

000 001 002 003 004 005 DNT: A DEEPLY NORMALIZED TRANSFORMER 006 THAT CAN BE TRAINED BY MOMENTUM SGD 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Transformers have become the de facto backbone of modern deep learning, yet their training typically demands an advanced optimizer with adaptive learning rate like AdamW, rather than a momentum SGD (mSGDW). Previous works show that it is mainly due to a heavy-tailed distribution of the gradients. In this paper, we introduce a Deeply Normalized Transformer (DNT), that is meticulously engineered to overcome the heavy-tailed gradients issue, enabling seamless training with vanilla mSGDW while yielding comparable performance to the Transformers trained via AdamW. Specifically, in DNT, we strategically integrate normalization techniques at proper positions in the Transformers to effectively modulate the Jacobian matrices of each layer, balance the influence of weights, activations, and their interactions, and thus enable the distributions of gradients concentrated. We provide both theoretical justifications of the normalization technique used in our DNT and extensive empirical evaluation on two popular Transformer architectures, validating that: a) DNT outperforms its counterparts (*i.e.*, ViT and GPT), and b) DNT can be effectively trained with a vanilla mSGDW.

1 INTRODUCTION

Transformer (Vaswani et al., 2017) has revolutionized numerous domains in artificial intelligence, demonstrated remarkable capabilities across natural language processing (Radford et al., 2018; 2019; Brown et al., 2020; Dubey et al., 2024; Team, 2023; Liu et al., 2024), computer vision (Dosovitskiy et al., 2020; Liu et al., 2022; Dehghani et al., 2023), AIGC (Ramesh et al., 2021; Peebles & Xie, 2023), and multi-modal applications (Li et al., 2022; Liu et al., 2023a) and become the de facto backbone of modern deep learning.

Nowadays it is widely accepted that Adam (Kingma & Ba, 2014) or its descendant AdamW (Loshchilov & Hutter, 2019) are the standard optimizer for training Transformers; whereas the classical SGD (Robbins & Monro, 1951) and its variants (Nesterov, 1983; 1998; Johnson & Zhang, 2013), *e.g.*, momentum SGD (mSGD), usually under-perform when training Transformers. Despite of its heavier load on GPU memory than mSGD, Adam is used as the optimizer in most recent studies on Large Language Models (LLMs) (Dubey et al., 2024; Team, 2023; Liu et al., 2024) and multi-modal models (Li et al., 2022; Liu et al., 2023a). Naturally, an interesting question arises:

Can Transformers be trained via mSGD to yield performance matched to that is trained via Adam? Or, under what conditions?

To answer these questions, we need to understand why mSGD typically underperforms Adam when training Transformer. Previous studies (Simsekli et al., 2019; Zhang et al., 2020) reveal that the fundamental reason lies in the statistical property of the stochastic gradients in Transformer architectures. Unlike Convolutional Neural Networks (CNNs) (LeCun et al., 1998; He et al., 2016) that are trained on tasks like ImageNet, where the entries of the gradients are typically small and well-concentrated, the gradients of Transformer typically exhibit heavy-tailed distributions, as shown in blue in Figure 1. This heavy-tailed distribution means that the amplitudes of the gradient entries span a wide range and thus it is hard to keep step with each others when updating weights. Thus, Adam uses a normalized term between the first-order term (*i.e.* gradients) and the square-root of the second-order term. Owing the normalization, Adam is robust to the heavy-tail distribution of the

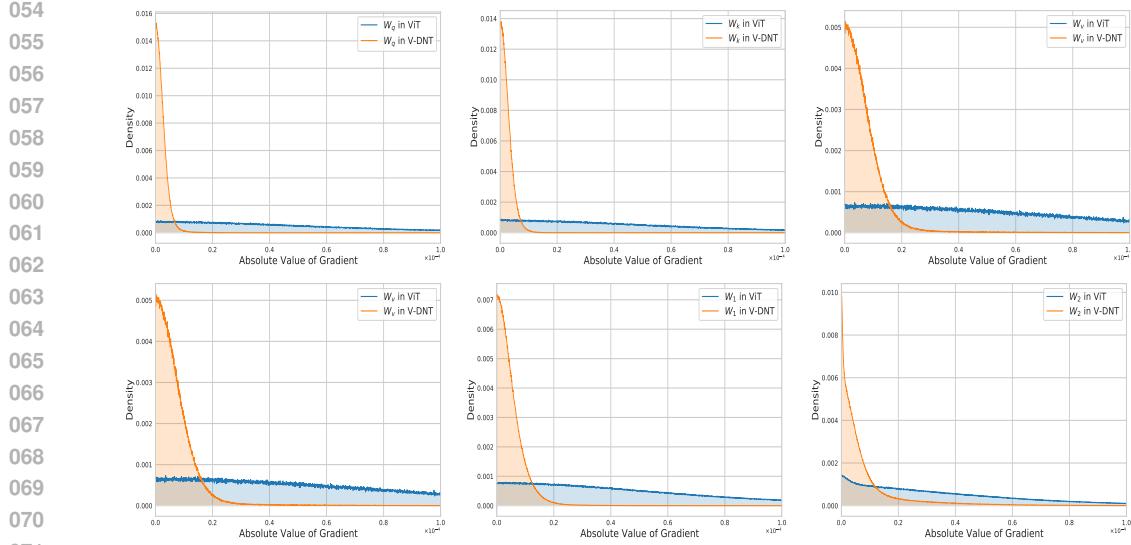


FIGURE 1: Distributions of the absolute values of the entries in gradients for ViT with PreNorm (marked in blue) and our V-DNT (marked in orange), where V-DNT denotes the vision variant of our DNT. We observe that the gradients in our V-DNT are typically quite small and well concentrated; whereas the gradient distributions of the standard ViT have a long tail.

gradients. This explains why Adam has become the standard optimizer for training Transformer in practice. On contrary, mSGD directly uses the first-order gradient with momentum to update the weights, and thus the weights updating has difficulty to keep pace with each others. Consequently, an interesting question turns out to be: can we help mSGD to relieve the issue of heavy-tail gradients in training Transformers? And how?

To mitigate the issue of heavy-tail gradients in training Transformers with mSGD, we propose to add or adjust the positions of normalization operations in Transformers, motivated by analyzing the Jacobian matrix of different modules. Roughly speaking, we use the properly positioned normalization operator to amend the Jacobian matrix of $\frac{\partial y}{\partial x}$ less affected by the weights, activations, or joint influence of both the weights and activations.

As illustrated in orange in Figure 1, we observe that our designed architecture, a Deeply Normalized Transformer (termed as DNT), exhibits a more concentrated gradient distribution than its counterpart which has a heavy-tailed distribution. In this paper, we provide not only theoretical justification for the properly positioned normalization operator in our DNT, but also empirical evaluations to further validate that our DNT outperforms its counterparts, *i.e.*, ViT and GPT, on ImageNet classification and OpenWebText tasks. Since that the distributions of the gradients of DNT are more concentrated, training it with the vanilla mSGD can yield performance on par with that with Adam optimizer.

To the best of our knowledge, this is the first work to show that using a vanilla mSGD can train a Transformer to achieve performance comparable to that of using Adam—provided that the Transformer architecture is properly modified to mitigate the issue of heavy-tail gradients.

2 PRELIMINARIES

This section will provide some preliminaries on high-dimensional random vectors, which enjoy many nice properties that are different from their low-dimensional counterparts. Two simple yet useful theorems are introduced below. Proofs can be found in Lemma 3.2.4 of (Vershynin, 2018).

Theorem 1 (Concentration of norm). *Let x be an isotropic random vector in \mathbb{R}^d . Then, we have $\mathbb{E}\|x\|_2^2 = d$. Moreover, if x and y are two independent isotropic random vectors, then $\mathbb{E}\langle x, y \rangle^2 = d$.*

108 **Theorem 2** (Almost orthogonality of high-dimensional independent vectors). *Let us normalize the*
 109 *random vectors \mathbf{x} and \mathbf{y} in Theorem 1, setting $\bar{\mathbf{x}} := \frac{\mathbf{x}}{\|\mathbf{x}\|_2}$ and $\bar{\mathbf{y}} := \frac{\mathbf{y}}{\|\mathbf{y}\|_2}$, in a high-dimensional*
 110 *space, the independent and isotropic random vectors $\bar{\mathbf{x}}$ and $\bar{\mathbf{y}}$, tend to be almost orthogonal,*
 111

112 Theorem 1 establishes that $\|\mathbf{x}\|_2 \asymp \sqrt{d}$, $\|\mathbf{y}\|_2 \asymp \sqrt{d}$ and $\langle \mathbf{x}, \mathbf{y} \rangle \asymp \sqrt{d}$ with high probability, which
 113 implies that cosine of the angle θ between two random vectors \mathbf{x} and \mathbf{y} satisfies $\cos(\theta) \asymp \frac{1}{\sqrt{d}}$.
 114 Theorem 2 implies that in high-dimensional space (*i.e.*, d is very large), two random vectors are
 115 almost orthogonal. Thus, given $\mathbf{z} = \mathbf{x} + \mathbf{y}$ where \mathbf{x} and \mathbf{y} are two high-dimensional random vectors,
 116 we have $\|\mathbf{z}\|_2 \asymp \sqrt{\|\mathbf{x}\|_2^2 + \|\mathbf{y}\|_2^2}$.
 117

118 **Jacobian of normalization.** Normalization (Ioffe & Szegedy, 2015; Ba et al., 2016; Zhang &
 119 Sennrich, 2019) is a technique widely used in deep learning. It is used to stabilize and accelerate
 120 the training process. For example, LayerNorm is defined as $\text{LN}(\mathbf{x}) = \gamma \odot \frac{\sqrt{d}\mathbf{y}}{\sqrt{\|\mathbf{y}\|_2^2 + \epsilon}} + \beta$, and $\mathbf{y} =$
 121 $(\mathbf{I} - \frac{1}{d}\mathbf{1}\mathbf{1}^\top)\mathbf{x}$, where $\epsilon > 0$ is a smoothing factor, d is the feature dimension of \mathbf{x} , γ and β are two
 122 learnable \mathbb{R}^d vectors, γ and β are usually initialized to 1 and 0. Most recently, some recent LLMs
 123 (Touvron et al., 2023; Chowdhery et al., 2023; Team, 2023; Liu et al., 2024) uses RMSNorm (Zhang &
 124 Sennrich, 2019) to replace LayerNorm, where RMSNorm is defined as: $\text{RMSN}(\mathbf{x}) = \gamma \odot \frac{\sqrt{d}\mathbf{x}}{\sqrt{\|\mathbf{x}\|_2^2 + \epsilon}}$.
 125 Compared to LayerNorm, RMSNorm does not use the centering term and the bias term.
 126

127 The Jacobian matrix of RMSNorm with respect to \mathbf{x} is calculated as follows

$$\frac{\partial \text{RMSN}(\mathbf{x})}{\partial \mathbf{x}} = \frac{\sqrt{d}}{\sqrt{\|\mathbf{x}\|_2^2 + \epsilon}} \text{diag}(\gamma) \left(\mathbf{I} - \frac{\mathbf{x}\mathbf{x}^\top}{\|\mathbf{x}\|_2^2 + \epsilon} \right).$$

128 We use RMSNorm as our default normalization technique when mentioning of normalization, but our
 129 analysis can be generalized to the other normalization methods. Here we use a numerator layout for
 130 all our gradients derivation throughout this paper.
 131

132 **Stochastic Gradient Descent (SGD)** (Robbins & Monro, 1951) is a classical and fundamental
 133 optimization algorithm in machine learning for training models by minimizing their cost functions.
 134 However, the vanilla SGD often suffers from slow convergence, especially in complex optimization
 135 landscapes with ravines, saddle points, or local minima. To address these limitations, momentum
 136 SGD (Nesterov, 1983; 2013; Sutskever et al., 2013) was introduced as an extension of the basic SGD
 137 algorithm. Momentum SGD (Nesterov, 1983; 2013; Sutskever et al., 2013) introduces a velocity term
 138 \mathbf{m} that accumulates gradients over time, *i.e.*, $\mathbf{m}_{t+1} = \mu\mathbf{m}_t + \nabla L(\mathbf{w}_t)$, $\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha_t \mathbf{m}_{t+1}$
 139 where $\mu \in [0, 1]$ is the momentum coefficient¹ that determines how much of the previous velocity
 140 is retained and α_t is the learning rate for the time step t . Unlike in the vanilla SGD, mSGD allows
 141 the optimization to build up a “momentum” in direction of persistent gradient descent, which can
 142 effectively dampen the oscillations in high-curvature directions.
 143

144 3 THEORETICAL JUSTIFICATION ON WHY DNT CAN BE TRAINED WITH 145 MOMENTUM SGD

146 3.1 PROBLEM 1: WHAT IS THE ROOT CAUSE OF HEAVY-TAIL DISTRIBUTION OF GRADIENTS?

147 Previous works (Zhang et al., 2020; Simsekli et al., 2019) have pointed out that a heavy-tailed
 148 distribution of the stochastic gradients is a root cause of SGD’s poor performance. Here, we will
 149 investigate this issue by analyzing the backpropagation of Transformers.

