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Abstract

AdamW has become one of the most effective optimizers for
training large-scale models. We have also observed its ef-
fectiveness in the context of federated learning (FL). How-
ever, directly applying AdamW in federated learning settings
poses significant challenges: (1) due to data heterogeneity,
AdamW often yields high variance in the second-moment
estimate v; (2) the local overfitting of AdamW may cause
client drift; and (3) reinitializing moment estimates (v, m) at
each round slows down convergence. To address these chal-
lenges, we propose the first Federated AdamW algorithm,
called FedAdamW, for training and fine-tuning various large
models. FedAdamW aligns local updates with the global up-
date using both a local correction mechanism and decou-
pled weight decay to mitigate local overfitting. FedAdamW
efficiently aggregates the mean of the second-moment esti-
mates to reduce their variance and reinitialize them. Theoret-
ically, we prove that FedAdamW achieves a linear speedup
convergence rate of O(

√
(L∆σ2

l )/(SKRϵ2) + (L∆)/R)
without heterogeneity assumption, where S is the number
of participating clients per round, K is the number of lo-
cal iterations, and R is the total number of communication
rounds. We also employ PAC-Bayesian generalization anal-
ysis to explain the effectiveness of decoupled weight decay
in local training. Empirically, we validate the effectiveness
of FedAdamW on language and vision Transformer models.
Compared to several baselines, FedAdamW significantly re-
duces communication rounds and improves test accuracy.

Code — https://github.com/junkangLiu0/FedAdamW
Extended version — https://arxiv.org/pdf/2510.27486

Introduction
With the rapid growth of data and rising concerns over
user privacy, traditional centralized training paradigms have
become inadequate. Federated Learning (FL) (McMahan
et al. 2017) offers a scalable and privacy-preserving frame-
work that enables collaborative model training across decen-
tralized clients without sharing raw data (Bian et al. 2025a;
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Wang et al. 2024; Bian et al. 2025b, 2024). As data becomes
increasingly siloed, FL is a practical solution for large-scale
distributed deep learning (Li et al. 2025a, 2023; An et al.
2022, 2024b,a; Liu et al. 2023, 2025d,e,c).

However, recent trends in model design-particularly the
rise of large-scale architectures such as GPT (Radford et al.
2018), RoBERTa (Liu et al. 2019), and Vision Transform-
ers (ViT) (Dosovitskiy et al. 2020)—pose new challenges
for existing FL algorithms. Specifically, the widely-used Fe-
dAvg algorithm, which relies on stochastic gradient descent
(SGD) (Bottou 2010) in local, struggles to efficiently train
Transformer models. This is due to the slow convergence
and poor adaptivity of SGD in Transformer models (Zhang
et al. 2024c; Liu et al. 2025a), which have more complex
architectures compared to CNNs. For example, components
such as query, key, and value often require different learning
rates to be trained effectively (Zhang et al. 2024c). In con-
trast, AdamW (Loshchilov, Hutter et al. 2017), an adaptive
optimizer with decoupled weight decay, has demonstrated
superior performance in centralized training of large mod-
els based on Transformer (Vaswani et al. 2017; Liu et al.
2019), offering faster convergence and improved generaliza-
tion, compared to Adam (Kingma and Ba 2014) and SGD.

Empirically, we also observe this advantage in FL: as
shown in Figure 1, local training with AdamW (Local
AdamW) converges significantly faster than Local SGD
(McMahan et al. 2017) for training various Transformer
models . However, naively applying AdamW in FL leads to
the following new challenges:

• Challenge 1: High variance in second-moment esti-
mate (v). Due to non-i.i.d. data across clients, gradient
noise leads to high variance in second-moment estimate.

• Challenge 2: Local overfitting and client drift. While
AdamW accelerates local training, it intensifies local
overfitting. Under non-i.i.d. data, this manifests as client
drift, severely hindering the global model’s performance.

• Challenge 3: Moment estimate reinitialization. reini-
tializing the first- and second-moment estimates from
scratch in every round hinders the convergence rate.

