PseuZO only
introduces a small dimension-independent memory overhead. Memory usage for different scale
models is illustrated in Figure 2 which verifies our conclusion that compared to MeZO, excessive
memory overhead of PseuZO is independent of the model size. Additionally, we also compare
memory overhead for the different batch size and max length. As shown in Table 5, the memory
requirement of PseuZO is more sensitive to the batch size and max length due to the sliding window.
However, as model size has a greater impact on memory, PseuZO still needs less memory than
MeZO-SVRG (MeZO-SVRG needs to store full parameters during training [19]).

The computation time required for each epoch of PseuZO is approximately twice that of each
epoch of MeZO for OPT-1.3B but the gap for large scale models will gradually decrease. We
fix the total steps of MeZO as 10K and obtain the corresponding total steps of PseuZO for different

8



Memory Usage in GiB for OPT-1.3B Memory Usage in GiB for OPT-6.7B
Fixed context length (cl=128) Fixed batch size (bs=16) Fixed context length (cl=128) Fixed batch size (bs=16)

Method bs=16 bs=32 bs=64 cl=256 cl=512 bs=16 bs=32 bs=64 cl=256 cl=512

FO-SGD 30.30 OOM

MeZO 5.35 7.58 11.87 9.06 17.03 17.09 20.35 27.51 21.28 27.01
MeZO-SVRG 10.55 12.76 17.55 12.46 19.67 OOM
PseuZO 7.61 10.58 17.85 11.69 19.36 18.08 23.22 33.52 25.16 32.74

Table 5: Memory usage (GiB) comparison on BoolQ for different ZO methods with OPT1.3B and
OPT-6.7B showing that PseuZO can scale up to larger models as MeZO.

Dataset SPSA ZOsp PseuZO PseuZO (w/LL) BP

MNIST 86.4± 0.15 87.8± 0.09 98.7± 0.02 / 98.5± 0.02
CIFAR-10 41.3± 0.74 42.6± 0.69 82.5± 0.15 88.7± 0.13 89.9± 0.06
CIFAR-100 5.39± 0.69 7.61± 0.73 61.4± 0.14 68.5± 0.13 71.9± 0.09

Table 7: Training from scratch on typical computer vision classification datasets for various feedback
methods. We do not use local loss for MNIST as there are only two hidden layers.

tPseuZO under the same computation time where tPseuZO is the number of total epochs using PseuZO
and results are shown in Table 4.

4.3 Ablation study

As introduced before, our sliding window has four key factors denoted as 1) L: sliding window
length; 2) tPseuZO: number of epochs to execute PseuZO for each cycle; 3) R: number of cycles; 4)
ϖ(t): the formula for ϖ to descend with respect to epoch t. We perform ablation studies on SST2 to
explore their individual impact on precision and the results are shown in Figure 3 and Table 6. If
we keep ϖ a small constant like ϖmin = 0.1, the accuracy is close to that of MeZO. In fact, when
ϖ ↔ 0, PseuZO gradually degenerates to MeZO without momentum. More ablation experiments,
including MeZO with momentum and PseuZO without momentum, can be found in Appendix A. We
empirically found that performance is largely insensitive to the sliding window parameters. Since
there is no need to set L, tPseuZO and R too large, smaller values are chosen to balance low memory
and time overhead.

Figure 3: Ablation studies for L, tPseuZO and R. "full"
means using PseuZO for all epochs.

ϖ(t) Accuracy(%)

Constant1 ϖ(t) = ϖmax 83.9

Constant2 ϖ(t) = ϖmin 82.7

Linear ϖ(t) = ϖmax(1↗
t

tPseuZO
) 90.3

Reciprocal ϖ(t) = ϖmax
1

1+0.5t 91.2

Table 6: Ablation study for different de-
scent formula ϖ(t) when t < tPseuZO.

4.4 Training from scratch

During ZO optimization, the variance introduced by the large number of parameters is difficult
to control and thus an appropriate prompt design is significant to guide generation [34, 19] for
instruction fine-tuning. Furthermore, it remains a problem for ZO algorithms like SPSA to train from
scratch even for small datasets. However, with a simple reformulation named Node Perturbation [32],
PseuZO shows great performance on these tasks. The reformulation details and further explanation
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can be found in Appendix B. As shown in Table 7, PseuZO in Node Perturbation manner outperforms
SPSA and other signal feedback methods and with incorporation of local learning [26], PseuZO can
even perform as well as BP. It demonstrates the potential of PseuZO to be used for more difficult but
significant settings.

5 Conclusion

In this paper, we propose a new algorithm framework PesuZO and apply it to various instruction
fine-tuning tasks for LLMs. According to our theoretical analyses, PseuZO finds an ε-stationary
point in O

(
max

{
ω1Lε

↑2
,ω1Lϑ

2
2ε

↑4
})

function evaluations. Experimental results demonstrate that
PseuZO outperforms MeZO and MeZO-SVRG among various tasks. We propose sliding window
technique, making the memory overhead independent of the model size. As a limitation, PseuZO
needs to store the sliding window and the extra memory is sensitive to the batch size and max length.
A possible fix to this problem is to add an low-dimension auxiliary layer as the new storing target.
Though this method can further reduce memory overhead, it changes the model structure which might
reduce its representation capability.
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to reproduce that algorithm.
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Answer: [Yes]
Justification: Our code is available at https://github.com/YangBigMn/PseuZO.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
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6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Justification: We specify all the training and test details in the Appendix A,B.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the mean and standard deviation values in Table 7 by running
each result for 5 times with different seeds. For the other results, repeated experiments of
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our study is about a new Zeroth-order algorithm for neural networks. No
societal impact is concerned by our work.

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

18

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all the papers whose datasets are used in our experiment. Details
can be found in the Appendix A,B.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

19



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No experiment involves crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No experiment involves crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: We only use LLMs for writing, editing or formatting purposes.

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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