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Abstract

Uplift modeling has obtained significant attention, with broad
applications in medicine, economics, and marketing. For ex-
ample, in a push notification scenario, accurately estimating
the uplift of different push frequencies on user activation and
notification switch close rate is critical for balancing user ex-
perience and business goals. Existing methods only use bi-
nary labels, i.e., convert or not within the observational win-
dow. However, they ignore time information (e.g., users who
convert on day 1 vs. day 14 reflect different sensitivities) and
fail to model potential closures outside the window, i.e., due
to treatments always taking time to manifest causal impacts
on outcomes, the potential outcomes of interest cannot be ob-
served promptly and accurately. Failing to account for these
issues can result in skewed uplift modeling. To address this
gap, this work examines how observation timing influences
the assessment of uplift by explicitly modeling the poten-
tial response time. Theoretical analysis establishes the con-
ditions for identifiability under delayed feedback scenarios.
We introduce CFR-DF (Counterfactual Regression with De-
layed Feedback), a systematic framework that jointly learns
both the latent response times and the underlying potential
outcomes. Empirical evaluations on synthetic and real-world
datasets, including an A/B test with over 1 billion users for 14
days, validate the approach, demonstrating its ability to han-
dle temporal delays and improve estimation accuracy com-
pared to previous uplift modeling methods.

Introduction
Uplift modeling using observational data is a fundamental
problem that applies to a wide variety of areas (Alaa and
Van Der Schaar 2017; Alaa, Weisz, and Van Der Schaar
2017; Hannart et al. 2016). For example, in a push notifica-
tions scenario, inappropriate push frequencies often trigger
users to close notification switches, directly harming long-
term user retention. Modeling the uplift of different push
frequencies on user closure and activation behavior is there-
fore essential for personalized push strategies. Unlike using
observed outcomes, Uplift modeling accounts for the differ-
ence between factual outcomes and counterfactual outcomes
when making decisions. The challenge lies in accurately es-
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timating uplift due to unobserved counterfactual outcomes
with alternative treatment (Holland 1986).

Many methods have been proposed to estimate uplift from
observational data. For instance, representation learning-
based approaches learn a covariate representation that is in-
dependent of the treatment to overcome the covariate shift
between the treatment and control groups (Johansson, Shalit,
and Sontag 2016; Shalit, Johansson, and Sontag 2017; Shi,
Blei, and Veitch 2019; Yao et al. 2018). The tree-based ap-
proach includes Bayesian inference and random forest meth-
ods for nonparametric estimation (Chipman, George, and
McCulloch 2010; Wager and Athey 2018). The generative
model-based approaches use the widely adopted variational
autoencoder and generative adversarial network to gener-
ate individual counterfactual outcomes (Louizos et al. 2017;
Yoon, Jordon, and Van Der Schaar 2018).

Existing methods ignore time information (e.g., users who
convert on day 1 vs. day 14 reflect different sensitivities) and
failure to model potential closures outside the window, i.e.,
due to treatments always taking time to manifest causal im-
pacts on outcomes, the potential outcomes of interest can-
not be observed promptly and accurately (Chapelle 2014;
Yoshikawa and Imai 2018). Failing to account for these is-
sues can pose a critical challenge in practice: as in Fig-
ure 1(a), if the observation window is too short, some sam-
ples will be incorrectly marked as negative whose conver-
sion will occur in the future. Ignoring such delays in out-
come response can lead to biased estimates of uplift. In addi-
tion, though Jaroszewicz and Rzepakowski (2014) proposes
to consider delay in uplift modeling, they do not discuss the
identifiability and learning algorithm for deep learning.

In this paper, we first formalize the uplift modeling prob-
lem in the presence of delayed feedback. In addition to only
considering the uplift of treatment on outcome, we also con-
sider different potential response times with different treat-
ments, since treatment may affect response time, e.g., users
who receive more pushed notifications close more quickly.
Therefore, as in Figure 1(a), given the treatment w for an
individual, even the eventual outcome of interest Y (w) is
positive, e.g., the user will eventually close the notifica-
tion switch, we can only observe the positive conversion
Ỹ (w) = 1 when the potential response time is less than
the observation time (D(w) ≤ T ), while observing the
false negative outcome Ỹ (w) = 0 vise versa. Instead, when
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Figure 1: Illustrations for false negative (left) and data format (right) under delayed feedback.

the eventual outcome Y (w) is negative, e.g., the user never
closes the notification switch, then we observe the negative
outcome (Ỹ (w) = 0) regardless of the observation time.
Figure 1(b) illustrates the format of the observed data with
an additional challenge compared to the traditional scenario,
that is, we could not obtain the exact value of the response
time and the true label if the positive feedback did not occur
before the observation time.