These challenges motivate us to develop Federated
AdamW (FedAdamW), a novel optimizer tailored for fed-



(a) ViT on CIFAR100 (b) GPT2 on Shakespeare (c) BERT on CoLA

Figure 1: Performance of Local SGD and Local AdamW. For training ViT-Base, GPT2, and BERT (Liu et al. 2019), we carefully
tune the learning rate. For training all these Transformer models, Local SGD is still significantly worse than Local AdamW.

erated learning. FedAdamW addresses the above issues
through two key designs: (1) a local correction mechanism
that integrates global gradient estimates into the local up-
date, effectively aligning local and global updates to reduce
client drift; and (2) a moment aggregation strategy that
aggregates the mean of second-moment estimates is theo-
retically grounded in the Hessian block structure, to reduce
variance of v and avoid repeated initialization.
Our contributions are summarized as follows:

• Empirical importance of AdamW and challenges in
FL. We empirically demonstrate the effectiveness of the
AdamW optimizer in federated settings, particularly for
training Transformer models. Our analysis reveals three
key challenges when applying AdamW in FL.

• We propose FedAdamW, a principled FL algorithm
tailored for adaptive optimizers. To address the above
challenges, FedAdamW integrates global update estimate
into local updates to mitigate overfitting and improve con-
sistency. Inspired by the Hessian structure, we design a
communication-efficient aggregation strategy that com-
municates the mean of second-moment across clients.

• Theoretical guarantees with improved convergence
and generalization. FedAdamW achieves a linear
speedup convergence rate of O(

√
(L∆σ2

l )/(SKRϵ2) +
(L∆)/R). To the best of our knowledge, this is the first
federated adaptive optimization algorithm without requir-
ing gradient heterogeneity assumption. Furthermore,
we utilize the PAC-Bayesian theory to provide insights
into the generalization benefits of decoupled weight decay
and global-local alignment.

Related Work
• Heterogeneity Issues in Federated Learning. Data het-
erogeneity across clients is a fundamental challenge in FL.
A range of algorithms have been proposed to mitigate the
adverse effects of non-i.i.d. data distributions. For exam-
ple, FedProx (Li et al. 2020) introduces a proximal term
to restrict local updates; SCAFFOLD (Karimireddy et al.
2020) applies control variates to correct client drift; and
FedCM (Xu et al. 2021) leverages client momentum to sta-
bilize updates. FedNSAM (Liu et al. 2025b) analyzed the
consistency between local and global flatness, FedBCGD

(Liu et al. 2024) proposed a communication-efficient ac-
celerated block coordinate gradient method. FedSWA (Liu
et al. 2025a) further improved generalization under highly
heterogeneous data via stochastic weight averaging.
• Adaptive Optimization in Centralized Settings.

Adaptive gradient methods have demonstrated superior em-
pirical performance over SGD in centralized settings, partic-
ularly for deep neural networks. Pioneering works include
Adagrad (Duchi, Hazan, and Singer 2011), Adam (Kingma
and Ba 2014), AMSGrad (Reddi, Kale, and Kumar 2019),
and AdamW (Loshchilov, Hutter et al. 2017). AdamW,
in particular, decouples weight decay from gradient up-
dates, offering improved generalization and training sta-
bility—attributes especially critical for Transformer mod-
els (Liu et al. 2019; Zhang et al. 2024c; Ouyang et al. 2025;
Qian et al. 2024; Li et al. 2025b; Yang et al. 2025; Zhang
et al. 2025, 2024b,a; Wei et al. 2025; Zhou et al. 2023, 2024)
• Adaptive Optimization in Federated Learning. Re-

cent efforts have explored integrating adaptive methods into
FL. FedOpt (Reddi et al. 2020) incorporates server-side
adaptivity using Adam and Yogi. FAFED (Wu et al. 2023)
aggregates both the first- and second-moment estimates of
Adam across clients to stabilize training. FedAMS (Chen,
Li, and Li 2020) shows that averaging the second-moment
estimate of Adam is crucial to prevent divergence. More
recently, Sun et al. (2023) proposed to only aggregate the
second-moment estimate to reduce communication over-
head. However, these works only conducted experiments on
CNN models. These studies are all based on Adam, which
performs poorly with large weight decay.

FL Problem Setup
FL aims to optimize model parameters with local clients,
i.e., minimizing the following population risk:

f(x) =
1

N

N∑
i=1

(fi(x) := Eξi∼Di [Fi (x; ξi)]) . (1)

The function fi represents the loss function on client i.
Eξi∼Di

[·] denotes the conditional expectation with respect
to the sample ξi. ξi is drawn from distribution Di in client i.
N is the number of clients.



(a) High Variance in v (b) Local AdamW client drift

Figure 2: Training on CIFAR-100 using ViT-Tiny. (a) Data hetero-
geneity causes high variance in second-moment estimates across
clients of Local AdamW. (b) Local AdamW suffers from more se-
vere client drift than Local SGD under non-i.i.d. data.