150 Suppose $\mathbf{x}^{l+1} = f(\mathbf{x}^l)$ and we have obtained $\frac{\partial \mathcal{L}}{\partial \mathbf{x}^{l+1}}$ in a backpropagation process, then we can
 151 calculate $\frac{\partial \mathcal{L}}{\partial \mathbf{x}^l}$ using a numerator layout as $\frac{\partial \mathcal{L}}{\partial \mathbf{x}^l} = \frac{\partial \mathcal{L}}{\partial \mathbf{x}^{l+1}} \frac{\partial \mathbf{x}^{l+1}}{\partial \mathbf{x}^l}$, where $\frac{\partial \mathbf{x}^{l+1}}{\partial \mathbf{x}^l}$ is called as the Jacobian
 152 matrix. Having had $\frac{\partial \mathcal{L}}{\partial \mathbf{x}^l}$, for any a forward layer with $\mathbf{x}^l = \mathbf{W}^l \mathbf{x}^{l-1}$, we can compute $\frac{\partial \mathcal{L}}{\partial \mathbf{W}^l}$ as
 153

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}^l} = \frac{\partial \mathcal{L}}{\partial \mathbf{x}^l} \mathbf{x}^{l-1\top} = \frac{\partial \mathcal{L}}{\partial \mathbf{x}^{l+1}} \frac{\partial \mathbf{x}^{l+1}}{\partial \mathbf{x}^l} \mathbf{x}^{l-1\top}. \quad (1)$$

154
 155 ¹Typical values for μ range from 0.9 to 0.99. In default, for all our experiments, we set μ to 0.90.

From Equation 1, we observe that the heavy-tail problem in gradients is indeed closely related to the large diversity of the singular values in the Jacobian matrix $\frac{\partial \mathbf{x}^{l+1}}{\partial \mathbf{x}^l}$. The Jacobian matrix can have highly diverse singular values for several reasons: 1) the weight matrix contains very diverse singular values; 2) the activations span widely, leading to Jacobians with very uneven singular value distributions. When a matrix has a wide range of singular values (*i.e.*, a very large condition number), it means that the transformation stretches the input very differently along different directions. During backpropagation, it will cause a heavy-tail problem in the gradients.

Therefore, a reasonable solution to relieve the heavy-tail issue is to constrain the uneven singular value distribution of the Jacobian matrix via controlling the weight matrix and activations. This is the basic idea in our paper.

3.2 PROBLEM 2: MITIGATE THE HEAVY-TAIL GRADIENT PROBLEM BY ANALYZING THE JACOBIAN MATRIX

In this subsection, we will describe how we use different normalizations—adding or adjusting the position of the normalizations—to constrain the Jacobian matrix to relieve the heavy-tail gradient issue. Note that we do not claim that we discover any new normalization methods, instead, we provide our understanding on how each normalization affects the Jacobian matrix. We refer the readers to (Loshchilov et al., 2025; Zhu et al., 2025; Qi et al., 2025b; 2023) for more discussions about normalization. We will use **red**, **green**, **blue**, **purple**, **magenta** to denote its relationship with InputNorm, PreNorm, MidNorm, PostNorm and QKNorm, individually.

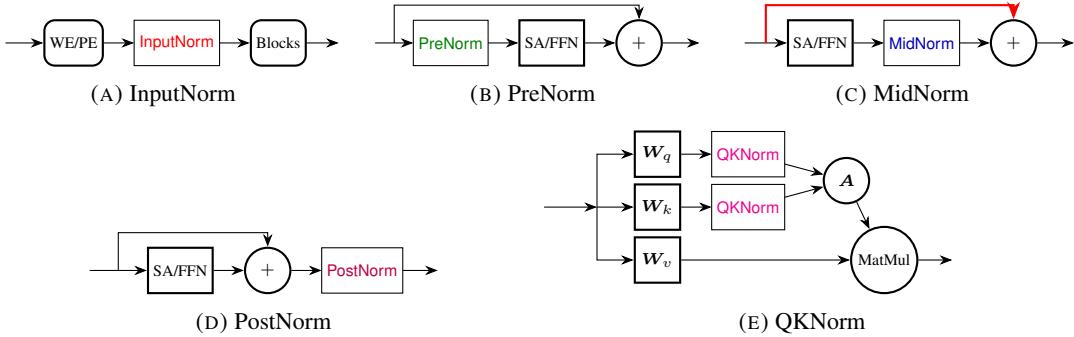


FIGURE 2: Five different normalization methods. The only difference between them is the position of normalization. In (A), WE/PE indicates word embedding and patch embedding.

3.2.1 INPUTNORM

Definition of InputNorm. InputNorm in Transformer is defined as the normalization that is applied after the first word embedding in NLP or the first patch embedding in vision Transformer. As shown in Figure 2 (d), InputNorm is defined as

$$\mathbf{x}^0 = \text{InputNorm}(\mathbf{h}), \text{ where } \mathbf{h} = \text{Embedding}(\mathbf{i}), \quad (2)$$

where \mathbf{i} is the input and $\text{Embedding}(\cdot)$ denotes word embedding or patch embedding. For a standard residual block in Transformer, we have that:

$$\mathbf{x}^{l+1} = \mathbf{x}^l + f(\mathbf{x}^l) = \mathbf{x}^{l-1} + f(\mathbf{x}^{l-1}) + f(\mathbf{x}^l) = \mathbf{x}^0 + f(\mathbf{x}^0) + f(\mathbf{x}^1) + \cdots + f(\mathbf{x}^{l-1}) + f(\mathbf{x}^l).$$

Each \mathbf{x}^l will be the input into some modules, such as normalization, self-attention and feed-forward layers. The Jacobian matrices of some modules are sensitive to the norm of the input, such as LayerNorm and the dot-product self-attention.

Under the assumption that random vectors are almost orthogonal in high dimension, we have that

$$\|\mathbf{x}^{l+1}\|_2 \asymp \sqrt{(\|\mathbf{x}^0\|_2^2 + \|f(\mathbf{x}^0)\|_2^2 + \cdots + \|f(\mathbf{x}^l)\|_2^2)}. \quad (3)$$

Proposition 1 (Effect of norm of input embedding on gradients). *In a high-dimensional settings when all parameters and activations are high-dimensional, if the norm of \mathbf{x}^0 is very large, it will lead to gradient vanishing problem in all subsequent layers, provided that InputNorm is not used.*

216 It means that if the norm of \mathbf{x}^0 is large, then the norm $\|\mathbf{x}^{l+1}\|_2$ in each layer will also be large. If
 217 $\|\mathbf{x}^{l+1}\|_2$ is the input into a normalization layer, according to the Jacobian equation of normalization
 218 $\frac{\partial \text{RMSN}(\mathbf{x}^{l+1})}{\partial \mathbf{x}^{l+1}} = \frac{\sqrt{d}}{\sqrt{\|\mathbf{x}^{l+1}\|_2^2 + \epsilon}} \text{diag}(\gamma) \left(\mathbf{I} - \frac{\mathbf{x}^{l+1} \mathbf{x}^{l+1 \top}}{\|\mathbf{x}^{l+1}\|_2^2 + \epsilon} \right)$, the gradient flow in each layer will be
 219 significantly affected by the norm of \mathbf{x}^0 . Thus, we need to constrain the norm of \mathbf{x}^0 before it is used
 220 as the input into the following layer.
 221

222 **Remark 1.** *The norm of \mathbf{x}^0 has a large influence of the gradient flow of the subsequent layers. If it is
 223 very large, it will lead to gradient vanishing, and if it is very small, it may lead to gradient exploding.
 224 Meanwhile, the network is also sensitive to the change of the norm of \mathbf{x}^0 .*

225

226 3.2.2 PRENORM

227

228 **Definition of PreNorm.** A PreNorm in Transformer is defined as the normalization that is applied
 229 before the self-attention or the feed-forward components. As shown in Figure 2 (b), PreNorm is
 230 defined as

231

$$232 \mathbf{Y} = \text{Self-Attention}(\mathbf{X}'), \text{ where } \mathbf{x}' = \text{PreNorm}(\mathbf{x}). \quad (4)$$

233

234 A single-head self-attention is defined as

235

$$236 \mathbf{Y} = \mathbf{W}_v \mathbf{X} \mathbf{A},$$

237

238 where $\mathbf{P} = \mathbf{X}^\top \mathbf{W}_q^\top \mathbf{W}_k \mathbf{X}$, $\mathbf{A} = \text{softmax}(\frac{\mathbf{P}}{\sqrt{d_q}})$, \mathbf{A} is called as the attention matrix, and $\frac{\mathbf{P}}{\sqrt{d_q}}$ is
 239 called as the logit, in which $\mathbf{A} \in \mathcal{R}^{n \times n}$, $\mathbf{X} \in \mathcal{R}^{d \times n}$, $\mathbf{W}_q \in \mathcal{R}^{d_q \times d}$, $\mathbf{W}_k \in \mathcal{R}^{d_q \times d}$, $\mathbf{W}_v \in \mathcal{R}^{d_v \times d}$.
 240 Herein, our goal is to calculate $\frac{\partial \text{vec}(\mathbf{Y})}{\partial \text{vec}(\mathbf{X})}$.

241

242 By vectorization of $\mathbf{Y} = \mathbf{W}_v \mathbf{X} \mathbf{A}$, we have

243

$$244 \partial \text{vec}(\mathbf{Y}) = (\mathbf{A}^\top \otimes \mathbf{W}_v) \partial \text{vec}(\mathbf{X}) + (\mathbf{I}_n \otimes \mathbf{W}_v \mathbf{X}) \partial \text{vec}(\mathbf{A}).$$

245

246 Putting together all these terms, we have that

247

$$248 \frac{\partial \text{vec}(\mathbf{Y})}{\partial \text{vec}(\mathbf{X})} = (\mathbf{A}^\top \otimes \mathbf{W}_v) + (\mathbf{I}_n \otimes \mathbf{W}_v \mathbf{X}) \frac{\mathbf{J}}{\sqrt{d_q}} \left((\mathbf{X}^\top \mathbf{W}_q^\top \mathbf{W}_q \otimes \mathbf{I}_n) \mathbf{C} + (\mathbf{I}_n \otimes (\mathbf{X}^\top \mathbf{W}_q^\top \mathbf{W}_k)) \right). \quad (5)$$

249

250 where \mathbf{C}_{dn} is the commutation matrix, \otimes denotes the Kronecker product.

251

252 For simplicity, we denote

253

$$254 \mathbf{J} = \text{blockdiag}(\text{diag}(\mathbf{A}_{:,1}) - \mathbf{A}_{:,1} \mathbf{A}_{:,1}^\top, \dots, \text{diag}(\mathbf{A}_{:,n}) - \mathbf{A}_{:,n} \mathbf{A}_{:,n}^\top).$$

255

256 The detailed derivation process can also be found in prior work (Qi et al., 2025a). Nevertheless, we
 257 note here that *rather than analyzing $\mathbf{W}_q^\top \mathbf{W}_k$ in the self-attention module, we analyze the influence
 258 of \mathbf{X} .* According to the Jacobian matrix in Equation 5, we have the following proposition.

259

260 **Proposition 2** (PreNorm can stabilize the gradient in self-attention module.). *If, for each col-
 261 umn $\mathbf{X}_{:,i}$, we have $\mathbf{X}'_{:,i} = g_i \mathbf{X}_{:,i}$, according to Equation 4, with the same $\mathbf{W}_q, \mathbf{W}_k, \mathbf{W}_v$,
 262 $\mathbf{Y} = \text{Self-Attention}(\mathbf{X})$ and $\mathbf{Y}' = \text{Self-Attention}(\mathbf{X}')$. Then we have $\frac{\partial \text{vec}(\mathbf{Y})}{\partial \text{vec}(\mathbf{X})} = \frac{\partial \text{vec}(\mathbf{Y}')}{\partial \text{vec}(\mathbf{X}')}$.*

263

264 According to Proposition 2, we have the following remark.

265

266 **Remark 2.** *PreNorm will guarantee that the norms of vectors \mathbf{X} which is the input to the self-
 267 attention layers are in a relatively stable range of norms. According to Equation 5, we see that if
 268 these norms of \mathbf{X} are relatively stable, then the Jacobian matrix will also be stable relative to \mathbf{X} .
 269 Meanwhile, since the gradients of $\mathbf{W}_q, \mathbf{W}_k, \mathbf{W}_v$ are directly relative to \mathbf{X} , a stable \mathbf{X} will guarantee
 that $\mathbf{W}_q, \mathbf{W}_k, \mathbf{W}_v$ obtains relatively stable gradients.*

270

271

272 3.2.3 MIDNORM

273

274

275 **Definition of MidNorm.** A MidNorm in Transformer is defined as the normalization that is applied
 276 after the self-attention and feed-forward components and meanwhile before the residual shortcut. As
 277 shown in Figure 2 (b), MidNorm is defined as

278

$$279 \mathbf{y} = \text{MidNorm}(\mathbf{z}), \text{ where } \mathbf{z} = \mathbf{W}_2 \text{ReLU}(\mathbf{W}_1 \mathbf{x}). \quad (6)$$

270 In the self-attention, \mathbf{W}_v and \mathbf{W}_o can be seen as similar function as \mathbf{W}_1 and \mathbf{W}_2 in FFN. If we only
271 use single-head attention, then we have $\mathbf{z} = \mathbf{W}_o \mathbf{W}_v \mathbf{x}$.