To address the above issues, we study the impact of obser-
vation time on uplift modeling. Theoretically, we prove that
the eventual potential outcomes are identifiable in the whole
population, which is essential for treatment allocation. For
subgroups in which individuals always have positive even-
tual outcomes regardless of treatment, we also show the
identifiability of potential response times. Furthermore, we
propose a principled learning approach that extends coun-
terfactual regression to delayed feedback outcomes, named
CFR-DF, to simultaneously predict potential outcomes and
potential response times. Finally, we validate the proposed
method on both synthetic and real-world datasets. The main
contributions are summarized below:

• We formalize the uplift modeling problem with delayed
feedback, in which treatment takes time to produce an
uplift on the outcome.

• We theoretically prove the eventual potential outcome is
identifiable, and also show the identifiability of potential
response times on the Sure Things stratum.

• We propose a principled learning algorithm, called CFR-
DF, that utilizes the EM algorithm to estimate both even-
tual potential outcomes and potential response times.

• We perform extensive experiments on both synthetic and
real-world datasets, including an A/B test with over 1 bil-
lion users, to show the effectiveness of our approach.

Related Work
In recent years, estimating treatment effects for uplift model
has gained widespread attention. Early research focuses
on discrete modeling, ranging from tree-based (Chipman,
George, and McCulloch 2010; Wager and Athey 2018) and
propensity methods (Rosenbaum and Rubin 1983; Li et al.
2023b,a, 2024b) to deep learning (Johansson, Shalit, and
Sontag 2016; Shalit, Johansson, and Sontag 2017; Yao et al.
2018; Shi, Blei, and Veitch 2019; Zhou et al. 2025b; Zheng

et al. 2025) and generative counterfactual synthesis (Louizos
et al. 2017; Yoon, Jordon, and Van Der Schaar 2018; Wang
et al. 2024; Zhou et al. 2025a; Wu et al. 2025). Continuous
treatment estimation has also advanced through discretiza-
tion and curve continuity modeling (Schwab et al. 2020;
Bica, Jordon, and van der Schaar 2020; Nie et al. 2021;
Li et al. 2024a; Zhang et al. 2025a). Based on this, recent
methods integrate semi-supervised learning (Kügelgen et al.
2020; Huang et al. 2022; Miao et al. 2023; Yang et al. 2022),
active learning (Jesson et al. 2021; Piskorz et al. 2025;
Zhang et al. 2025b), and multi-task frameworks (Mondal,
Majumder, and Chaoji 2022; Liu et al. 2023, 2022; Huang
et al. 2024; Sun and Chen 2024; Liu et al. 2025) to address
complex scenarios. Uplift modeling applies these methods
for intervention optimization (Zhao and Harinen 2019; Ai
et al. 2022; Fernández-Lorı́a and Provost 2022; Li et al.
2023c; Sun et al. 2023; Chen et al. 2024; Huang et al. 2024).
However, existing methods typically assume immediate ob-
servation. To bridge this gap, we simultaneously model the
outcomes and response times to distinguish true negatives
from delayed positives.

Uplift Modeling with Delayed Feedback
Notation and Setup
In this paper, we first focus on the binary treatment (the
results can be easily generalized to multi-value treatment,
which will be discussed later). Suppose we have n units,
for each unit i, the covariate and the assigned treatment
are denoted as Xi ∈ X ⊂ Rm and Wi ∈ W = {0, 1},
where Wi = 1 means receiving the treatment and Wi = 0
means not receiving the treatment, respectively. Compared
to the previous uplift modeling methods, we consider the
response time from the imposing treatment to producing
an influence on the outcome. Specifically, under the poten-
tial outcome framework (Rubin 1974; Neyman 1990), let
Yi(w) ∈ Y = {0, 1} be the binary outcome at the even-
tual time with treatment w, e.g., whether a user will even-
tually close, as the primary outcome of interest, and we call
unit with Yi(w) = 1 as a positive sample. Without loss of
generality, the time at which the treatment Wi is imposed
on unit i is taken as the start time. Let Di(w) be the re-
sponse time for individuals with Yi(w) = 1 to produce pos-
itive feedback, and we set Di(w) = ∞ for individuals with
Yi(w) = 0. Given an observation time Ti, we see a positive



feedback at Ti, denoted as Ỹ T
i (w) = 1, if and only if indi-

vidual i is a positive sample Yi(w) = 1 with the response
time Di(w) ≤ Ti, and marked as true positive. However,
we would see false negative feedback Ỹ T

i (w) = 0 at the
observation time Ti, when the response time is greater than
the observation time, i.e., Di(w) > Ti with Yi(w) = 1, and
marked as false negative. For samples that never yield pos-
itive outcomes, we observe negative feedback Ỹ T

i (w) = 0
for all observation times Ti, and marked as true negative.
Since each unit can be only assigned with one treatment,
we always observe the corresponding outcome to be either
Ỹ T
i (0), Di(0) or Ỹ T

i (1), Di(1), but not both, which is the
fundamental problem of causal inference (Holland 1986;
Morgan and Winship 2015).