Challenges of AdamW in FL
Despite the widespread use of AdamW (Loshchilov, Hutter
et al. 2017; Vaswani et al. 2017) in centralized deep learn-
ing, its adaptation to federated settings remains largely un-
explored. In this section, we analyze three fundamental chal-
lenges that hinder its effectiveness in FL settings.

Challenge 1: High Variance in Second-Moment Esti-
mates (v). AdamW maintains a second-moment estimate
(v) to scale gradients adaptively, updated as:

vr,k
i = β2v

r,k−1
i + (1− β2)g

r,k
i ⊙ gr,k

i , (2)

where vr,k
i denotes the second-moment estimate maintained

by client i at local step k of round r, gr,k
i is the stochas-

tic gradient, β2 = 0.999 is the exponential decay rate
for the second moment, and ⊙ represents the element-
wise (Hadamard) product in Algorithm 1. In FL, data
heterogeneity leads to gradient heterogeneity. The squared
stochastic gradients gr,k

i ⊙ gr,k
i in Eq. (2) amplify the vari-

ance of v across clients in Figure 2 (a). This can cause in-
stability and inefficient aggregation, especially when using
non-i.i.d. data (Chen, Li, and Li 2020).

Challenge 2: Local Overfitting and Client Drift. While
AdamW accelerates convergence through its adaptivity, it
may exacerbate local overfitting. In FL, where each client
minimizes its own local objective fi(·), creating a natural
gap between the local and global optima. Adaptive optimiz-
ers such as AdamW, with stronger update magnitudes, can
drive clients further toward their local optima—diverging
from the global direction. This leads to client drift as illus-
trated in Figure 2 (b), which manifests as inconsistencies in
local models that degrade the global performance.

Challenge 3: Reinitialization Overhead. In FL, AdamW
optimizer states are reinitialized from zero each round:

mr,0
i ← 0, vr,0

i ← 0. (3)

Reinitializing moment estimates across rounds erases tem-
poral memory, hindering the accumulation of adaptive statis-
tics and slowing convergence, particularly in deep or large-
scale models.

Our Algorithm: FedAdamW
Based on theoretical motivation, we propose an effi-
cient improvement to AdamW called Federated AdamW

Algorithm 1: Local AdamW Algorithm

1: Initial model x0, β1 = 0.9, β2 = 0.999, ϵ = 10−8,
time step t← 0, the number of all clients N , each round
selected clients S, weight decay λ.

2: for r = 1, . . . , R do
3: for each selected client i ∈ {1, . . . , S} in parallel do
4: xr,0

i ← xr, mr,0
i ← 0, vr,0

i ← 0;
5: for k = 1, . . . ,K do
6: gr,τ

i ← ∇fi(xr,k
i ; ξi);

7: mr,k
i = β1m

r,k−1
i + (1− β1) g

r,k
i ;

8: vr,k
i = β2v

r,k−1
i + (1− β2) g

r,k
i ⊙ gr,k

i ;
9: m̂r,k

i = mr,k
i /

(
1− βk

1

)
;

10: v̂r,k
i = vr,k

i /
(
1− βk

2

)
;

11: xr,k+1
i =xr,k

i − η(m̂r,k
i /(

√
v̂r,k
i + ϵ)−λxr,k

i );
12: end for
13: Communicate (xr,K

i − xr,0
i ) to Server;

14: end for
15: xr+1 = xr + 1

S

∑S
i=1(x

r,K
i − xr,0

i );
16: Communicate (xr+1) to Clients.
17: end for

(a) query (4 heads) (b) key (4 heads) (c) value (4 heads)

Figure 3: (a–c):Block-wise Hessian structure of Transformer
parameters under FL. Visualizing the Hessian submatrices
of query, key, and value heads. The near block-diagonal
structure supports block-wise second-moment aggregation
in FedAdamW.

(FedAdamW). To address Challenge 1, it was experimen-
tally discovered that aggregating AdamW second-moment
estimate can stabilize the training process (see Table 7 be-
low). However, aggregating second-moment estimate leads
to a double communication.

(Q1) How to efficiently aggregate v?
We observe that the Hessian matrix in neural networks ex-
hibits an approximate block-diagonal structure with several
dense sub-blocks (Collobert 2004; Zhang et al. 2024d) as
shown in Figure 3. In such a structure, a single learning
rate can effectively capture the curvature within each block.
Leveraging this, we propose a communication-efficient
strategy that partitions the second-moment estimate v into
B blocks and transmits only the mean of each in Figure 4:

v̄b = mean(vb), b = 1, . . . , B. (4)

Block-wise Partitioning Strategy (ViT Example). We
group the parameters into semantically aligned classes that
exhibit similar curvature patterns as shown in Figure 3:



Algorithm 2: FedAdamW Algorithm

1: Initial model x0, β1 = 0.9, β2 = 0.999, ϵ = 10−8,
time step t← 0, the number of all clients N , each round
selected clients S, weight decay λ.