273 The Jacobian matrix of an FFN can be computed as: $\mathbf{J}_{\mathbf{z}}(\mathbf{x}) = \frac{\partial \text{FFN}(\mathbf{x}; \mathbf{W}_1, \mathbf{W}_2)}{\partial \mathbf{x}} =$
274 $\mathbf{W}_2 \text{diag}(\mathbf{1}(\mathbf{W}_1 \mathbf{x} > \mathbf{0})) \mathbf{W}_1$. The Jacobian matrix of an RMSNorm layer is $\frac{\partial \mathbf{y}}{\partial \mathbf{z}} =$
275 $\frac{\sqrt{d}}{\|\mathbf{z}\|_2} \text{diag}(\gamma) \left(\mathbf{I} - \frac{\mathbf{z} \mathbf{z}^\top}{\|\mathbf{z}\|_2^2} \right)$. The joint Jacobian matrix of an FFN and an RMSNorm is
276

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \frac{\partial \mathbf{y}}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \sqrt{d} \text{diag}(\gamma) \left(\mathbf{I} - \frac{\mathbf{z} \mathbf{z}^\top}{\|\mathbf{z}\|_2^2} \right) \frac{\mathbf{W}_2 \text{diag}(\mathbf{1}(\mathbf{W}_1 \mathbf{x} > \mathbf{0})) \mathbf{W}_1}{\|\mathbf{W}_2 \text{ReLU}(\mathbf{W}_1 \mathbf{x})\|_2}. \quad (7)$$

280 **Proposition 3** (The effect of MidNorm). *Let $\mathbf{W} = \frac{\mathbf{W}_2 \text{diag}(\mathbf{1}(\mathbf{W}_1 \mathbf{x} > \mathbf{0})) \mathbf{W}_1}{\|\mathbf{W}_2 \text{ReLU}(\mathbf{W}_1 \mathbf{x})\|_2}$, in a high-dimensional
281 settings when \mathbf{W}_1 , \mathbf{W}_2 and \mathbf{x} are high-dimensional and random, the singular values of \mathbf{W} will be
282 only related to the shape of \mathbf{W}_1 and \mathbf{W}_2 , and will be independent to the magnitude of \mathbf{W}_1 and \mathbf{W}_2 .*

284 According to Proposition 3, we have the following remark.

286 **Remark 3.** *MidNorm can effectively guarantee that the norms of \mathbf{W}_1 , \mathbf{W}_2 , \mathbf{W}_v , and \mathbf{W}_o will not
287 affect the Jacobian matrix as shown in Equation 7. It means that even the magnitudes of these weight
288 matrices are very large, it will not magnify the gradients.*

289 3.2.4 POSTNORM

291 **Definition of PostNorm.** A PostNorm in Transformer is defined as the normalization that is applied
292 after the residual block. As shown in Figure 2 (d), PostNorm is defined as

$$293 \quad \mathbf{x}^{l+1} = \text{PostNorm}(\mathbf{z}^{l+1}), \text{ where } \mathbf{z}^{l+1} = \mathbf{x}^l + f(\mathbf{x}^l; \mathbf{W}^{l+1}). \quad (8)$$

295 **Proposition 4** (PostNorm is sensitive to the vector norm of activation). *If \mathbf{z}^{l+1} in Equation 8 is very
296 large, then it will significantly decrease the gradient.*

298 *Proof.* From Equation 8, we have $\frac{\partial \mathbf{x}^{l+1}}{\partial \mathbf{z}^{l+1}} = \frac{\sqrt{d}}{\|\mathbf{z}^{l+1}\|} (\mathbf{I} - \frac{\mathbf{z}^{l+1} \mathbf{z}^{l+1\top}}{\|\mathbf{z}^{l+1}\|_2^2})$. If $\|\mathbf{z}^{l+1}\|$ is very large, according
299 to $\frac{\partial L}{\partial \mathbf{z}^{l+1}} = \frac{\partial L}{\partial \mathbf{x}^{l+1}} \frac{\partial \mathbf{x}^{l+1}}{\partial \mathbf{z}^{l+1}}$, we have that the gradient of $\frac{\partial L}{\partial \mathbf{z}^{l+1}}$ will be significantly decreased. \square

302 In a classical Transformer (Vaswani et al., 2017), if $f(\mathbf{x}; \mathbf{W}_1, \mathbf{W}_2) = \mathbf{W}_2 \text{ReLU}(\mathbf{W}_1 \mathbf{x})$, along with
303 the training process, $\sigma_1(\mathbf{W}_1)$ (the largest singular value of \mathbf{W}_1) and $\sigma_1(\mathbf{W}_2)$ will usually become
304 too large (e.g., around 1000). In this way, $\|f(\mathbf{x}^l; \mathbf{W}^{l+1})\|_2$ will be very large, it means \mathbf{z}^{l+1} in
305 Equation 8 will be very large. Therefore, we have that PostNorm under this circumstance will lead to
306 gradient vanishing.

307 **Remark 4.** *We need to be very careful when using PostNorm, we must ensure that the norm of the
308 input vector to PostNorm is within a reasonable range, otherwise the network is likely to cause a
309 gradient vanishing when \mathbf{z}^l being very large or a gradient exploding \mathbf{z}^l when \mathbf{z}^l being very small.*

310 3.2.5 QKNORM

312 **Definition of QKNorm.** A QKNorm (Henry et al., 2020) in Transformer is defined as the normaliza-
313 tion that is applied on queries and keys in the self-attention block. As shown in Figure 2 (e),
314 self-attention with QKNorm (Dehghani et al., 2023) is defined as
315

$$316 \quad \mathbf{Y} = \mathbf{W}_v \mathbf{X} \mathbf{A}', \text{ where } \mathbf{A}' = \text{softmax}\left(\frac{\mathbf{P}'}{\sqrt{d_h}}\right), \mathbf{P}' = \mathbf{Q}'^\top \mathbf{K}', \quad (9)$$

318 in which \mathbf{q}'_i and \mathbf{k}'_j are the i -th column and the j -th column in \mathbf{Q}' and \mathbf{K}' , individually, and we have

$$320 \quad \mathbf{q}'_i = \text{QKNorm}(\mathbf{W}_q \mathbf{x}_i) = \gamma_q \odot \frac{\sqrt{d_h} \mathbf{W}_q \mathbf{x}_i}{\|\mathbf{W}_q \mathbf{x}_i\|_2} = \sqrt{d_h} \text{diag}(\gamma_q) \frac{\mathbf{W}_q \mathbf{x}_i}{\|\mathbf{W}_q \mathbf{x}_i\|_2}, \quad (10)$$

$$322 \quad \mathbf{k}'_j = \text{QKNorm}(\mathbf{W}_k \mathbf{x}_j) = \gamma_k \odot \frac{\sqrt{d_h} \mathbf{W}_k \mathbf{x}_j}{\|\mathbf{W}_k \mathbf{x}_j\|_2} = \sqrt{d_h} \text{diag}(\gamma_k) \frac{\mathbf{W}_k \mathbf{x}_j}{\|\mathbf{W}_k \mathbf{x}_j\|_2},$$

324 where d_h is the head dimension. To facilitate the derivation, we denote $\mathbf{Q} = \mathbf{W}_q \mathbf{X}$ and $\mathbf{K} = \mathbf{W}_k \mathbf{X}$
 325 as before, and use \mathbf{q}_i and \mathbf{k}_j to denote the i -th column and the j -th column in \mathbf{Q} and \mathbf{K} , individually.
 326 Thus, we have that $\mathbf{q}'_i = \text{QKNorm}(\mathbf{q}_i)$ and $\mathbf{k}'_j = \text{QKNorm}(\mathbf{k}_j)$.
 327

328 Moreover, we have that $P'_{ij} = \mathbf{q}'_i^\top \mathbf{k}'_j$, where P'_{ij} is a scalar, and the gradient is computed as follows,
 329

$$\begin{aligned} \frac{\partial P'_{ij}}{\partial \mathbf{x}} &= \mathbf{k}'_j^\top \frac{\partial \mathbf{q}'_i}{\partial \mathbf{x}} + \mathbf{q}'_i^\top \frac{\partial \mathbf{k}'_j}{\partial \mathbf{x}} \\ &= \sqrt{d_h} \text{diag}(\gamma_q) \mathbf{k}'_j^\top (\mathbf{I} - \frac{\mathbf{q}'_i \mathbf{q}'_i}{\|\mathbf{q}'_i\|_2^2}) \frac{\mathbf{W}_q}{\|\mathbf{W}_q \mathbf{x}_i\|_2} + \sqrt{d_h} \text{diag}(\gamma_k) \mathbf{q}'_i^\top (\mathbf{I} - \frac{\mathbf{k}'_j \mathbf{k}'_j}{\|\mathbf{k}'_j\|_2^2}) \frac{\mathbf{W}_k}{\|\mathbf{W}_k \mathbf{x}_i\|_2}. \end{aligned} \quad (11)$$

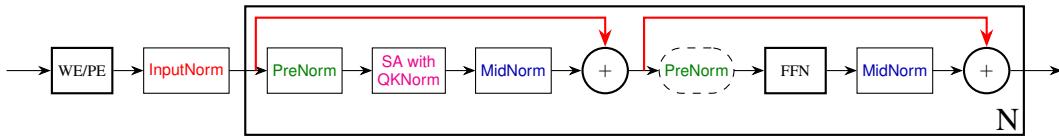
335 **Proposition 5** (Effect of QKNorm). *In a high-dimensional settings, i.e., when all \mathbf{W}_q , \mathbf{W}_k and \mathbf{x}
 336 are high-dimensional and random, in Equation 11, the gradient term of $\frac{\partial P'_{ij}}{\partial \mathbf{x}}$ is independent of the
 337 magnitudes \mathbf{W}_q and \mathbf{W}_k .*
 338

339 According to the Proposition, we have the following remark.

340 **Remark 5.** *QKNorm can mitigate the joint effect of $\mathbf{W}_q^\top \mathbf{W}_k$ to the gradient of the self-attention
 341 layer. The fast increase of the singular values of $\mathbf{W}_q^\top \mathbf{W}_k$ has been revealed to be a root reason
 342 leading to model crash. Our analysis shows that QKNorm can effectively mitigate the reason to cause
 343 model crash brought by $\mathbf{W}_q^\top \mathbf{W}_k$.*
 344

345 Though QKNorm can mitigate the problem brought by $\mathbf{W}_q^\top \mathbf{W}_k$, it cannot fully replace the role of
 346 PreNorm, because PreNorm can jointly deal with the problem of \mathbf{W}_q , \mathbf{W}_k and \mathbf{W}_v and the gradient
 347 of \mathbf{W}_v is also affected by the value of \mathbf{X} .
 348

349 3.3 DNT: A TRANSFORMER THAT CAN RELIEVE THE ISSUE OF HEAVY-TAIL GRADIENTS



356 FIGURE 3: DNT architecture. The second PreNorm marked with dashed and rounded corners is
 357 optional. By default, we do not use the second PreNorm.
 358

359 Having analyzed the effects of different normalizations, we use four types of normalizations, including
 360 InputNorm, PreNorm, MidNorm and QKNorm, except for PostNorm. *The reason why we do not use
 361 PostNorm is that it may bring in some training problem.* Finally, we illustrate our DNT in Figure 3.
 362

363 Our DNT model commences with word embeddings or patch encodings (WE/PE). Then, the initial
 364 representations undergo the InputNorm processing, establishing the normalized embeddings for
 365 subsequent operations. The core transformer block consists of N blocks. In each block, prior to self-
 366 attention, a PreNorm is applied, followed by a self-attention augmented with query-key normalization
 367 (*i.e.*, QKNorm). Subsequently, a MidNorm processes the attention outputs before integrating via a
 368 residual connection. In the second sub-block, a *selective PreNorm* precedes the feed-forward network
 369 (FFN), after FFN, there is a MidNorm, and a final residual connection completes the information
 370 flow. This entire structure is replicated N times to form the complete network.

371 We visualize the effects of each normalization in our DNT network in Figure 4. According to
 372 the analysis mentioned above, we summarize the advantages of our DNT model as following: a)
 373 the magnitude of \mathbf{x}^0 will significantly affect the gradient of each layer in the Transformer, but we
 374 introduce InputNorm to resolve the influence of \mathbf{x}^0 ; b) PreNorm can constrain the norm of each
 375 column in activations \mathbf{X} in each timestep, and thus amend the Jacobian matrix of self-attention to
 376 not be significantly affected by the magnitude of \mathbf{X} ; c) MidNorm will amend the Jacobian matrix of
 377 each sub-block (*i.e.*, the sub-block with self-attention and the sub-block with FFN) in our DNT to not
 378 be affected by the magnitude of \mathbf{W}_1 , \mathbf{W}_2 , \mathbf{W}_v and \mathbf{W}_o ; d) QKNorm can relieve or even remove the
 379 influence of the magnitude of \mathbf{W}_q and \mathbf{W}_k on the Jacobian matrix of self-attention, and thus reduce

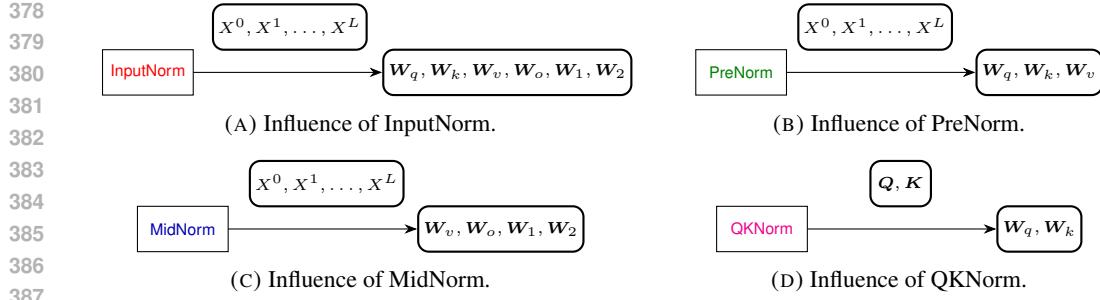


FIGURE 4: Influence of different normalizations. For instance, InputNorm stabilizes $W_q, W_k, W_v, W_o, W_1, W_2$ by constraining X^0, X^1, \dots, X^L .

the risk of problems, such as rank collapse (Noci et al., 2022), entropy collapse (Zhai et al., 2023), or spectral energy concentration (Qi et al., 2025a) caused by $W_q^\top W_k$.