Parameters of Interest
We consider two meaningful parameters of interest. For sim-
plification, we drop the subscript i hereafter. First, unlike
previous studies that focused on the uplift of treatment
on current observed outcomes, i.e., τT (x) = E[Ỹ T (1) −
Ỹ T (0) | X = x], we focused on the uplift on the eventual
outcomes, i.e., τ(x) = E[Y (1)− Y (0) | X = x]. The latter
poses two challenges: first, the confounding bias introduced
by covariates, which is similar to previous studies; second,
how to recover the eventual outcome Y of interest from the
observed outcome Ỹ T at time T .

Next, we show that individuals can be divided into
four strata by considering the joint potential outcomes
(Y (0), Y (1)), as shown in Table 1. From a policy learn-
ing perspective, it is clear that treatment should be given to
Persuadables and not given to Do-Not-Disturbers strata, re-
spectively. For individuals in the Lost Causes stratum, either
of the treatments is reasonable because the results show no
difference. When considering individuals in the Sure Things
stratum, despite having both Y (0) = 1 and Y (1) = 1 for
the eventual outcomes, it is meaningful to study the uplift
modeling of the treatment on the response times. Formally,
the causal estimand of interest is E[D(1) −D(0) | Y (0) =
1, Y (1) = 1, X = x]. For the other three strata, since there
exists a treatment w such that Y (w) = 0, the corresponding
response time can be regarded as D(w) = ∞, resulting in
uplift of treatment on response time being ill-defined.

We summarize the causal estimand of interest as follows.

• Uplift on the eventual outcome: τ(x) = E[Y (1)−Y (0) |
X = x];

• Uplift on the response time: τD(x) = E[D(1) −D(0) |
Y (0) = 1, Y (1) = 1, X = x].

Identifiability Results
We then discuss the identifiability of the causal parameters
of interest. Besides some widely used assumptions, such as
positivity, consistency, and SUTVA, we adopt the following
common assumptions in uplift modeling.

Assumption 1 (Unconfoundedness)

W ⊥⊥ (D(0), D(1), Ỹ t(0), Ỹ t(1)) | X for all t > 0.

Assumption 2 (Time Independence)

T ⊥⊥ (D(0), D(1), Ỹ t(0), Ỹ t(1),W ) | X for all t > 0.

Assumption 3 (Time Sufficiency) inf{d : F
(w)
D (d |

Y (w) = 1, X) = 1} < inf{t : FT (t) = 1} for w = 0, 1,
where F (·) is the cumulative distribution function (cdf).

Assumption 4 (Monotonicity) Y (0) ≤ Y (1).

Assumption 5 (Principal Ignorability) (W,Y (w)) ⊥⊥
D(1− w) | Y (1− w), X for w = 0, 1.

Among them, unconfoundedness is also known as the no
unmeasured confounders assumption, which means all vari-
ables that affect both treatment and potential outcomes are
included in X . Time independence holds since the observa-
tion occurs after the treatment, and the observation does not
affect the potential response times D(w) and the potential
outcomes Ỹ t(w) at a given time t > 0 for w = 0, 1. Time
Sufficiency means that we need a subset of individuals (not
all) with observed outcomes Ỹ = 1 to identify eventual po-
tential outcomes, which is a necessary condition for studying
survival analysis. The monotonicity assumption is plausible
in many applications when the effect of the decision on the
outcome is non-negative for all individuals, e.g., the more
push notifications are sent, the quicker the user closes the no-
tification switch. Principal Ignorability requires that the ex-
pectations of the potential outcomes do not vary across prin-
cipal strata conditional on the covariates. It is widely used in
applied statistics (Imai and Jiang 2023; Ben-Michael, Imai,
and Jiang 2024).

We next provide the identifiability results of three causal
parameters1.

Theorem 1 Under Assumptions 1-3, the uplift on the even-
tual outcome τ(x) is identifiable.

In addition, with monotonicity assumption and principal ig-
norability assumption, we can identify the uplift on potential
response times in the Sure Things stratum τD(x).