2: for r = 1, . . . , R do
3: for each selected client i ∈ {1, . . . , S} in parallel do
4: xr,0

i ← xr, mr,0
i ← 0, vr,0

i ← v̄r;
5: for k = 1, . . . ,K do
6: t← t+ 1;
7: gr,k

i ← ∇fi(xr,k
i ; ξi);

8: mr,k
i = β1m

r,k−1
i + (1− β1) g

r,k
i ;

9: vr,k
i = β2v

r,k−1
i + (1− β2) g

r,k
i ⊙ gr,k

i ;
10: Bias correction
11: m̂r,k

i = mr,k
i /

(
1− βk

1

)
;

12: v̂r,k
i = vr,k

i / (1− βt
2);

13: ϑr,k
i = 1/(

√
v̂r,k
i + ϵ);

14: Update model parameters
xr,k+1
i = xr,k

i −η(m̂
r,k
i ⊙ϑ

r,k
i +α∆r

G−λx
r,k
i );

15: end for
16: Communicate (xr,K

i − xr,0
i , v̄i = mean

(
vr,K
i

)
)

to Server;
17: end for
18: ∆r

G = −1
SKη

∑S
i=1(x

r,K
i − xr,0

i );

19: xr+1 = xr + 1
S

∑S
i=1(x

r,K
i − xr,0

i );
20: v̄r+1 = 1

S

∑S
i=1 v̄i;

21: Communicate (xr+1, v̄r+1,∆r
G) to Clients.

22: end for

• Class 1: query and key. Query and Key parameters.
Each block corresponds to one attention head.

• Class 2: attn.proj and MLPs. Blocks align with
output neurons in projection and feedforward layers.

• Class 3: value. Structure is less regular but still shows
diagonal blocks; curvature magnitude is notably higher
(up to 106×), possibly due to its position after softmax.

• Class 4: Embedding and output layers. Sub-blocks
align with input tokens, forming near-diagonal Hessians.

CNNs (e.g., ResNet): Blocked by convolutional layers or
residual blocks. This reduces the communication cost from
billions of scalars to B values while preserving adaptive
behavior. Empirically, we find this approach also improves
generalization in local optimization as shown in Table 7 be-
low. See Appendix D for block partitioning details.

(Q2) How to overcome overfitting in Local
AdamW?
To address local overfitting (i.e., Challenge 2), we adopt a
stronger weight decay. Unlike Adam, AdamW employs de-
coupled weight decay, which improves generalization, par-
ticularly in federated settings (see Table 6 below). To further
mitigate client drift under non-i.i.d. data, we incorporate a
global update estimate into the local update rule:

xr,k+1
i = xr,k

i − η
(
m̂r,k

i ⊙ ϑr,k
i − λxr,k

i + α∆r
G

)
, (5)

Figure 4: Illustration of FedAdamW’s block-wise aggrega-
tion strategy Clients estimate local second-moment statistics
and send block-wise means to the server, reducing commu-
nication cost.

Figure 5: An illustration of local update in FedAdamW,
which corrects client drift caused through global update
guidance.

where ∆r
G= −1

SKη

∑S
i=1(x

r,K
i −x

r,0
i ) is the estimated global

update. As shown in Figure 5, this alignment reduces the
divergence of local models and improves global consistency.

(Q3) How to initialize second-moment estimates?
We find that initializing the second-moment estimate v with
its aggregated mean v significantly accelerates convergence
(see Table 7 below). In contrast, we reinitialize the first-
moment estimate m to zero at each round. This is because
m adapts quickly to recent gradients and does not require
long-term accumulation to remain effective.

Theoretical Analysis
Convergence Analysis
In this part, we give the convergence theoretical analysis of
our proposed FedAdamW algorithm. Firstly we state some
standard assumptions for the non-convex function f .
Assumption 1 (Smoothness). (Smoothness) The non-
convex fi is a L-smooth function for all i ∈ [m], i.e.,
∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥, for all x,y ∈ Rd.
Assumption 2 (Bounded Stochastic Gradient). gr

i =
∇fi(xr

i , ξ
r
i ) computed by using a sampled mini-batch data

ξri in the local client i is an unbiased estimator of ∇fi with
bounded variance, i.e., Eξri

[gr
i ] = ∇fi(xr

i ) and Eξri
∥gri −

∇fi(xr
i )∥2 ≤ σ2

l , for all xr
i ∈ Rd.