In DNT, we use four different types of normalizations. We observe that nGPT (Loshchilov et al., 2025) also uses some of the normalizations mentioned above. Here, we would like to emphasize the differences between DNT and nGPT that: a) DNT provides theoretical justifications for each normalization in different position; b) DNT uses InputNorm rather than PostNorm, whereas nGPT use many PostNorms but not InputNorm; c) nGPT normalizes the activations or the weights into spheres, whereas DNT only normalizes the activations but does not require activations on spheres.

We term our model as Deeply Normalized Transformer (DNT for short), because it is designed by properly adding or positioning normalization operators in the conventional Transformer. For vision problem, we term it as V-DNT, and for language problem, we term it as L-DNT. The key difference between V-DNT and L-DNT is that V-DNT uses patch embedding, but L-DNT uses word embedding and mask for attention computation.

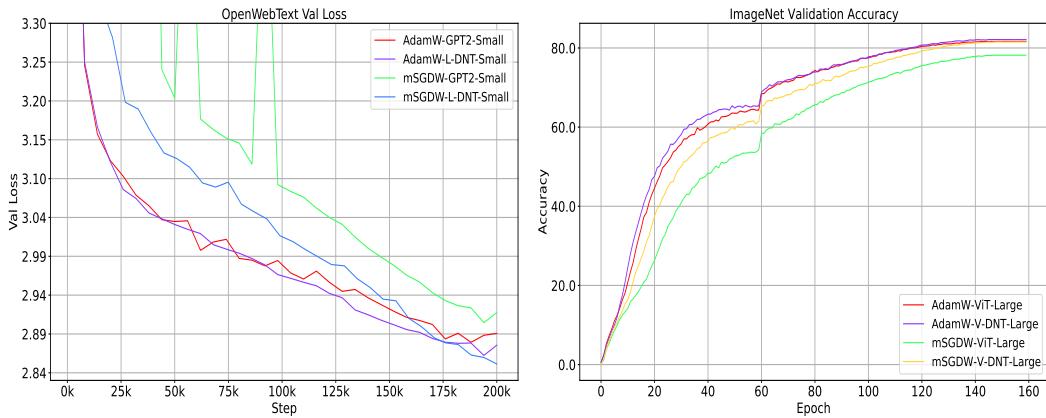


FIGURE 5: Validation loss (Left) on OpenWebText and recognition accuracy (Right) on ImageNet. We compare L-DNT-Small (124M) to GPT2-Small (124M), and V-DNT-Large (307M) to ViT-Large (307M). By effectively relieving the heavy-tail gradient problem, our DNT network trained with naive mSGDW can achieve competitive performance to AdamW (Val loss 2.849 vs. 2.863 on OpenWebText, Acc 81. 5% vs. 82. 1% on ImageNet). However, in classical Transformer with PreNorm, the performance of mSGDW under-performs AdamW significantly (Val loss 2.906 vs 2.867 on OpenWebText, Acc 78.2% vs 81.7% on ImageNet). See Appendix C for the training parameters.

4 EXPERIMENTS

We conducted experiments with two popular Transformer architectures: Vision Transformer (ViT) and Generative Pretrained Transformer (GPT). Our implementation leverages established repositories: timm (Wightman, 2019) for ViT and nanoGPT (Karpathy, 2022) for GPT models. For experiments

432 with ViT, we utilized two model scales: ViT-Large (307M parameters) and ViT-Huge (632M),
 433 following the configurations described in (Dosovitskiy et al., 2020). The data augmentation strategy
 434 aligns with (Xie et al., 2024) to ensure fair comparison with previously reported results. For
 435 experiments with GPT, we employed the nanoGPT implementation focusing on GPT2-Small (124M)
 436 and GPT2-Large (774M) variants due to computational constraints. The results of our baselines align
 437 with previous work, including Sophia (Liu et al., 2023b) on OpenWebText and MAE (He et al., 2022)
 438 on ImageNet. Training was conducted using PyTorch (Paszke et al., 2019) with bfloat16 precision on
 439 A800 GPUs, employing a cosine learning rate schedule.

440 4.1 VISUALIZATION OF GRADIENTS OF DNT AND TRANSFORMER WITH PRENORM

441 To visually compare the standard Transformer with our DNT, we visualized the gradients of different
 442 weights, including $\mathbf{W}_q, \mathbf{W}_k, \mathbf{W}_v, \mathbf{W}_o, \mathbf{W}_1, \mathbf{W}_2$. We chose the early checkpoints of the model
 443 training for visualization, but we found that the same phenomenon is also presented in the middle
 444 and later stages of the model training. The visualization is shown in Figure 1, we can see that, DNT
 445 network can well relieve the issue of heavy tail gradient distribution. For instance, in the Transformer,
 446 the absolute values of gradients almost distribute even across $[0, 10^{-4}]$, but the absolute values of
 447 gradients in DNT mainly concentrate around $[0, 10^{-5}]$.

448 4.2 MSGDW ACHIEVES PERFORMANCE ON PAR WITH ADAMW.

449 We also give a quantitative comparison of the standard Transformer and DNT trained with Adam
 450 and mSGD on OpenWebText and ImageNet in Table 1. We can see that training our DNT model via
 451 mSGDW achieves a similar result to that is trained with AdamW. We can also see that using mSGDW
 452 to train our DNT model greatly outperforms the performance of using mSGDW to train the standard
 453 Transformer. In Figure 5, we display the validation loss on OpenWebText and the training accuracy
 454 on ImageNet along with the training process. Note that we did not tune the learning rate too much.
 455 We just followed the learning rate settings in the previous works Karpathy (2022); Liu et al. (2023b).
 456 We believe tuning learning rate will bring in some differences. But overall, DNT network can enable
 457 mSGDW compete with AdamW.

458 TABLE 1: Quantitative comparison of standard ViT/GPT2 and V-DNT/L-DNT trained with AdamW
 459 and mSGDW on OpenWebText and ImageNet. Results on ImageNet is based on 150 epochs, and
 460 results on OpenWebText is based on 200K steps.

Optimizer	Types of Model	ImageNet (Acc. \uparrow)		OpenWebText (Val Loss. \downarrow)		
		307M	632M	124M	774M	1436M
AdamW	ViT/GPT2	81.7	80.8	2.867	2.492	2.435
AdamW	V-DNT/L-DNT	82.1	81.9	2.863	2.481	2.396
mSGDW	ViT/GPT2	78.2	73.5	2.906	2.544	2.472
mSGDW	V-DNT/L-DNT	81.5	81.2	2.849	2.503	2.408

473 4.3 HOW MUCH MEMORY MSGDW SAVES RATHER THAN ADAMW?

474 We compare the memory usage by mSGDW and AdamW. The results are shown in Table 2. Theoreti-
 475

476 TABLE 2: Comparision of GPU memory used by mSGDW and AdamW trained on 1.4B DNT
 477 model. DNT+AdamW means the network usage and the optimizer usage of GPU memory. \dagger denotes
 478 Theoretical calculated values, and \ddagger denotes practically observed values.

	AdamW	mSGDW	DNT+AdamW	DNT+mSGDW
Memory	11.5 \dagger GB	5.7 \dagger GB	\approx 67 \ddagger GB	\approx 61 \ddagger GB

485 cally, we can calculate that the memory taken by AdamW (only the optimizer part) is 11.5GB, and

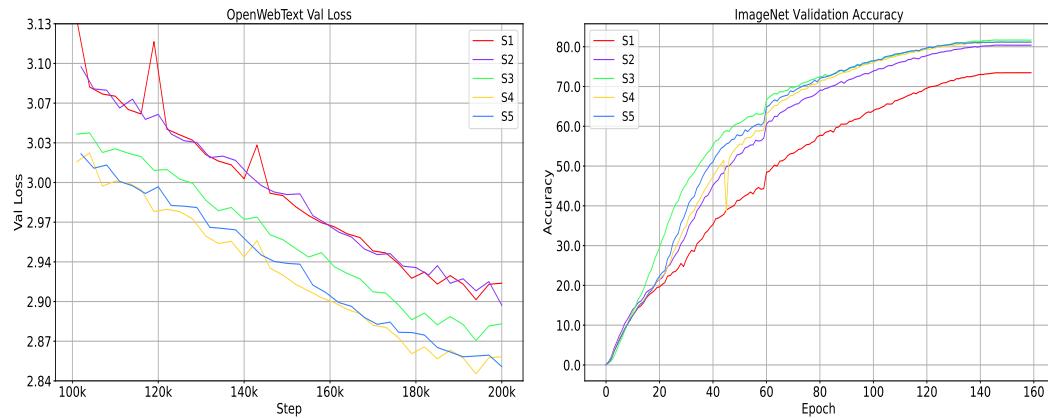
486 the memory costed by mSGDW (only the optimizer part) is 5.7GB. In the experiment, we obtained
 487 DNT+AdamW (model plus optimizer) costs 67GB, and DNT+mSGDW (model plus optimizer) costs
 488 61GB. Using mSGDW instead of AdamW on 1.4B model can save around 6GB memory.
 489

490 4.4 ABLATION STUDY

491
 492 **Comparision of different normalization methods.** We conduct ablation study of five different
 493 normalization methods. Figure 7 in the Appendix D illustrates these five different network settings.
 494 Let us brief introduce these five settings below: 1) Setting 1: Standard transformer with prenorm,
 495 which we abbreviate as S1; 2) Setting 2: S1 + QKNorm; 3) Setting 3: S2 + InputNorm; 4) Setting 4:
 496 2 PreNorms + MidNorm + QKNorm + InputNorm; 5) Setting 5: only 1 PreNorm before self-attention
 497 + MidNorm + QKNorm + InputNorm. We use momentum mSGDW for all training in this subsection.
 498 All models were trained with the same hyper-parameters. The results are shown in Figure 6.
 499

500 We have the following observations,

501 • On the OpenWebText dataset, the original PreNorm setting (S1) shows the worst performance. The
 502 performance of S2 is similar to that of S1. S3 with input obtained a better performance. Finally, S4
 503 and S5 obtained the best performance. Meanwhile, the performance of S4 and S5 is similar.
 504 • On the ImageNet dataset, the original PreNorm setting (S1) is significantly worse than the other
 505 four Settings. S3 achieves the best setting, and S4 and S5 also obtain excellent performance.



521
 522 FIGURE 6: Ablation study of different settings using mSGD optimizer on ImageNet and OpenWeb-
 523 Text. Left side shows accuracy curve of Huge vision model (632M) on ImageNet. Right side shows
 524 the validation loss of language model (124M) on OpenWebText.

525 5 CONCLUSION

526 We have introduced a novel architecture, Deeply Normalized Transformer (DNT), which enables
 527 efficient training with vanilla momentum SGD (mSGDW), achieving performance on par with
 528 AdamW-optimized Transformers. Unlike traditional approaches that rely on sophisticated optimizers
 529 to address the challenges of heavy-tailed gradient distributions, our DNT properly integrated
 530 normalization techniques into the architecture of Transformer to regulate the Jacobian matrices of each
 531 block, effectively balance the contributions of weights, activations, and their interactions, and thus
 532 make the gradient distribution concentrated. Our findings demonstrated that a properly designed
 533 architecture can make a simple optimizers like mSGDW just as effective as sophisticated ones and
 534 opened new opportunities for creating more efficient, scalable, and accessible Transformer models.
 535

540
541
ETHICS STATEMENT542
543
544
545
546
547
This work presents a novel deeply normalized Transformer architecture. It does not involve human
subjects and poses no potential risks. The study is free from conflicts of interest, sponsorship issues,
or concerns related to discrimination, bias, or fairness. All data used adhere to legal and ethical
standards, and privacy and security considerations have been addressed. Our work fully adheres to
research integrity principles, and no ethical concerns have arisen during the course of this study.548
549
REPRODUCIBILITY STATEMENT550
551
552
553
To facilitate reproducibility, we provide comprehensive experimental details in the Appendices,
including theoretical proofs, experimental settings, and configurations. Our implementation builds on
nanoGPT and timm. The ImageNet and OpenWebText datasets are publicly available.554
555
REFERENCES556
557
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint
arXiv:1607.06450*, 2016.559
560
561
Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd:
Compressed optimisation for non-convex problems. In *International Conference on Machine
Learning*, pp. 560–569. PMLR, 2018.562
563
564
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.566
567
568
Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in neural information processing systems, 36:49205–49233, 2023.569
570
571
572
Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24(240):1–113,
2023.573
574
575
576
577
Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In *International Conference on Machine Learning*,
pp. 7480–7512. PMLR, 2023.578
579
580
581
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In *International Conference
on Learning Representations*, 2020.582
583
584
585
Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.586
587
John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. *Journal of machine learning research*, 12(7), 2011.588
589
590
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
pp. 770–778, 2016.591
592
593
Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition*, pp. 16000–16009, 2022.

594 Alex Henry, Prudhvi Raj Dachapally, Shubham Shantaram Pawar, and Yuxuan Chen. Query-key
 595 normalization for transformers. In *Findings of the Association for Computational Linguistics: EMNLP 2020*, pp. 4246–4253, 2020.

597

598 G Hinton. Rmsprop: divide the gradient by a running average of its recent magnitude. *COURSERA: Neural Networks for Machine Learning*, 13, 2012.

599

600 Roger A Horn and Charles R Johnson. *Matrix analysis*. Cambridge university press, 2012.

601

602 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
 603 reducing internal covariate shift. In *International conference on machine learning*, pp. 448–456.
 604 PMLR, 2015.

605

606 Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
 607 reduction. *Advances in neural information processing systems*, 26, 2013.

608

609 Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cesista, Laker Newhouse, and Jeremy
 610 Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL <https://kellerjordan.github.io/posts/muon/>.