Theorem 2 Under Assumptions 1-5, we can identify the up-
lift on the response time in the Sure Things stratum τD(x) =
E[D(1)−D(0) | Y (0) = 1, Y (1) = 1, X = x].

Note that though assigning treatment on Sure Things stra-
tum has no effect on τ(x), if τD(x) is large, it may still be a
desirable treatment assignment. For example, even if a cus-
tomer will buy this commodity, an advertisement may make
customers purchase more quickly, enabling merchants to re-
cover costs.

CFR-DF: Counterfactual Regression with
Delayed Feedback

In this section, we propose a principled learning approach to
perform CounterFactual Regression with Delayed Feedback
on outcomes, named CFR-DF. Specifically, CFR-DF con-
sists of two sets of models to predict the eventual potential
outcomes, i.e., P(Y (0) = 1 | X = x) and P(Y (1) = 1 |
X = x) and the potential response times, i.e., P(D(0) = d |

1All proofs can be found in the Appendix in arXiv version.



Group Y (0) Y (1) D(0) D(1) Preferred treatment

Sure Things 1 1 ✓ ✓ Depends on τD(x)
Persuadables 0 1 ∞ ✓ Treatment (W = 1)

Do-Not-Disturbers 1 0 ✓ ∞ Control (W = 0)
Lost Causes 0 0 ∞ ∞ Either (W = 0 or 1)

Table 1: The units are divided into four strata based on the joint potential outcomes (Y (0), Y (1)).

X = x, Y (0) = 1) and P(D(1) = d | X = x, Y (1) = 1),
respectively, the former of which can be flexibly exploited
from previous uplift modeling methods in the following
framework, and we take the widely used counterfactual re-
gression (CFR) (Shalit, Johansson, and Sontag 2017) for il-
lustration purpose.

Recall that in Figure 1(b), we show two possible observed
data formats. On the one hand, the probability of observing
positive feedback Ỹ T = 1 with response time D = d at time
T = t > d:

p(Ỹ T = 1, D = d | X = x,W = w, T = t)

= p(Y = 1, D = d | X = x,W = w)

= P(Y (w) = 1 | X = x,W = w)

· p(D(w) = d | X = x,W = w, Y (w) = 1)

= P(Y (w) = 1 | X = x)p(D(w) = d | X = x, Y (w) = 1),

where the first equality follows from time independence, the
second equality follows from the consistency assumption,
and the last equality follows from the unconfoundedness as-
sumption. To avoid misleading, we use p(·) to represent den-
sity, and P(·) to represent probability.

On the other hand, by the law of total probabilities, and
again using the conditional independence of observation
time, the probability of not having observed positive feed-
back at time T = t > d is:

P(Ỹ T = 0 | X = x,W = w, T = t)

=P(Y = 0 | X = x,W = w)P(Ỹ t = 0 | X = x,W = w, Y = 0)

+P(Y = 1 | X = x,W = w)P(Ỹ t = 0 | X = x,W = w, Y = 1),

where P(Y = 0 | X = x,W = w) is equivalent to
P(Y (w) = 0 | X = x) by unconfoundedness assumption,
with similar result holds for P(Y = 1 | X = x,W = w). In
addition, we have P(Ỹ t = 0 | X = x,W = w, Y = 0) = 1,
due to eventual outcome Y = 0 implies Ỹ t = 0 for all t > 0.
By noting the equivalence between (Ỹ t(w) = 0, Y (w) = 1)
and (D(w) > t, Y (w) = 1):

P(Ỹ t = 0 | X = x,W = w, Y = 1)

= P(D(w) > t | X = x, Y (w) = 1)

=

∫ ∞

t

p(D(w) = u | X = x, Y (w) = 1)du.

With the above results, we have the probability of Ỹ T = 0

at time T = t is:

P(Ỹ T = 0 | X = x,W = w, T = t)

= P(Y (w) = 0 | X = x)

+ P(Y (w) = 1 | X = x)

·
∫ ∞

t

p(D(w) = u | X = x, Y (w) = 1)du,

which can be represented by two sets of models in CFR-DF.
Then we introduce the representation learning model

structure to learn P(Y (w) = 1 | X = x) and p(D(w) =
d | X = x, Y (w) = 1). Let hY (ΦY (x), w) be the predic-
tion model for the eventual potential outcomes P(Y (w) =
1 | X = x), and hD(ΦD(x), w, d) be the prediction model
for the potential response times p(D(w) = d | X =
x, Y (w) = 1), where ΦY : X → RY and ΦD : X → RD

are the covariate representations, RY and RD are the rep-
resentation spaces, and hY : RY × {0, 1} → Y and
hD : RD × {0, 1} × R+ → R+ are the prediction heads,
respectively. We take the Integral Probability Metric (IPM)
distance induced by the representations as a penalty term,
to control the generalization error caused by covariate shift
between the treatment and control groups.