Assumption 3 (Bounded Stochastic Gradient II). Each el-
ement of stochastic gradient gr

i is bounded, i.e., ∥gr
i ∥∞ =

∥fi(xr
i , ξ

r
i )∥∞ ≤ Gg , for all xr

i ∈ Rd and any sampled
mini-batch data ξri .

Assumption 4 (Bounded Heterogeneity). The dissimilar-
ity between local clients is bounded on the gradients, i.e.,
∥∇fi(x)−∇f(x)∥2 ≤ σ2

g , for all x ∈ Rd.

These assumptions are standard in federated adaptive op-
timization literature (Fan et al. 2024; Sun et al. 2023).
Theorem 1 (Convergence for non-convex functions). Under
Assumptions 1, 2, and 3, if we take g0 = 0,β1 = 0, λ = 0
then FedAdamW converges as follows

1

R

R−1∑
r=0

E
[
∥∇f (xr)∥2

]
≲ O

(√
L∆σ2

l

SKRϵ2
+

L∆

R

)
. (6)

Here G0 := 1
N

∑N
i=1

∥∥∇fi (x0
)∥∥2,∆ = f

(
x0
)
− f⋆, S is

the number of participating clients per round, K is the num-
ber of local iterations, and R is the total number of commu-
nication rounds.

The proof is provided in Appendix A. The convergence
rate of FedAdamW is faster than that of Local AdamW and

FedLADA’s O
(√

L∆(σ2
l +σ2

g)

SKRϵ2 + L∆
R

)
, and we do not need

Assumption 4. This is due to the suppression of local drift
by the global update estimation ∆r

G. We have verified this
in Table 5 below.

Generalization Analysis
Theorem 2. Assume the prior hypothesis x0 satisfies
Ppre ∼ N (0, ρI). Then the expected risk for the poste-
rior hypothesis x ∼ P of FedAdamW learned on training
dataset Dtr ∼ D with n samples holds

Eξ∼D,x∼P [f(x, ξ)]− Eξ∈Dtr,x∼P [f(x, ξ)] ≤

√
8√
n

 d∑
i=1

log
2ρb

(
σ

1
2
i + λ

)
η

+
η

2ρb

d∑
i=1

1

σ
1
2
i + λ

+c0


1
2

, with at least probability 1 − τ , where τ ∈ (0, 1) and
c0 = 1

2ρ ∥x∗∥2 − d
2 + 2 ln

(
2n
τ

)
. Here, σi represents the lo-

cal curvature (e.g., Hessian eigenvalue). b is the batch size,
η is the learning rate, λ is a weight decay parameter, n is
the training set size, and d is the parameter dimension.

The proof is provided in Appendix B. Theorem 2 shows
that the generalization error of FedAdamW can be upper
bounded by O(1/

√
n), where n is the number of tatal data,

consistent with classical results from PAC theory, stability,
and uniform convergence (Shalev-Shwartz and Ben-David
2014). We further analyze the impact of the decoupled
weight decay parameter λ on this bound. As λ increases,
the first term

∑d
i=1 log 2ρb(σ

1/2
i + λ)η−1 increases, while

the second term η
2ρb

∑d
i=1(σ

1/2
i +λ)−1 decreases. Although

choosing the optimal λ is challenging in practice, this trade-
off suggests that tuning λ appropriately can lead to a smaller

generalization error, as shown in Table Table 6 below. This
explains why FedAdamW often outperforms Local Adam
(which corresponds to λ = 0).

Experiments
Datasets. We evaluate FedAdamW on both vision and lan-
guage tasks. (i) For image classification, we use CIFAR-
100 (Krizhevsky, Hinton et al. 2009), and Tiny Ima-
geNet (Le and Yang 2015). (ii) For NLP tasks, we adopt
benchmark datasets from the GLUE benchmark, including
SST-2, QQP. To simulate data heterogeneity across clients,
we follow the Dirichlet partitioning scheme (Hsu, Qi, and
Brown 2019), where a Dir-0.6 corresponds to a low hetero-
geneity and Dir-0.1 implies high heterogeneity.