611

612 Andrej Karpathy. NanoGPT. <https://github.com/karpathy/nanoGPT>, 2022.

613

614 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.

615

616 Yann LeCun, L eon Bottou, Yoshua Bengio, et al. Gradient-based learning applied to document
 617 recognition. *PROCEEDINGS OF THE IEEE*, pp. 1, 1998.

618

619 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 620 training for unified vision-language understanding and generation. In *International conference on machine learning*, pp. 12888–12900. PMLR, 2022.

621

622 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 623 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint arXiv:2412.19437*, 2024.

624

625 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in neural information processing systems*, 36:34892–34916, 2023a.

626

627 Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
 628 second-order optimizer for language model pre-training. *arXiv preprint arXiv:2305.14342*, 2023b.

629

630 Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
 631 Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12009–12019, 2022.

632

633 Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. In *International Conference on Learning Representations*, 2019.

634

635 Ilya Loshchilov, Cheng-Ping Hsieh, Simeng Sun, and Boris Ginsburg. ngpt: Normalized transformer
 636 with representation learning on the hypersphere. *The Thirteenth International Conference on Learning Representations*, 2025.

637

638 Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of convergence $o(1/k^2)$. In *Doklady an ussr*, volume 269, pp. 543–547, 1983.

639

640 Yurii Nesterov. *Introductory lectures on convex optimization: A basic course*, volume 87. Springer
 641 Science & Business Media, 2013.

642

643 Yurii Nesterov. Introductory lectures on convex programming volume i: Basic course. 1998.

644

645 Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, and Aurelien
 646 Lucchi. Signal propagation in transformers: Theoretical perspectives and the role of rank collapse.
 647 *Advances in Neural Information Processing Systems*, 35:27198–27211, 2022.

648 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 649 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
 650 high-performance deep learning library. *Advances in neural information processing systems*, 32,
 651 2019.

652 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
 653 the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023.

654 Xianbiao Qi, Jianan Wang, Yihao Chen, Yukai Shi, and Lei Zhang. Lipsformer: Introducing
 655 lipschitz continuity to vision transformers. In *The Eleventh International Conference on Learning
 656 Representations*, 2023.

657 Xianbiao Qi, Yelin He, Jiaquan Ye, Chun-Guang Li, Bojia Zi, Xili Dai, Qin Zou, and Rong Xiao.
 658 Taming transformer without using learning rate warmup. *The Thirteenth International Conference
 659 on Learning Representations*, 2025a.

660 Xianbiao Qi, Jiaquan Ye, Yelin He, Chun-Guang Li, Bojia Zi, Xili Dai, Qin Zou, and Rong
 661 Xiao. Stable-transformer: Towards a stable transformer training, 2025b. URL <https://openreview.net/forum?id=1kRjnNW0gb>.

662 Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
 663 understanding by generative pre-training. 2018.

664 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 665 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

666 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 667 and Ilya Sutskever. Zero-shot text-to-image generation. In *International conference on machine
 668 learning*, pp. 8821–8831. Pmlr, 2021.

669 Herbert Robbins and Sutton Monro. A stochastic approximation method. *The annals of mathematical
 670 statistics*, pp. 400–407, 1951.

671 Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
 672 In *International Conference on Machine Learning*, pp. 4596–4604. PMLR, 2018.

673 Umut Simsekli, Levent Sagun, and Mert Gurbuzbalaban. A tail-index analysis of stochastic gradient
 674 noise in deep neural networks. In *International Conference on Machine Learning*, pp. 5827–5837.
 675 PMLR, 2019.

676 Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
 677 and momentum in deep learning. In *International conference on machine learning*, pp. 1139–1147.
 678 PMLR, 2013.

679 Terence Tao. *Topics in random matrix theory*, volume 132. American Mathematical Soc., 2012.

680 Qwen Team. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

681 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 682 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 683 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

684 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 685 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing
 686 systems*, 30, 2017.

687 Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*,
 688 volume 47. Cambridge university press, 2018.

689 Jing Wang and Anna Choromanska. A survey of optimization methods for training dl models:
 690 Theoretical perspective on convergence and generalization. *arXiv preprint arXiv:2501.14458*,
 691 2025.

692 Ross Wightman. Pytorch image models. [https://github.com/rwightman/
 693 pytorch-image-models](https://github.com/rwightman/pytorch-image-models), 2019.

702 Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov
703 momentum algorithm for faster optimizing deep models. *IEEE Transactions on Pattern Analysis
704 and Machine Intelligence*, 2024.

705 Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. *arXiv
706 preprint arXiv:1708.03888*, 2017.

708 Huizhuo Yuan, Yifeng Liu, Shuang Wu, Xun Zhou, and Quanquan Gu. Mars: Unleashing the power
709 of variance reduction for training large models. *arXiv preprint arXiv:2411.10438*, 2024.

710 Shuangfei Zhai, Tatiana Likhomanenko, Eta Littwin, Dan Busbridge, Jason Ramapuram, Yizhe
711 Zhang, Jiatao Gu, and Joshua M Susskind. Stabilizing transformer training by preventing attention
712 entropy collapse. In *International Conference on Machine Learning*, pp. 40770–40803. PMLR,
713 2023.

714 Biao Zhang and Rico Sennrich. Root mean square layer normalization. *Advances in Neural
715 Information Processing Systems*, 32, 2019.

716 Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
717 Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? *Advances in Neural
718 Information Processing Systems*, 33:15383–15393, 2020.

719 Jiachen Zhu, Xinlei Chen, Kaiming He, Yann LeCun, and Zhuang Liu. Transformers without
720 normalization. *arXiv preprint arXiv:2503.10622*, 2025.

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

A LLM USAGE

758 During the preparation of this work, the authors used ChatGPT for language editing and to assist in
 759 the creation of TikZ diagrams. The models were firstly prompted with draft text or rough sketches
 760 to improve clarity and fluency of language and to generate code snippets for figures. Then, we
 761 carefully reviewed and modified all generated content. The core ideas, research, analysis, and
 762 conclusions remain entirely the work of the authors, and the LLMs were not involved in any
 763 intellectual contribution.

764

B PROOF OF PROPOSITION 2, 3 AND 5

765 Proposition 1 and Proposition 4 are very easy to prove, we have given a brief proof in the main body.
 766 Therefore, in the appendix, we only provide the proof of Proposition 2, 3 and 5.

767

B.1 PROOF OF PROPOSITION 2 ON PRENORM

768 *Proof.* A single-head self-attention can be defined as

$$769 \quad \mathbf{Y} = \mathbf{W}_v \mathbf{X} \mathbf{A},$$

770 where $\mathbf{P} = \mathbf{X}^\top \mathbf{W}_q^\top \mathbf{W}_k \mathbf{X}$, $\mathbf{A} = \text{softmax}(\frac{\mathbf{P}}{\sqrt{d_q}})$. \mathbf{A} is called as the attention matrix and $\frac{\mathbf{P}}{\sqrt{d_q}}$ is
 771 called as the logit, $\mathbf{A} \in \mathcal{R}^{n \times n}$, $\mathbf{X} \in \mathcal{R}^{d \times n}$, $\mathbf{W}_v \in \mathcal{R}^{d_v \times d}$. Here, our goal is to calculate $\frac{\partial \text{vec}(\mathbf{Y})}{\partial \text{vec}(\mathbf{X})}$.

772 By vectorization of $\mathbf{Y} = \mathbf{W}_v \mathbf{X} \mathbf{A}$, we have

$$773 \quad \partial \text{vec}(\mathbf{Y}) = (\mathbf{A}^\top \otimes \mathbf{W}_v) \partial \text{vec}(\mathbf{X}) + (\mathbf{I}_n \otimes \mathbf{W}_v \mathbf{X}) \partial \text{vec}(\mathbf{A}).$$

774 Bringing in all the terms, we get the following formula

$$775 \quad \frac{\partial \text{vec}(\mathbf{Y})}{\partial \text{vec}(\mathbf{X})} = (\mathbf{A}^\top \otimes \mathbf{W}_v) + (\mathbf{I}_n \otimes \mathbf{W}_v \mathbf{X}) \frac{\mathbf{J}}{\sqrt{d_q}} \left((\mathbf{X}^\top \mathbf{W}_k^\top \mathbf{W}_q \otimes \mathbf{I}_n) \mathbf{C}_{dn} + (\mathbf{I}_n \otimes \mathbf{X}^\top \mathbf{W}_q^\top \mathbf{W}_k) \right),$$

776 where \mathbf{C}_{dn} is the commutation matrix².

777 where $\frac{\partial \text{vec}(\mathbf{Y})}{\partial \text{vec}(\mathbf{A})} = \mathbf{I}_n \otimes \mathbf{W}_v \mathbf{X}$, $\frac{\partial \text{vec}(\mathbf{A})}{\partial \text{vec}(\mathbf{P})} = \frac{\mathbf{J}}{\sqrt{d_q}}$, and we have

$$778 \quad \mathbf{J} = \text{blockdiag}(\text{diag}(\mathbf{A}_{:,1}) - \mathbf{A}_{:,1} \mathbf{A}_{:,1}^\top, \dots, \text{diag}(\mathbf{A}_{:,n}) - \mathbf{A}_{:,n} \mathbf{A}_{:,n}^\top).$$

779 \mathbf{J} is a function of \mathbf{A} , and \mathbf{A} is a function of \mathbf{X} associated with softmax function. Obviously, $\frac{\partial \text{vec}(\mathbf{Y})}{\partial \text{vec}(\mathbf{X})}$
 780 is a high-order function of \mathbf{X} and \mathbf{J} makes the analysis more complex.

781 Here, we give an analysis of the Jacobian matrix of the linear attention module, where $\mathbf{A} = \frac{\mathbf{P}}{\sqrt{d_q}}$ and
 782 $\mathbf{P} = \mathbf{X}^\top \mathbf{W}_q^\top \mathbf{W}_k \mathbf{X}$. For the linear attention, we have the Jacobian matrix as,

$$783 \quad \frac{\partial \text{vec}(\mathbf{Y})}{\partial \text{vec}(\mathbf{X})} = (\mathbf{A}^\top \otimes \mathbf{W}_v) + \frac{(\mathbf{I}_n \otimes \mathbf{W}_v \mathbf{X})}{\sqrt{d_q}} \left((\mathbf{X}^\top \mathbf{W}_k^\top \mathbf{W}_q \otimes \mathbf{I}_n) \mathbf{C} + (\mathbf{I}_n \otimes \mathbf{X}^\top \mathbf{W}_q^\top \mathbf{W}_k) \right). \quad (12)$$

784 Obviously, if the norm of each feature vector for each token is large, the magnitude of each element
 785 in $\frac{\partial \text{vec}(\mathbf{Y})}{\partial \text{vec}(\mathbf{X})}$ will have large probability to be large, and the singular value of $\frac{\partial \text{vec}(\mathbf{Y})}{\partial \text{vec}(\mathbf{X})}$ may be magnified
 786 second-orderly by the norm of each column in \mathbf{X} .

787 If for each column $\mathbf{X}_{:,i}$, we have $\mathbf{X}_{:,i}' = g_i \mathbf{X}_{:,i}$, with the same $\mathbf{W}_q, \mathbf{W}_k, \mathbf{W}_v$, we have $\mathbf{Y} = \mathbf{Y}'$
 788 given $\mathbf{Y} = \text{Self-Attention}(\mathbf{X})$ and $\mathbf{Y}' = \text{Self-Attention}(\mathbf{X}')$ because we will obtain the same
 789 input as the self-attention after the PreNorm.

790 ²https://en.wikipedia.org/wiki/Commutation_matrix

810 After PreNorm, we have $\text{PreNorm}(\mathbf{X}) = \text{PreNorm}(\mathbf{X}')$, according to Equation 5, we have
 811 $\frac{\partial \text{vec}(\mathbf{Y})}{\partial \text{vec}(\mathbf{X})} = \frac{\partial \text{vec}(\mathbf{Y}')}{\partial \text{vec}(\mathbf{X}')}$.
 812

813 Until here, we have prove the Proposition 1.

814 Furthermore, we would like to conduct a deeper analysis of the gradient of the loss with respect to
 815 the weights. In a backpropagation, since we have obtained $\frac{\partial \mathcal{L}}{\partial \text{vec}(\mathbf{Y})}$, we would like to further analyze
 816 $\frac{\partial \mathcal{L}}{\partial \text{vec}(\mathbf{W}_q)}$, $\frac{\partial \mathcal{L}}{\partial \text{vec}(\mathbf{W}_k)}$, $\frac{\partial \mathcal{L}}{\partial \text{vec}(\mathbf{W}_v)}$.
 817

818 For the weight matrix \mathbf{W}_q , we have

$$\begin{aligned} 820 \frac{\partial \mathcal{L}}{\partial \text{vec}(\mathbf{W}_q)} &= \frac{\partial \mathcal{L}}{\partial \text{vec}(\mathbf{Y})} \frac{\partial \text{vec}(\mathbf{Y})}{\partial \text{vec}(\mathbf{A})} \frac{\partial \text{vec}(\mathbf{A})}{\partial \text{vec}(\mathbf{P})} \frac{\partial \text{vec}(\mathbf{P})}{\partial \text{vec}(\mathbf{W}_q)}, \\ 821 &= \frac{\partial \mathcal{L}}{\partial \text{vec}(\mathbf{Y})} (\mathbf{I}_n \otimes \mathbf{W}_v \mathbf{X}) \frac{\mathbf{J}}{\sqrt{d_q}} ((\mathbf{W}_k \mathbf{X})^\top \otimes \mathbf{X}^\top) \mathbf{C}. \\ 822 \\ 823 \end{aligned} \quad (13)$$