We train the eventual potential outcome model by min-
imizing the derived negative log-likelihood with the IPM
distance. Denote pi := P(Yi(wi) = 1 | X = xi,W =

wi, Ỹ
T = yti), we have

ℓ(hY ,ΦY | p1, . . . , pn) =−
∑
i

pi log h
Y (ΦY (xi), wi)

−
∑
i

(1− pi) log(1− hY (ΦY (xi), wi))

+ αY · IPMGY ({ΦY (xi)}i:wi=0, {ΦY (xi)}i:wi=1),

where GY is a family of functions gY : RY → Y ,
and αY is a hyper-parameter. For two probability density
functions p, q defined over S ⊆ Rd, and for a function
family G of functions g : S → R, the IPM distance
is IPMG(p, q) := supg∈G

∣∣∫
S g(s)(p(s)− q(s))ds

∣∣. Simi-
larly, we train the potential response time model by:

ℓ(hD,ΦD | p1, . . . , pn) =
∑

i:ỹt
i=1

log hD(ΦD(xi), wi, di)

+
∑

i:ỹt
i=0

pi log

∫ ∞

ti

hD(ΦD(xi), wi, u)du

+ αD · IPMGD ({ΦD(xi)}i:wi=0, {ΦD(xi)}i:wi=1),
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Figure 2: Overview of CFR-DF Architecture. For the representation block, we use multi-layer neural networks Φ with ELU
activation function to learn representation and each network has two/three layers with mX units, respectively. Then, we use a
single-layer network hY with Sigmoid activation to achieve P̂ (Y = 1) and a single-layer network hD with SoftPlus sigmoid
activation to achieve λ̂.

with GD and αD defined similarly. We summarize the
algorithm, including the detailed backbone and hyper-
parameters choices, in the Appendix in our arXiv version.
Implementation of CFR-DF. We now show the empiri-
cal computation details for computing the integration, i.e.,
P(D(w) > t | X = x, Y (w) = 1). We first intro-
duce the parametric model method. For example, one can
assume that the potential delayed feedback times obey ex-
ponential models for both treatment and control groups.
Specifically, let P(D(w) = u | X = x, Y (w) =
1) = λw(x) exp (−λw(x)u) for w = 0, 1, we have∫∞
t

P(D(w) = u | X = x, Y (w) = 1)du =∫∞
t

λw(x) exp (−λw(x)u) du = exp (−λw(x)t). In addi-
tion, the estimation of potential delayed feedback times can
be further extended to a nonparametric model, which can be
found in our arXiv version.
Scalability to Non-Binary Treatments. Our work can be
naturally extended to non-binary treatments with the iden-
tifiability results of true uplift modeling in all strata, i.e.,
E[Y (w) | X = x] for all w ∈ W . By defining delayed
feedback time D(w) for all w ∈ W similarly and following
a similar argument of our identifiability proof, and substitute
Y (0) and Y (1) to Y (w) for all w ∈ W , the true uplift mod-
eling E[Y (w) | X = x] for all w ∈ W can be identified sim-
ilarly. Moreover, in the proposed time-to-event-based up-
lift modeling problem setup with delayed feedback, the out-
come of interest has to be binary to ensure well-definedness.
To verify the scalability to non-binary treatments, we con-
duct an online A/B test over 1 billion users with 13 possible
treatments. See the experiment part for a detailed discussion.

Experiments
Baselines and Evaluation Protocols
We evaluate our framework CFR-DF, and its variant with-
out balancing regularization (TAR-DF), in the task of (i) es-
timating uplift modeling on the eventual outcome and (ii)

estimating uplift modeling on the response time in the Sure
Things stratum. We compare our method with the follow-
ing methods: T-learner (Künzel et al. 2019), representation-
based algorithms including CFR (Shalit, Johansson, and
Sontag 2017), SITE (Yao et al. 2018), Dragonnet (Shi,
Blei, and Veitch 2019), CFR-ISW (Hassanpour and Greiner
2019), DR-CFR (Hassanpour and Greiner 2020) and DER-
CFR (Wu et al. 2022), and generative algorithms CE-
VAE (Louizos et al. 2017) and GANITE (Yoon, Jordon,
and Van Der Schaar 2018). Following the previous stud-
ies (Shalit, Johansson, and Sontag 2017; Yao et al. 2018; Wu
et al. 2022), we evaluate the performance of uplift modeling
using the following two metrics:

ϵPEHE =
1

N

N∑
i=1

((ŷi(1)− ŷi(0))− (yi(1)− yi(0)))
2,

ϵATE =| 1
N

N∑
i=1

(ŷi(1)− ŷi(0)− (yi(1)− yi(0)))|,

where ŷi and yi are predicted and true outcomes. The code
is at https://github.com/ChunyuanZheng/delay.