Model Architectures. We explore a variety of model
types: (i) ResNet-18 (He et al. 2016) as a represen-
tative convolutional neural network (CNN), (ii) Swin
Transformer (Liu et al. 2021) and ViT-Tiny (Dosovitskiy
et al. 2020) for Vision Transformers, and (iii) RoBERTa-
Base (Liu et al. 2019) for large-scale language model.

Baselines. We compare our method against state-of-
the-art FL algorithms: FedAvg (McMahan et al. 2017),
SCAFFOLD (Karimireddy et al. 2020), FedCM (Xu et al.
2021), FedAdam (Reddi et al. 2020), FedLADA (Sun et al.
2023), Local Adam and Local AdamW.

Hyperparameter Settings. For FedAvg, SCAFFOLD,
FedCM, FedAdam, the lr is selected from {10−2, 3 ×
10−2, 5 × 10−2, 10−1, 3 × 10−1}, with a weight de-
cay of 0.001. For FedAdamW, FedLADA, Local Adam
and Local AdamW, the lr is selected from {10−4, 3 ×
10−4, 5× 10−4, 8× 10−4, 10−3}, with weight decay 0.01
or 0.001, β1 = 0.9, β2 = 0.999. We apply cosine learn-
ing rate decay, and set FedAdamW to α = 0.5, weight de-
cay λ=0.01. Additional hyperparameter configurations are
detailed in Appendix C. We release all code, configuration
files to ensure full reproducibility. All results are averaged
over 5 runs with std reported.

Questions. Our experiments are designed to answer
the following: Q1. Does Local AdamW outperform
Local SGD when training Transformer models? Q2. Can
FedAdamW effectively address the three challenges identi-
fied for AdamW in FL? Q3. Is FedAdamW generally effec-
tive across both CNNs and Transformers? Q4. Are individ-
ual components of FedAdamW—such as global update cor-
rection, decoupled weight decay, and block-wise v averag-
ing—empirically beneficial? Q5. Do our theoretical findings
(Theorems 1 and 2) align with empirical results?

Results on Convolutional Neural Networks
Training on CIFAR-100 with ResNet-18. Table 1 and
Figure 6 present the test accuracy and training loss on
CIFAR-100 using ResNet-18. FedAdamW achieves the
best performance under both Dir-0.6 and Dir-0.1 settings,
reaching a top accuracy of 66.12% and 63.01%, respec-
tively. It also attains the lowest training loss (0.122 and
0.480), demonstrating faster and more stable convergence.
Compared to other adaptive baselines such as FedAdam,
FedAdamW shows superior generalization under data het-
erogeneity, confirming its effectiveness in CNNs (Q3).



(a) ResNet18, Dir-0.6 (b) ResNet18, Dir-0.1 (c) ViT-Tiny, Dir-0.6 (d) ViT-Tiny, Dir-0.1

Figure 6: Training loss curves on CIFAR-100 using ResNet-18 and ViT-Tiny under Dir-0.1, Dir-0.6.

Method ResNet-18 (Dir-0.6) ResNet-18 (Dir-0.1) ViT-Tiny (Dir-0.6) ViT-Tiny (Dir-0.1) Comm
Test Acc Train Loss Test Acc Train Loss Test Acc Train Loss Test Acc Train Loss

FedAvg 64.08±0.18 0.376 60.25±0.20 0.767 32.36±0.08 2.350 27.14±0.12 2.867 1×
SCAFFOLD 65.01±0.15 0.365 59.37±0.16 0.814 32.17±0.12 2.295 27.31±0.11 2.855 2×
FedCM 48.69±0.10 1.305 44.43±0.08 1.645 26.33±0.06 2.681 23.18±0.15 3.038 1×
Local Adam 60.98±0.28 1.598 58.88±0.20 0.975 38.69±0.16 2.082 29.88±0.08 2.961 1×
FedAdam 63.77±0.13 0.562 61.62±0.16 0.707 28.77±0.12 2.709 23.49±0.15 3.084 1×
FedLADA 65.07±0.18 0.671 59.93±0.21 0.556 37.31±0.16 2.127 35.33±0.16 2.678 2×
Local AdamW 62.84±0.08 0.363 58.97±0.10 0.794 40.47±0.09 1.026 36.86±0.11 1.954 1×
FedAdamW 66.12±0.10 0.122 63.01±0.12 0.480 42.56±0.10 0.401 39.86±0.16 1.251 1×

Table 1: Test accuracy, training loss, and communication cost of each method on CIFAR-100 using ResNet-18 and ViT-Tiny
over 300 communication rounds under Dir-0.6 and Dir-0.1 settings (100 clients, 10% participation, batch size 50, K = 50).