825 For the weight matrix \mathbf{W}_k , we have

$$\begin{aligned} 827 \frac{\partial \mathcal{L}}{\partial \text{vec}(\mathbf{W}_k)} &= \frac{\partial \mathcal{L}}{\partial \text{vec}(\mathbf{Y})} \frac{\partial \text{vec}(\mathbf{Y})}{\partial \text{vec}(\mathbf{A})} \frac{\partial \text{vec}(\mathbf{A})}{\partial \text{vec}(\mathbf{P})} \frac{\partial \text{vec}(\mathbf{P})}{\partial \text{vec}(\mathbf{W}_k)}, \\ 828 &= \frac{\partial \mathcal{L}}{\partial \text{vec}(\mathbf{Y})} (\mathbf{I}_n \otimes \mathbf{W}_v \mathbf{X}) \frac{\mathbf{J}}{\sqrt{d_q}} (\mathbf{X}^\top \otimes (\mathbf{W}_q \mathbf{X})^\top). \\ 829 \\ 830 \end{aligned} \quad (14)$$

832 For the weight matrix \mathbf{W}_v , we know that $\text{vec}(\mathbf{Y}) = ((\mathbf{X} \mathbf{A})^\top \otimes \mathbf{I}) \text{vec}(\mathbf{W}_v)$, thus we have

$$\begin{aligned} 834 \frac{\partial \mathcal{L}}{\partial \text{vec}(\mathbf{W}_v)} &= \frac{\partial \mathcal{L}}{\partial \text{vec}(\mathbf{Y})} \frac{\partial \text{vec}(\mathbf{Y})}{\partial \text{vec}(\mathbf{W}_v)}, \\ 835 &= \frac{\partial \mathcal{L}}{\partial \text{vec}(\mathbf{Y})} ((\mathbf{A}^\top \mathbf{X}^\top) \otimes \mathbf{I}). \\ 836 \\ 837 \end{aligned} \quad (15)$$

839 We can see that in Equations 13 14 15, the gradients of loss with respect to $\mathbf{W}_q, \mathbf{W}_k, \mathbf{W}_v$ are all
 840 related to \mathbf{X} . After PreNorm, \mathbf{X} is in a relatively stable range, thus, we can promise the range of
 841 value \mathbf{X} will not greatly affect the gradients of $\mathbf{W}_q, \mathbf{W}_k, \mathbf{W}_v$.
 842

843 In conclusion, normalization of \mathbf{X} can help stablize the gradient of the loss function with respect to
 844 $\mathbf{W}_q, \mathbf{W}_k, \mathbf{W}_v$, and meanwhile help make $\frac{\partial \text{vec}(\mathbf{Y})}{\partial \text{vec}(\mathbf{X})}$ more stable and flat. \square
 845

849 B.2 PROOF OF PROPOSITION 3 ON MIDNORM

851 *Proof.* Starting with the definition $\mathbf{W}_1 = \frac{\mathbf{W}}{\|\mathbf{y}\|}$ where $\mathbf{y} = \mathbf{W}\mathbf{x}$ and $\mathbf{W} \in \mathcal{R}^{m \times n}$, let's derive the
 852 relationship between singular values:

853 For a random matrix \mathbf{W} with i.i.d. entries (mean 0, variance σ_W^2) and a random vector \mathbf{x} with i.i.d.
 854 entries (mean 0, variance σ_x^2):
 855

$$856 \mathbb{E}[\|\mathbf{y}\|^2] = \mathbb{E}[\|\mathbf{W}\mathbf{x}\|^2] = \mathbb{E}[\mathbf{x}^T \mathbf{W}^T \mathbf{W} \mathbf{x}]$$

858 Using the trace property:

$$860 \mathbb{E}[\mathbf{x}^T \mathbf{W}^T \mathbf{W} \mathbf{x}] = \mathbb{E}[\text{tr}(\mathbf{x}^T \mathbf{W}^T \mathbf{W} \mathbf{x})] = \mathbb{E}[\text{tr}(\mathbf{W} \mathbf{x} \mathbf{x}^T \mathbf{W}^T)]$$

862 With \mathbf{x} and \mathbf{W} independent, and $\mathbb{E}[\mathbf{x} \mathbf{x}^T] = \sigma_x^2 \mathbf{I}_n$:

$$863 \mathbb{E}[\text{tr}(\mathbf{W} \mathbf{x} \mathbf{x}^T \mathbf{W}^T)] = \mathbb{E}[\text{tr}(\mathbf{W} \sigma_x^2 \mathbf{I}_n \mathbf{W}^T)] = \sigma_x^2 \mathbb{E}[\text{tr}(\mathbf{W} \mathbf{W}^T)]$$

864 For \mathbf{W} with i.i.d. entries, $\mathbb{E}[\text{tr}(\mathbf{W}\mathbf{W}^T)] = m \cdot n \cdot \sigma_W^2$
 865

866 Therefore:

$$867 \mathbb{E}[\|\mathbf{y}\|^2] = \sigma_x^2 \cdot m \cdot n \cdot \sigma_W^2 = m \cdot n \cdot \sigma_W^2 \cdot \sigma_x^2$$

868 By concentration of measure principles, $\|\mathbf{y}\|^2$ concentrates around its expectation with high probability:
 869

$$871 \|\mathbf{y}\|^2 \approx \mathbb{E}[\|\mathbf{y}\|^2] = m \cdot n \cdot \sigma_W^2 \cdot \sigma_x^2$$

873 Taking the square root:

$$875 \|\mathbf{y}\| \approx \sqrt{m \cdot n \cdot \sigma_W \cdot \sigma_x} \text{ with high probability}$$

877 For the SVD of $\mathbf{W} = \mathbf{U}\Sigma\mathbf{V}^T$, where Σ contains singular values $\sigma_i(\mathbf{W})$, the singular values of \mathbf{W}_1
 878 are:

$$879 \sigma_i(\mathbf{W}_1) = \sigma_i\left(\frac{\mathbf{W}}{\|\mathbf{y}\|}\right) = \frac{\sigma_i(\mathbf{W})}{\|\mathbf{y}\|}$$

881 Substituting our concentration result:

$$883 \sigma_i(\mathbf{W}_1) \approx \frac{\sigma_i(\mathbf{W})}{\sqrt{m \cdot n \cdot \sigma_W \cdot \sigma_x}}$$

885 For large random matrices with i.i.d. entries, random matrix theory (Horn & Johnson, 2012; Tao,
 886 2012) tells us that the largest singular value follows:

$$888 \sigma_1(\mathbf{W}) \approx (\sqrt{m} + \sqrt{n})\sigma_W$$

890 Substituting this into our expression:

$$891 \sigma_1(\mathbf{W}_1) \approx \frac{(\sqrt{m} + \sqrt{n})\sigma_W}{\sqrt{m \cdot n \cdot \sigma_W \cdot \sigma_x}} = \frac{\sqrt{m} + \sqrt{n}}{\sqrt{m \cdot n \cdot \sigma_x}}. \quad (16)$$

894 This derivation result in Equation 16 shows that in high dimensions, the largest singular value of
 895 \mathbf{W}_1 becomes essentially deterministic, depending only on the dimensions of \mathbf{W} and the statistical
 896 property σ_x (standard variance of each entry in \mathbf{x}) of the random vector \mathbf{x} . If $m = n$, then we have,
 897 $\sigma_1(\mathbf{W}_1) \approx \frac{2}{\sqrt{m \cdot \sigma_x}}$. \square
 898

902 B.3 PROOF OF PROPOSITION 5 ON QKNORM

904 *Proof.* Self-attention with QKNorm (Dehghani et al., 2023) is defined as:

$$906 \mathbf{Y} = \mathbf{W}_v \mathbf{X} \mathbf{A},$$

907 where $\mathbf{A}' = \text{softmax}(\frac{\mathbf{P}'}{\sqrt{d_h}})$, $\mathbf{P}' = \mathbf{Q}'^\top \mathbf{K}'$, and \mathbf{q}'_i and \mathbf{k}'_i are the i-th column and the j-th column in
 908 \mathbf{Q}' and \mathbf{K}' individually, and we define
 909

$$911 \mathbf{q}'_i = \text{RMSN}(\mathbf{W}_q \mathbf{x}_i) = \gamma_q \odot \frac{\sqrt{d_h} \mathbf{W}_q \mathbf{x}_i}{\|\mathbf{W}_q \mathbf{x}_i\|_2} = \sqrt{d_h} \text{diag}(\gamma_q) \frac{\mathbf{W}_q \mathbf{x}_i}{\|\mathbf{W}_q \mathbf{x}_i\|_2},$$

$$913 \mathbf{k}'_j = \text{RMSN}(\mathbf{W}_k \mathbf{x}_j) = \gamma_k \odot \frac{\sqrt{d_h} \mathbf{W}_k \mathbf{x}_j}{\|\mathbf{W}_k \mathbf{x}_j\|_2} = \sqrt{d_h} \text{diag}(\gamma_k) \frac{\mathbf{W}_k \mathbf{x}_j}{\|\mathbf{W}_k \mathbf{x}_j\|_2}.$$

916 To facilitate our derivation, we will use $\mathbf{Q} = \mathbf{W}_q \mathbf{X}$ and $\mathbf{K} = \mathbf{W}_k \mathbf{X}$ as before, we use \mathbf{q}_i and
 917 \mathbf{k}_j to denote the i-th column and the j-th column in \mathbf{Q} and \mathbf{K} individually. Thus, we can denote
 $\mathbf{q}'_i = \text{RMSN}(\mathbf{q}_i)$ and $\mathbf{k}'_j = \text{RMSN}(\mathbf{k}_j)$.

Therefore, according to the product rule and chain rule, we can denote the Jacobian matrix of \mathbf{Y} with respect to \mathbf{X} as follows:

$$\begin{aligned}
\frac{\partial \text{vec}(\mathbf{Y})}{\partial \text{vec}(\mathbf{X})} &= (\mathbf{A}'^\top \otimes \mathbf{W}_v) + (\mathbf{I}_n \otimes \mathbf{W}_v \mathbf{X}) \frac{\partial \text{vec}(\mathbf{A}')}{\partial \text{vec}(\mathbf{X})} \\
&= (\mathbf{A}'^\top \otimes \mathbf{W}_v) + (\mathbf{I}_n \otimes \mathbf{W}_v \mathbf{X}) \frac{\partial \text{vec}(\mathbf{A}')}{\partial \text{vec}(\mathbf{P}') \partial \text{vec}(\mathbf{X})} \\
&= (\mathbf{A}'^\top \otimes \mathbf{W}_v) + (\mathbf{I}_n \otimes \mathbf{W}_v \mathbf{X}) \frac{\partial \text{vec}(\mathbf{A}')}{\partial \text{vec}(\mathbf{P}') \left(\frac{\partial \text{vec}(\mathbf{P}')}{\partial \text{vec}(\mathbf{Q}') \partial \text{vec}(\mathbf{X}')} + \frac{\partial \text{vec}(\mathbf{P}')}{\partial \text{vec}(\mathbf{K}') \partial \text{vec}(\mathbf{X}')} \right)} \\
&= (\mathbf{A}'^\top \otimes \mathbf{W}_v) + (\mathbf{I}_n \otimes \mathbf{W}_v \mathbf{X}) \frac{\partial \text{vec}(\mathbf{A}')}{\partial \text{vec}(\mathbf{P}') \left(\frac{\partial \text{vec}(\mathbf{P}')}{\partial \text{vec}(\mathbf{Q}') \partial \text{vec}(\mathbf{Q})} \frac{\partial \text{vec}(\mathbf{Q}')}{\partial \text{vec}(\mathbf{X})} + \frac{\partial \text{vec}(\mathbf{P}')}{\partial \text{vec}(\mathbf{K}') \partial \text{vec}(\mathbf{K})} \frac{\partial \text{vec}(\mathbf{K}')}{\partial \text{vec}(\mathbf{X})} \right)}
\end{aligned}$$

To derive out $\frac{\partial \text{vec}(\mathbf{Y})}{\partial \text{vec}(\mathbf{X})}$, we need to derive out each term in the above equation.

Since we know $P' = Q'^\top K'$, then we have,

$$\frac{\partial \text{vec}(\mathbf{P}')}{\partial \text{vec}(\mathbf{K}') } = \mathbf{I} \otimes \mathbf{Q}'^\top$$

Similarly, we have

$$\frac{\partial \text{vec}(P')}{\partial \text{vec}(Q')} = (K'^\top \otimes I) \cdot C_{dN}$$

where C_{dN} is the communication matrix.