Datasets
Synthetic Datasets. Since the true potential outcomes are
rarely available for real-world, we conduct simulation stud-
ies using synthetic datasets as follows. The observed covari-
ates are generated from X ∼ N (0, ImX

), where ImX
de-

notes mX -degree identity matrix. The observed treatment
W ∼ Bern(π(X)), where π(X) = P(W = 1 | X) =
σ(θW · X), θW ∼ U(−1, 1), and σ(·) denotes the sigmoid
function. For the eventual potential outcomes, we gener-
ate the control outcome Y (0) ∼ Bern(σ(θY 0 · X2 + 1)),
and the treated outcome Y (1) ∼ Bern(σ(θY 1 · X2 + 2)),
where θY 0, θY 1 ∼ U(−1, 1). In addition, we generate the
potential response time D(0) ∼ Exp(exp(θD0 ·X)−1), and
D(1) ∼ Exp(exp(θD1 · X − bD)−1), where θD0, θD1 ∼
U(−0.1, 0.1), and bD controls the heterogeneity of response
time functions. The observation time is generated via T ∼



Toy (bD = 0) Toy (bD = 0.5) Toy (bD = 1)
Method ϵPEHE ϵATE ϵPEHE ϵATE ϵPEHE ϵATE

T-learner 0.535 ± 0.041 0.069 ± 0.024 0.514 ± 0.036 0.028 ± 0.017 0.523 ± 0.028 0.109 ± 0.017
CFR 0.536 ± 0.042 0.071 ± 0.025 0.517 ± 0.037 0.025 ± 0.016 0.523 ± 0.028 0.108 ± 0.016
SITE 0.630 ± 0.058 0.023 ± 0.041 0.646 ± 0.077 0.026 ± 0.020 0.654 ± 0.039 0.128 ± 0.045

Dragonnet 0.612 ± 0.080 0.101 ± 0.055 0.499 ± 0.023 0.028 ± 0.024 0.504 ± 0.018 0.095 ± 0.032
CFR-ISW 0.552 ± 0.057 0.064 ± 0.040 0.602 ± 0.084 0.034 ± 0.024 0.590 ± 0.081 0.122 ± 0.023
DR-CFR 0.539 ± 0.030 0.071 ± 0.032 0.521 ± 0.044 0.032 ± 0.026 0.524 ± 0.038 0.107 ± 0.035

DER-CFR 0.548 ± 0.051 0.051 ± 0.029 0.540 ± 0.037 0.066 ± 0.043 0.568 ± 0.034 0.162 ± 0.032
CEVAE 0.661 ± 0.077 0.123 ± 0.039 0.661 ± 0.077 0.122 ± 0.039 0.661 ± 0.077 0.122 ± 0.039

GANITE 0.672 ± 0.074 0.173 ± 0.037 0.662 ± 0.075 0.147 ± 0.036 0.655 ± 0.076 0.122 ± 0.035

TAR-DF 0.416 ± 0.019 0.021 ± 0.008 0.432 ± 0.013 0.017 ± 0.014 0.407 ± 0.016 0.013 ± 0.007
CFR-DF 0.409 ± 0.018 0.019 ± 0.008 0.404 ± 0.014 0.013 ± 0.009 0.395 ± 0.013 0.011 ± 0.009

Table 2: Performance comparison (MSE ± std) on synthetic datasets with varying bD.

Exp(λ), where λ is the rate parameter of the exponential
distribution, and we set λ = 1 in our experiments, i.e., the
average observation time is T̄ = λ−1 = 1. Finally, the ob-
served outcome is Ỹ T (W ) = W ·Y (1)·I(T ≥ D(1))+(1−
W )·Y (0)·I(T ≥ D(0)), where I(·) is the indicator function.
Based on the data generation process described above, we
sample N = 20, 000 samples for training and 3, 000 sam-
ples for testing. We repeat each experiment 10 times to re-
port the mean and standard deviation of the results (ϵPEHE