Method CIFAR-100 Tiny ImageNet
Test Acc Train Loss Test Acc Train Loss

FedAvg 80.02±0.28 0.588 80.38±0.22 0.826
SCAFFOLD 81.30±0.18 0.514 82.41±0.18 0.650
FedCM 82.38±0.19 0.565 83.18±0.19 0.522
Local Adam 79.75±0.26 0.534 73.63±0.28 1.045
FedAdam 77.48±0.19 0.651 78.20±0.22 0.834
FedLADA 74.64±0.18 0.598 70.95±0.19 0.944
Local AdamW83.35±0.10 0.381 80.26±0.12 0.686
FedAdamW 85.85±0.08 0.285 85.23±0.10 0.446

Table 2: Comparison of test accuracy and training loss for
Swin Transformer under Dir-0.1 with 100 communication
rounds(100 clients, 5% participation, batch size 16, K=50).

Results on Transformer Models
Training on CIFAR-100 with ViT-Tiny. Table 1 and Fig-
ure 6 show FedAdamW achieves the best performance
across both heterogeneity levels, with test accuracies of
42.56% (Dir-0.6) and 38.25% (Dir-0.1), and the lowest
training loss (0.401 and 1.251), confirming its efficient
convergence (Q5). Compared to Local AdamW, it pro-
vides consistent improvements in both accuracy and stabil-
ity (Q1,Q2, Q3). Moreover, other adaptive baselines such as
FedAdam and FedLADA perform significantly worse under
high heterogeneity, highlighting the effectiveness of global
update correction and decoupled weight decay (Q4). These
results validate that FedAdamW is particularly effective for
federated vision Transformers under non-i.i.d. conditions.

The small dataset CIFAR100 is difficult to support the per-
formance of ViT, resulting in lower accuracy. Therefore, we
continued to test on the pretrained model.
Fine-tuning Results on Swin Transformer. Table 2 reports
results on Swin Transformer under Dir-0.1. FedAdamW
achieves the highest test accuracy on both CIFAR-100
(85.85%) and Tiny ImageNet (85.23%), while also attain-
ing the lowest training loss, reflecting faster convergence and
improved generalization. Compared to other adaptive base-
lines such as FedAdam and FedLADA, FedAdamW con-
sistently outperforms across both datasets, demonstrating its
effectiveness in fine-tuning large Transformer models under
non-i.i.d. conditions.
Fine-tuning Results on LLMs. Table 3 summarizes re-
sults on the GLUE benchmark using RoBERTa-Base with
LoRA, 20 clients, 20% participation, batch size 32, K = 50,
rank=16. FedAdamW achieves the highest average accuracy
of 81.79%, outperforming strong baselines such as FedAvg
(77.68%) and Local AdamW (78.91%). It is particularly
strong on challenging tasks like RTE and QQP, exceeding
the next best methods by +1.50% and +1.74%, respectively.

Ablation Study

Impact of A1, A2, A3. Table 4 summarizes the effect of
removing key components in FedAdamW. We draw the
following observations: • Removing second-moment ag-
gregation (A1) significantly degrades performance, indi-
cating that mean(v) aggregation stabilizes adaptive up-
dates across clients. • Without global gradient alignment
(A2), the local models drift apart, resulting in higher train
loss and lower generalization. • The use of standard (non-



Method (Dir-0.8) CoLA RTE SST-2 QQP MRPC QNLI MNLI Avg Acc.
FedAvg 56.12±0.18 48.72±0.25 93.66±0.10 85.87±0.14 86.00±0.12 90.21±0.09 83.22±0.17 77.68±0.17

SCAFFOLD 57.79±0.21 51.62±0.28 93.15±0.11 84.25±0.15 86.11±0.13 90.32±0.10 83.49±0.18 77.82±0.17

FedCM 56.29±0.16 64.98±0.22 93.25±0.12 83.19±0.17 85.56±0.13 88.13±0.15 78.90±0.19 78.33±0.18

Local Adam 56.08±0.19 62.81±0.23 93.80±0.09 85.07±0.13 84.55±0.14 88.57±0.12 82.62±0.16 79.07±0.15

FedAdam 55.26±0.20 58.12±0.26 93.26±0.10 85.12±0.13 86.11±0.11 89.21±0.09 83.16±0.17 78.32±0.16

FedLADA 50.00±0.24 57.40±0.25 93.57±0.11 85.88±0.14 82.59±0.15 89.76±0.10 82.99±0.16 77.17±0.17

Local AdamW 56.45±0.17 54.15±0.27 93.57±0.09 86.93±0.12 86.27±0.11 90.73±0.08 84.26±0.14 78.91±0.15

FedAdamW (ours) 58.21±0.15 66.48±0.20 94.03±0.08 87.62±0.11 86.76±0.10 90.88±0.07 84.55±0.13 81.79±0.14

Table 3: Test accuracy (%) using RoBERTa-Base with LoRA across seven GLUE tasks over 100 communication rounds.