We have.

$$\begin{aligned} \mathbf{J}_{\mathbf{Q}}^{Q'} &= \frac{\partial \text{vec}(\mathbf{Q}')}{\partial \text{vec}(\mathbf{Q})} = \text{blockdiag} \left(\frac{\partial \mathbf{q}'_1}{\partial \mathbf{q}_1}, \frac{\partial \mathbf{q}'_2}{\partial \mathbf{q}_2}, \dots, \frac{\partial \mathbf{q}'_N}{\partial \mathbf{q}_N} \right), \\ \mathbf{J}_{\mathbf{K}}^{K'} &= \frac{\partial \text{vec}(\mathbf{K}')}{\partial \text{vec}(\mathbf{K})} = \text{blockdiag} \left(\frac{\partial \mathbf{k}'_1}{\partial \mathbf{k}_1}, \frac{\partial \mathbf{k}'_2}{\partial \mathbf{k}_2}, \dots, \frac{\partial \mathbf{k}'_N}{\partial \mathbf{k}_N} \right) \end{aligned}$$

where

$$\frac{\partial \mathbf{q}'_i}{\partial \mathbf{q}_i} = \frac{\sqrt{d_h}}{\|\mathbf{q}_i\|} \text{diag}(\boldsymbol{\gamma}_q) \left(\mathbf{I} - \frac{\mathbf{q}_i \mathbf{q}_i^\top}{\|\mathbf{q}_i\|^2} \right).$$

We have,

$$\frac{\partial \text{vec}(\mathbf{Q})}{\partial \text{vec}(\mathbf{X})} = \mathbf{I} \otimes \mathbf{W}_q$$

$$\frac{\partial \text{vec}(\mathbf{K})}{\partial \text{vec}(\mathbf{X})} = \mathbf{I} \otimes \mathbf{W}_k$$

we also have

$$\frac{\partial \mathbf{q}'_i}{\partial \mathbf{x}_i} = \frac{\partial \mathbf{q}'_i}{\partial \mathbf{q}_i} \frac{\partial \mathbf{q}_i}{\partial \mathbf{x}_i} = \frac{\sqrt{d_h}}{\|\mathbf{q}_i\|} \text{diag}(\boldsymbol{\gamma}_q) \left(\mathbf{I} - \frac{\mathbf{q}_i \mathbf{q}_i^\top}{\|\mathbf{q}_i\|^2} \right) \mathbf{W}_q = \sqrt{d_h} \text{diag}(\boldsymbol{\gamma}_q) \left(\mathbf{I} - \frac{\mathbf{q}_i \mathbf{q}_i^\top}{\|\mathbf{q}_i\|^2} \right) \frac{\mathbf{W}_q}{\|\mathbf{W}_q \mathbf{x}_i\|},$$

$$\frac{\partial \mathbf{k}'_j}{\partial \mathbf{x}_j} = \frac{\partial \mathbf{k}'_j}{\partial \mathbf{k}_j} \frac{\partial \mathbf{k}_j}{\partial \mathbf{x}_j} = \frac{\sqrt{d_h}}{\|\mathbf{k}_j\|} \text{diag}(\boldsymbol{\gamma}_k) \left(\mathbf{I} - \frac{\mathbf{k}_j \mathbf{k}_j^\top}{\|\mathbf{k}_j\|^2} \right) \mathbf{W}_k = \sqrt{d_h} \text{diag}(\boldsymbol{\gamma}_k) \left(\mathbf{I} - \frac{\mathbf{k}_j \mathbf{k}_j^\top}{\|\mathbf{k}_j\|^2} \right) \frac{\mathbf{W}_k}{\|\mathbf{W}_k \mathbf{x}_i\|}.$$

In Proposition 3, we have proved that in a high-dimensional setting, the singular values of $\frac{\mathbf{W}}{\|\mathbf{W}\mathbf{x}\|}$ is independent to the magnitude of \mathbf{W} . Thus, until now, we have proved the Proposition 5. \square

Further, we would like to discuss the Jacobian matrix $\frac{\partial \text{vec}(\mathbf{Y})}{\partial \text{vec}(\mathbf{X})}$ after QKNorm. We have,

$$\frac{\partial \text{vec}(\mathbf{Y})}{\partial \text{vec}(\mathbf{X})} = (\mathbf{A}'^\top \otimes \mathbf{W}_v) + (\mathbf{I}_n \otimes \mathbf{W}_v \mathbf{X}) \frac{\mathbf{J}}{\sqrt{d_h}} \left((\mathbf{K}'^\top \otimes \mathbf{I}) \cdot \mathbf{C}_{dN} \mathbf{J}_Q^{Q'} (\mathbf{I} \otimes \mathbf{W}_q) + (\mathbf{I} \otimes \mathbf{Q}'^\top) \mathbf{J}_K^{K'} (\mathbf{I} \otimes \mathbf{W}_k) \right). \quad (17)$$

It should be noted that

972 • \mathbf{K}' and \mathbf{Q}' are two normalized terms that have relatively stable range of values.
 973
 974 • the Jacobian matrix of $\mathbf{J}_Q^{Q'}$ is relatively independent to the magnitude of \mathbf{Q} and $\mathbf{J}_K^{K'}$ is relatively
 975 independent to the magnitude of \mathbf{K} in a high-dimensional setting.
 976 • QKNorm cannot fully replace the value of PreNorm because $\frac{\partial \text{vec}(\mathbf{Y})}{\partial \text{vec}(\mathbf{X})}$ in Equation 17 is directly
 977 affected by \mathbf{X} .
 978

979 QKNorm will elliviate the influence of the magnitude of \mathbf{W}_q and \mathbf{W}_k on the $\frac{\partial \text{vec}(\mathbf{Y})}{\partial \text{vec}(\mathbf{X})}$. In the traditional
 980 self-attention, $\frac{\partial \text{vec}(\mathbf{Y})}{\partial \text{vec}(\mathbf{X})}$ is largely affected by $\mathbf{W}_q^\top \mathbf{W}_k$. However, after QKNorm, $\frac{\partial \text{vec}(\mathbf{Y})}{\partial \text{vec}(\mathbf{X})}$ will only
 981 be affected by independent \mathbf{W}_q or \mathbf{W}_k instead of the joint term $\mathbf{W}_q^\top \mathbf{W}_k$. This is important for the
 982 training stability because the singular values of $\mathbf{W}_q^\top \mathbf{W}_k$ will increase extremely fast when both
 983 singular values of \mathbf{W}_q and \mathbf{W}_k are increasing.
 984
 985
 986
 987
 988

989 C EXPERIMENTAL DETAILS

990
 991 TABLE 3: Model configurations, peak learning rate and weight decay for different optimizers.
 992

994 Acronym	995 Size	996 d_model	997 n_head	998 depth	999 AdamW		999 mSGDW	
					999 LR	999 WD	999 LR	999 WD
997 L-DNT-Small	998 124M	999 768	999 12	999 12	999 6e-4	999 0.1	999 1.0	999 1e-4
997 L-DNT-Large	998 774M	999 1280	999 20	999 36	999 6e-4	999 0.1	999 1.0	999 1e-4
997 L-DNT-XL	998 1436M	999 1536	999 24	999 48	999 6e-4	999 0.1	999 1.0	999 1e-4
997 V-DNT-Large	998 307M	999 1024	999 16	999 24	999 1e-3	999 0.1	999 0.5	999 2e-4
997 V-DNT-Huge	998 632M	999 1280	999 16	999 32	999 1e-3	999 0.1	999 0.1	999 1e-3

1000 We conducted experiments on two popular architectures: Vision Transformer (ViT) and Generative
 1001 Pretrained Transformer (GPT). Our implementation leverages established repositories: timm (Wight-
 1002 man, 2019) for ViT and nanoGPT (Karpathy, 2022) for GPT models. We utilized five model
 1003 configurations: L-DNT-Small (124M parameters), L-DNT-Large (774M parameters), L-DNT-XL
 1004 (1436M parameters), V-DNT-Large (307M parameters), and V-DNT-Huge (632M parameters). Model
 1005 specifications including hidden dimension (d_model), number of attention heads (n_head), and net-
 1006 work depth are detailed in Table 3. Training was conducted using PyTorch (Paszke et al., 2019) with
 1007 bfloat16 precision GPUs, employing a cosine learning rate schedule.
 1008

1009 All language models were trained on OpenWebText, using GPT-2 tokenizer. The training dataset
 1010 contains 9B tokens, with a validation set of 4.4M tokens, following the train-validation split from
 1011 nanoGPT. We employed distributed data parallel training with gradient accumulation. All models
 1012 were trained using bfloat16 precision. The 124M models were trained on machines with 8 GPUs,
 1013 774M models were trained with 16 A800 GPUs, while 1436M models were trained with 32 GPUs.
 1014 Our global batch sizes for 125M, 770M and 1436M models are 480, 512 and 512 individually. In
 1015 Sophia (Liu et al., 2023b), they use 480 global batch size for all models. For all language models,
 1016 we used 2000 steps or learning rate warmup to the maximum learning rate, and then used a cosine
 1017 learning rate decay. It takes around four days to train 200K steps for the 1.4B model on 32 GPUs.
 1018

1019 All vision models were trained on ImageNet dataset. We trained each 150 epoches as (Xie et al.,
 1020 2024). We used a learning rate warmup of 60 epochs to the maximum learning rate, and then used a
 1021 cosine learning rate decay.
 1022

1023 For our experiments, we focused on comparing AdamW and mSGDW optimizers. The hyperpa-
 1024 rameters for AdamW were carefully tuned, with $\beta_1 = 0.9$ and $\beta_2 = 0.95$, following the dominant

1026 configuration in LLM pre-training literature. For weight decay, we used 0.1 for AdamW as (Karpathy,
 1027 2022; Liu et al., 2023b). We used the recommended learning rate by nanoGPT for AdamW in GPT.
 1028 Since our DNT is robust to large learning rate, we use 6e-4 for all our L-DNT models and 1e-3 for all
 1029 our V-DNT models for AdamW. For mSGDW, we simply use a rough grid search for the learning
 1030 rate, we cannot search a fine-grained learning rate and weight decay due to its requiring a lot of
 1031 resources. For the momentum in mSGDW, we used a default 0.9 for all experiments. We use the
 1032 implementation³ of mSGDW from timm (Wightman, 2019). This implementation is a decoupled
 1033 weight decay regularization used in AdamW (Loshchilov & Hutter, 2019). Note that mSGDW is not
 1034 directly to add a weight decay in the original implementation of mSGD⁴ in the official PyTorch, it
 1035 will have performance problem.
 1036
 1037
 1038
 1039
 1040
 1041

TABLE 4: Training configurations for ViT and V-DNT.

training config	ViT-L/H (224 ²)	ViT-L/H (224 ²)	V-DNT-L/H (224 ²)	V-DNT-L/H (224 ²)
optimizer	AdamW	mSGDW	AdamW	mSGDW
learning rate schedule		cosine decay		
peak learning rate	1e-3	0.5/0.1	1e-3	0.5/0.1
minimum learning rate	1e-8	1e-8	1e-8	1e-8
weight decay	0.1	2e-4/1e-3	0.1	2e-4/1e-3
optimizer momentum	$\beta_1, \beta_2 = 0.9, 0.99$	$\mu = 0.9$	$\beta_1, \beta_2 = 0.9, 0.99$	$\mu = 0.9$
warmup epoches	60	60	60	60
weight init		Truncated Xavier		
batch size		1024		
training epochs		150		
randaugment		(9, 0.5)		
mixup		0.8		
cutmix		1.0		
random erasing		0		
label smoothing		0.1		
stochastic depth		0.1/0.5		
gradient clip		None		
exp. mov. avg. (EMA)		no		

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

³<https://github.com/huggingface/pytorch-image-models/blob/main/timm/optim/sgdw.py>

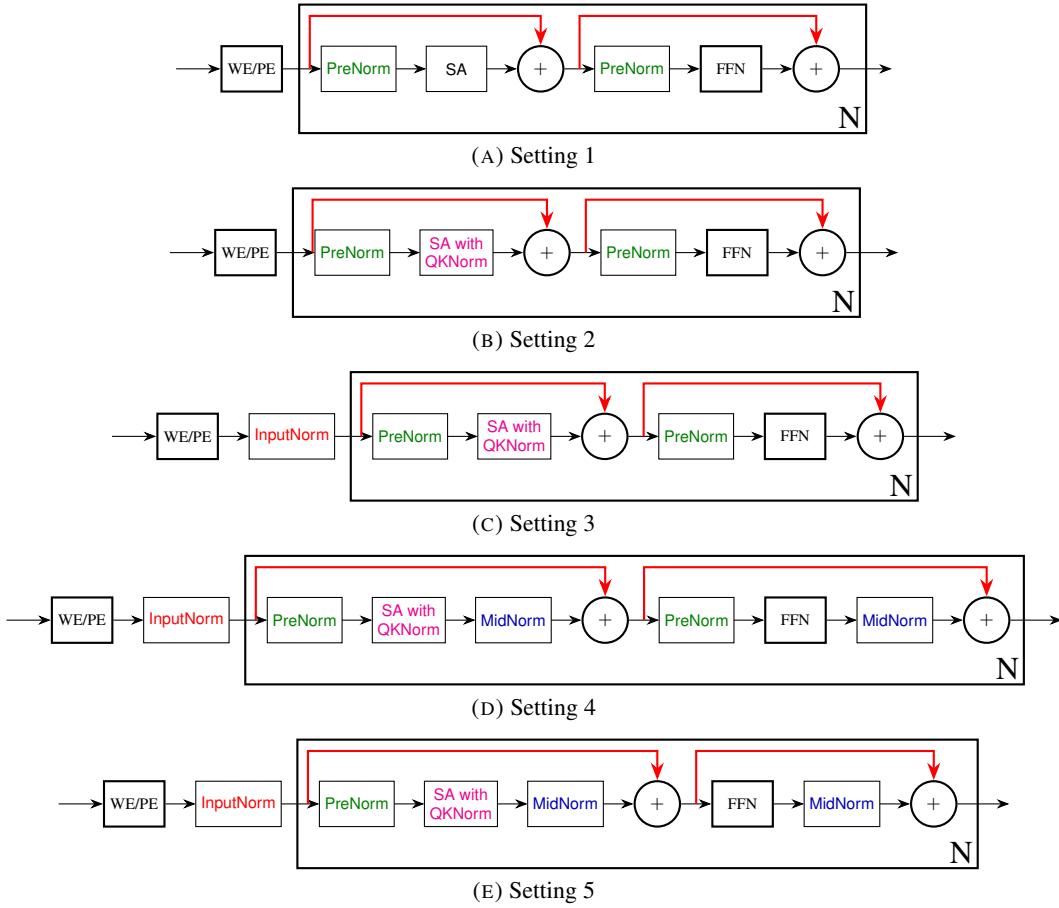
⁴<https://pytorch.org/docs/stable/generated/torch.optim.SGD.html>

TABLE 5: Training configurations for GPT and L-DNT.

training config	GPT2-S/L/XL	GPT2-S/L/XL	L-DNT-S/L/XL	L-DNT-S/L/XL
optimizer	AdamW	mSGDW	AdamW	mSGDW
learning rate schedule		cosine decay		
peak learning rate	6e-4/2.5e-4/1.5e-4	1.0	6e-4	1.0
minimum learning rate	6e-5	6e-5	6e-5	6e-5
weight decay	0.1	1e-4	0.1	1e-4
optimizer momentum	$\beta_1, \beta_2 = 0.9, 0.95$	$\mu = 0.9$	$\beta_1, \beta_2 = 0.9, 0.95$	$\mu = 0.9$
warmup steps	2000	0	2000	0
weight init		Xavier		
tokens seen each update		480K/512K/512K		
max iters		200K		
batch size		480/512/512		
sequence length		1024		
dropout		0.0		
bfloat16		True		
gradient clipping		1.0		

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

FIGURE 7: Five different settings of normalizations evaluated in the ablation study. (A) denotes the standard Transformer with prenorm. (B) denotes (A) plus QKNorm, (C) denotes (B) plus InputNorm, (D) and (E) denote two versions of our DNT.