and ϵATE). Moreover, we vary the heterogeneity of response
times by setting bD ∈ {0, 0.5, 1}, named the dataset as Toy
(bD = 0), Toy (bD = 0.5), and Toy (bD = 1).
Real-World Datasets. We also evaluate our CFR-DF on
three widely-adopted real-world datasets: AIDS (Hammer
et al. 1997; Norcliffe et al. 2023), Jobs (LaLonde 1986;
Shalit, Johansson, and Sontag 2017), and Twins (Almond,
Chay, and Lee 2005; Wu et al. 2022). The AIDS dataset
contains 1,156 patients in 33 AIDS clinical trial units and
7 National Hemophilia Foundation sites in the United States
and Puerto Rico. The Jobs dataset is built upon randomized
controlled trials and aims to assess the effects of job train-
ing programs on employment status. The Twins dataset is
derived from all twins born in the USA between the years
1989 and 1991, and is utilized to assess the influence of
birth weight on mortality within one year. For all three
datasets, we use the observed covariate X , and following the
same procedure for generating synthetic datasets, we gener-
ate treatment W , potential outcomes Y (0) and Y (1), poten-
tial response times D(0) and D(1), observation time T and
factual outcomes Ỹ T (W ). Then we randomly split the sam-
ples into training/test with an 8/2 ratio, with 10 repetitions.

Furthermore, we conduct an online A/B test on a real-
world recommendation platform with 1 billion users for 14
days with 13 possible treatments from 0 to 12, represent-
ing the push notification number. In addition, due to we col-
lect RCT data, therefore we use an X-net structure based on
the DESCN (Zhong et al. 2022). using the proposed method
as the experimental group and the baseline DESCN without
considering delayed feedback as the control group to vali-
date the effectiveness of the proposed method.

PE
H
E

0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30

Average Observation Time 𝑇"
0.5 1.0 5.0 10.0 20.0 50.0

(a) Toy (bD = 0).

PE
H
E

0.60
0.55
0.50
0.45
0.40
0.35
0.30

Average Observation Time 𝑇"
0.5 1.0 5.0 10.0 20.0 50.0

(b) Toy (bD = 1).

Figure 3: Effects of varying average observation time on
synthetic datasets with varying bD.

Performance Comparison. We compare our method with
the baselines for estimating the uplift in Table 2. The optimal
and second-optimal performance are bold and underlined.
First, the proposed CFR-DF stably outperforms the base-
lines, as the previous methods do not take into account the
delayed feedback, leading to biased estimates of uplift mod-
eling. Second, the TAR-DF method without using balancing
regularization slightly degrades the performance compared
to CFR-DF, due to the inability to resolve the confounding
bias from covariate shift. These results highlight the scala-
bility of our method to varying levels of observation times,
showing its potential for real-world applications.
Ablation Studies. Figure 3 compares the proposed CFR-
DF and its ablated versions for estimating uplift on the even-
tual outcome with varying average observation time, where
TAR-DF does not perform balancing regularization, CFR
does not consider delayed feedback, and neither is consid-
ered for T-learner. We have the following findings. The pro-
posed CFR-DF and TAR-DF have significantly better per-
formance when the observation time is shorter, due to their
effective adjustment for delayed feedback. When increasing
the average observation time leads to more delayed feed-
back being observed, we find improved performance for all
four methods. When the observation time reaches 50, mean-
ing almost all delayed feedbacks have been observed, our



AIDS Jobs Twins
Method ϵPEHE ϵATE ϵPEHE ϵATE ϵPEHE ϵATE

T-learner 0.525 ± 0.052 0.091 ± 0.064 0.528 ± 0.043 0.085 ± 0.041 0.390 ± 0.071 0.050 ± 0.029
CFR 0.531 ± 0.046 0.083 ± 0.058 0.510 ± 0.035 0.064 ± 0.039 0.378 ± 0.057 0.029 ± 0.018
SITE 0.601 ± 0.031 0.082 ± 0.056 0.568 ± 0.045 0.064 ± 0.053 0.495 ± 0.087 0.139 ± 0.053

Dragonnet 0.546 ± 0.051 0.105 ± 0.042 0.555 ± 0.060 0.084 ± 0.060 0.440 ± 0.103 0.096 ± 0.067
CFR-ISW 0.592 ± 0.053 0.098 ± 0.032 0.499 ± 0.035 0.058 ± 0.056 0.392 ± 0.048 0.039 ± 0.023
DR-CFR 0.577 ± 0.056 0.078 ± 0.044 0.525 ± 0.077 0.079 ± 0.060 0.390 ± 0.046 0.039 ± 0.027

DER-CFR 0.609 ± 0.076 0.081 ± 0.074 0.503 ± 0.037 0.072 ± 0.043 0.398 ± 0.068 0.080 ± 0.066
CEVAE 0.623 ± 0.042 0.143 ± 0.019 0.638 ± 0.062 0.102 ± 0.058 0.526 ± 0.055 0.139 ± 0.027