Variant Test Acc (%) Train Loss
A1: w/o v̄ (no moment agg.) 37.51±0.12 1.504
A2: w/o ∆G (no global align.) 37.42±0.14 1.621
A3: w/o decoupled weight decay 38.25±0.16 1.356
A4: FedAdamW (Full) 39.86±0.16 1.251

Table 4: Ablation study of on CIFAR-100 using ViT-Tiny
(Dir-0.1, 300 rounds).

α (Dir-0.1) 0.00 0.25 0.50 0.75 1.00

Test Acc (%) 36.86 37.93 39.86 37.47 36.25
Train Loss 1.954 1.586 1.251 1.362 1.491

Table 5: Impact of α using ViT-Tiny on CIFAR-100.

decoupled) weight decay (A3) leads to suboptimal regular-
ization, confirming the necessity of decoupled weight decay
for Transformer-based federated training. • The complete
FedAdamW (A4) consistently outperforms all ablated ver-
sions, validating the effectiveness of our joint design.

Impact of α. Table 5 evaluates the effect of the global up-
date alignment parameter α in FedAdamW. As predicted by
our convergence analysis (Theorem 1), incorporating global
update direction helps suppress client drift and accelerates
convergence. We observe that α = 0.5 yields the best per-
formance, striking a balance between local adaptivity and
global consistency, in line with our theoretical insight (Q5).

Impact of weight decay λ. Table 6 shows that decou-
pled weight decay, as used in AdamW and FedAdamW,
consistently improves test accuracy over standard Adam.
FedAdamW generalizes well across all λ values, with λ =
0.01 performing best. This aligns with our PAC-Bayesian
analysis (Theorem 2), where an appropriate λ balances reg-
ularization and curvature for better generalization (Q5).

Impact of Aggregation Strategy. Table 7 shows that
our strategy, Agg-mean-v, achieves the best balance be-
tween accuracy and communication cost. While Agg-v
improves performance by reducing variance, full aggrega-
tion (Agg-vm) introduces excessive communication with
marginal gains. In contrast, Agg-mean-v attains similar
benefits with only O(B) communication, where B is the
number of blocks, demonstrating its scalability and effec-

λ 0.0005 0.001 0.005 0.010 0.020

Local Adam 28.86 29.88 18.65 8.56 4.05
Local AdamW 35.82 36.12 36.54 36.86 36.28
FedAdamW 38.26 39.24 39.55 39.86 38.56

Table 6: Ablation on weight decay λ using ViT-Tiny on
CIFAR-100 (Dir-0.1). FedAdamW consistently outperforms
local baselines across a range of λ values.

Aggregation Strategy Acc Train Loss Comm(↑)
NoAgg 36.86±0.11 1.954 5.7M
Agg-m 37.12±0.13 1.854 11.4M
Agg-v 38.01±0.12 1.652 11.4M
Agg-vm (FullAgg) 38.12±0.12 1.645 17.1M
Agg-mean-v 38.15±0.10 1.601 5.7M

Table 7: Ablation study of moment aggregation strategies of
Local AdamW on CIFAR-100 with ViT-Tiny under Dir-0.1.

tiveness in stabilizing updates.

Conclusion

In this work, we proposed a novel federated optimization al-
gorithm (FedAdamW) for training large-scale Transformer
models. FedAdamW tackles the key challenges of apply-
ing AdamW in federated settings, including high variance in
second-moment estimates, local overfitting under non-i.i.d.
data, and inefficiencies from frequent reinitialization. It in-
tegrates second-moment aggregation, global update correc-
tion, and decoupled weight decay. We provided convergence
analysis under non-convex and use the PAC Bayesian the-
ory to support its generalization benefits. Extensive experi-
ments on vision and language tasks verified that FedAdamW
consistently outperforms strong FL baselines, especially on
Transformer architectures, demonstrating its practical and
theoretical strengths. We believe FedAdamW opens a new
direction for adapting modern optimizers to FL such as
LAMB (Chen et al. 2023) or Lion (Chen et al. 2023).
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