GANITE 0.605 ± 0.034 0.136 ± 0.020 0.629 ± 0.053 0.151 ± 0.067 0.509 ± 0.056 0.139 ± 0.040

TAR-DF 0.521 ± 0.042 0.077 ± 0.030 0.453 ± 0.066 0.058 ± 0.030 0.366 ± 0.027 0.030 ± 0.018
CFR-DF 0.499 ± 0.055 0.073 ± 0.031 0.438 ± 0.059 0.051 ± 0.031 0.357 ± 0.017 0.027 ± 0.015

Table 3: Performance comparison (MSE ± SD) on AIDS, Jobs, and Twins datasets.

Non-Mono Non-Unconf

Method ϵPEHE ϵATE ϵPEHE ϵATE

DragonNet 0.511 0.153 0.552 0.149
Surv Meta-Learner 0.540 0.017 0.516 0.103
Surv Uplift 0.536 0.015 0.498 0.073
Surv Causal Forest 0.495 0.023 0.465 0.036

CFR-DF 0.461* 0.002* 0.437* 0.028*

Table 4: Performance comparison (ϵPEHE and ϵATE) under
Non Monotonicity and Non unconfoundedness settings.

Metrics Day3 Day7 Day14

TAU% ↑ +0.017 ± 0.011 +0.019 ± 0.011 +0.017 ± 0.012
CAU% ↑ +0.015 ± 0.007 +0.016 ± 0.007 +0.018 ± 0.007
TCU% ↓ -0.002 ± 0.720 -0.333 ± 0.756 -0.600 ± 0.741
CCU% ↓ -0.152 ± 0.400 -0.255 ± 0.314 -0.259 ± 0.239

Table 5: Results of the Online A/B Test. Metrics with an up-
ward arrow indicate that higher values are preferable. Com-
pared to the baseline, we report the results as average dif-
ference ± confidence interval width with p-value 0.05.

method performs similarly to the CFR. Further experiments
on the performance of our methods in estimating uplift on
the response times can be found in arXiv version.
Real-World Experiments. We conduct real-world experi-
ments using AIDS, Jobs, and Twins datasets. Notably, treat-
ing AIDS requires long-term observation, job training takes
time to cause changes in incomes, and infants also take
time to observe their mortality outcomes (and thus study
the effect on mortality), therefore it is reasonable to study
the delayed feedback in such real-world applications. Table
3 demonstrates that CFR-DF outperforms all baselines on
these real-world datasets, showcasing its effectiveness.
Robustness on Assumption Violation. We further inves-
tigate the robustness of CFR-DF when the strict assump-

tions of Monotonicity and Unconfoundedness are relaxed.
Specifically, to simulate these violations, we conducted ad-
ditional experiments by setting E[Y (1)] = E[Y (0)] in
the data generation process and randomly masking 20%
of the covariates during training. We compare our method
against uplift modeling and causal survival analysis base-
lines: DragonNet (Shi, Blei, and Veitch 2019), Survival
Meta-Learner (Xu et al. 2023), Survival Uplift (Jaroszewicz
and Rzepakowski 2014), and Survival Causal Forest (Cui
et al. 2023). The results are reported in Table 4, where *
indicates p-value < 0.05. It is observed that CFR-DF con-
sistently yields the lowest ϵPEHE and ϵATE errors compared
to all baselines. This shows that our joint modeling strategy
for outcomes and response times offers significant robust-
ness against assumption violations.
Online A/B Test. Table 5 shows online A/B test results
on a Douyin real-world platform, comparing our proposed
method against the baseline without considering delayed
feedback, using DESCN (Zhong et al. 2022) as the back-
bone. We evaluate performance with four metrics: Today ac-
tive user (TAU), Today close user (TCU), Cumulated active
user (CAU), and Cumulated close user (CCU). Overall, our
method increases active users by 0.0176% and reduces close
users by 0.259%, demonstrating its effectiveness in a non-
binary treatment industry scenario. Moreover, these results
also show that our method is backbone agnostic.

Conclusion
This paper studies the uplift modeling problem by further
considering the response time needed for a treatment to pro-
duce a uplift on the outcome. Specifically, we propose a
principled learning algorithm, called CFR-DF, to estimate
both eventual potential outcomes and potential response
times. Considering the widespread of delayed feedback out-
comes, we believe such a study is meaningful for real-world
applications, as it has already been proven effective in the
Douyin dataset with over 1B users. A shortcoming of our
study is the validity of the assumptions in practice, e.g., we
need enough observation time to identify uplift modeling on
the eventual potential outcome.
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