D FIVE DIFFERENT NETWORK SETTINGS

Figure 7 illustrates five different network settings. We have conducted a ablation study for these five settings in the main body part.

E EXPERIMENTS ON LARGER MODEL

We further compare larger V-DNT and L-DNT models and original ViT and GPT2 models on ImageNet and OpenWebText using mSGDW and AdamW. The results are shown in Figures 8, 9 and 10.

We see that on OpenWebText, L-DNT-large with mSGDW achieves a comparable performance with L-DNT-large with AdamW and achieves a much better performance than GPT2-large with mSGDW. Meanwhile, we find out that V-DNT-huge with mSGDW achieves a comparable performance with V-DNT-huge with AdamW and obtains a much better performance than ViT-huge with mSGDW.

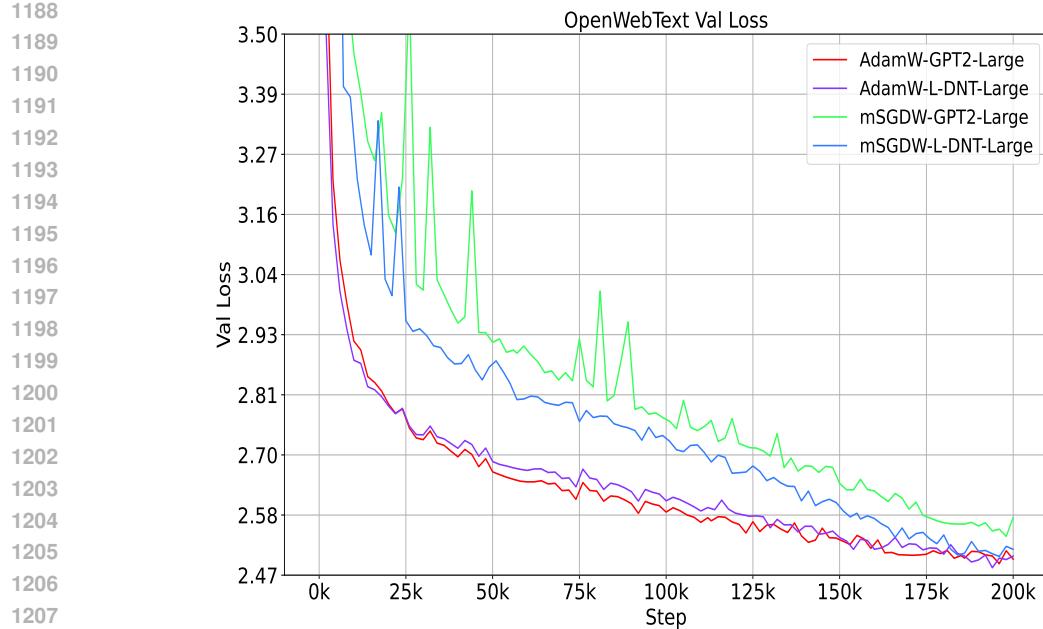


FIGURE 8: Comparison of GPT2-Large and L-DNT-Large (774M) on OpenWebText. All models are trained with 200K in total. GPT2-Large training mSGDW under-performs GPT2-Large with AdamW significantly, but L-DNT-Large with mSGDW can achieve a comparable performance with L-DNT-Large with AdamW.

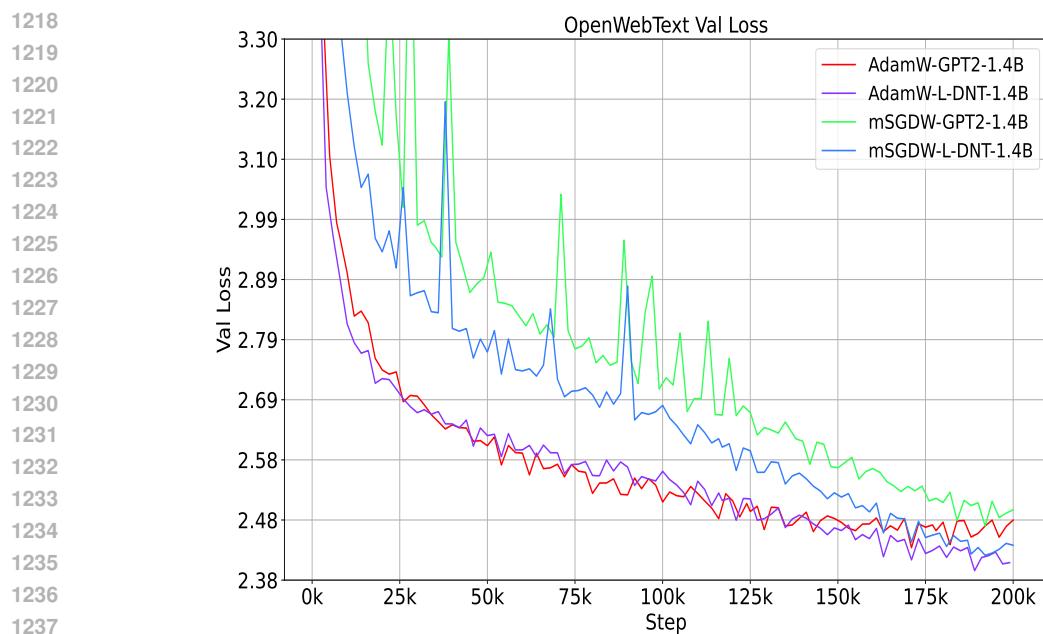


FIGURE 9: Comparison of GPT2-Large and L-DNT-Large (1436M) on OpenWebText. All models are trained with 200K in total. GPT2-Large training mSGDW under-performs GPT2-Large with AdamW significantly, but L-DNT-Large with mSGDW can achieve a comparable performance with L-DNT-Large with AdamW.

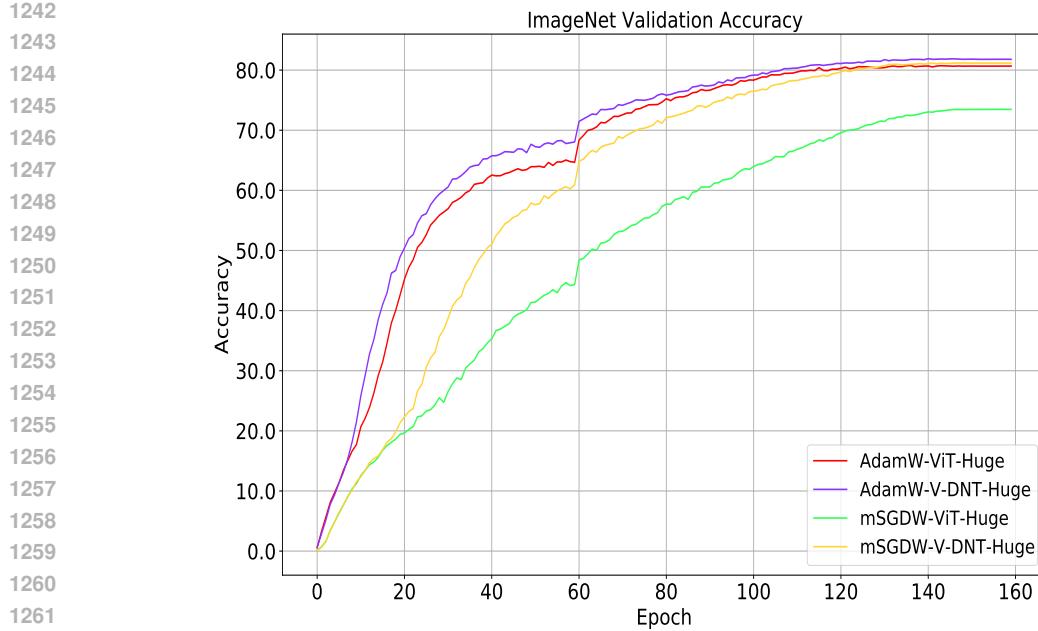


FIGURE 10: Comparison of ViT-Huge and V-DNT-Huge (632M) on ImageNet. All models are trained with 160 epochs in total. ViT-Huge training mSGDW under-performs ViT-Huge with AdamW significantly, but V-DNT-Huge with mSGDW can achieve a comparable performance with V-DNT-Huge with AdamW.

F MORE ABLATION STUDY

In this section, we conducted more ablation studies. In these experiments, we started with a complete L-DNT model (we use setting 5 in Figure 7) that includes one InputNorm, two PreNorm layers, two MidNorm layers, and one QKNorm. We removed InputNorm, PreNorm (both layers), MidNorm (both layers), and QKNorm individually. To observe the instability issue, we trained each ablated model with a relatively large learning rate (Adam optimizer with learning rate 0.3, without warmup).

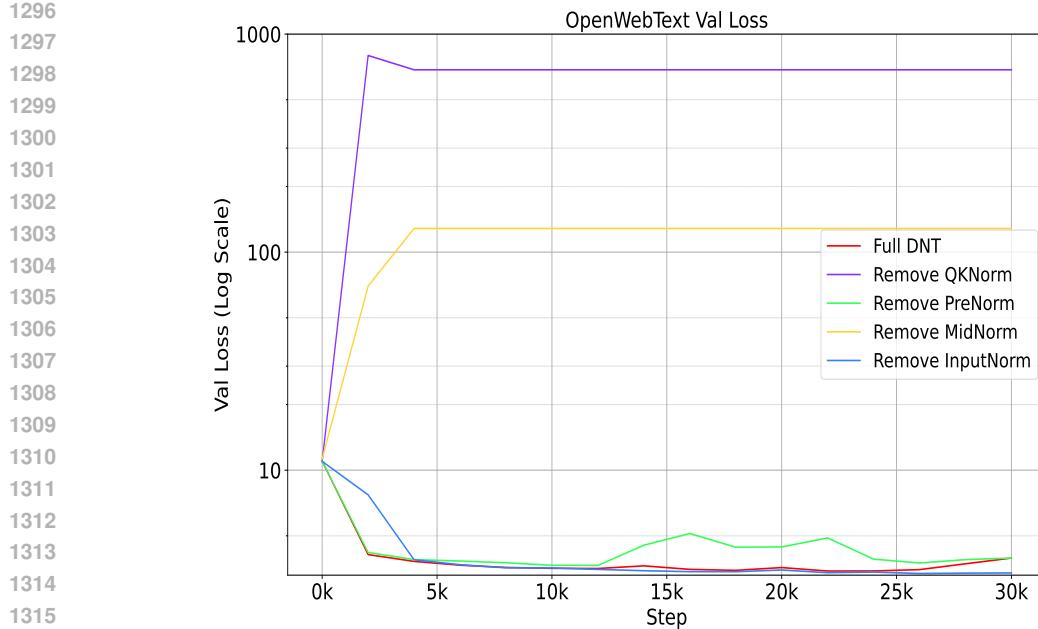


FIGURE 11:

According to the experimental results, we observed that:

- When only removing QKNorm, the model collapsed after just a few training steps;
- When only removing PreNorm, the model began to collapse around 4000 steps;
- When only removing MidNorm, the model exhibited significant oscillations between 10K and 30K steps;
- When only removing InputNorm, the model was able to converge normally even with the 0.3 learning rate.

Therefore, from the perspective of training stability, we conclude that the importance of these normalization layers can be ranked in the following order: QKNorm > PreNorm \approx MidNorm > InputNorm.

Meanwhile, we also conducted an ablation study on the V-DNT model using AdamW, and we observed a similar phenomenon. QKNorm is crucial, while PreNorm and MidNorm exhibit comparable stability. InputNorm has a relatively minor impact on stability.

F.1 EXPERIMENTS USING MUON OPTIMIZER

In this section, we experimented with using the Muon optimizer to compare GPT-2 and DNT. Let us give a brief introduction to Muon. Given an update G , performing SVD decomposition, we have $G = U\Sigma V^\top$. As we know, Muon uses a Newton-Schulz method to approximate the UV^\top matrix. In the current Muon implementation, for 2D matrices, we use Muon to approximate the matrices, while for 1D vectors, we directly employ the AdamW optimizer.

In our experiments with Muon, we used a learning rate of 10^{-4} for 2D vectors and 6×10^{-4} for 1D matrices. We conducted four sets of experiments: GPT-2 with AdamW, DNT with AdamW, GPT-2 with Muon, and DNT with Muon. Same as previous experiments, we use 2000 steps warmup for all four experiments. The results are presented in Figure 12.

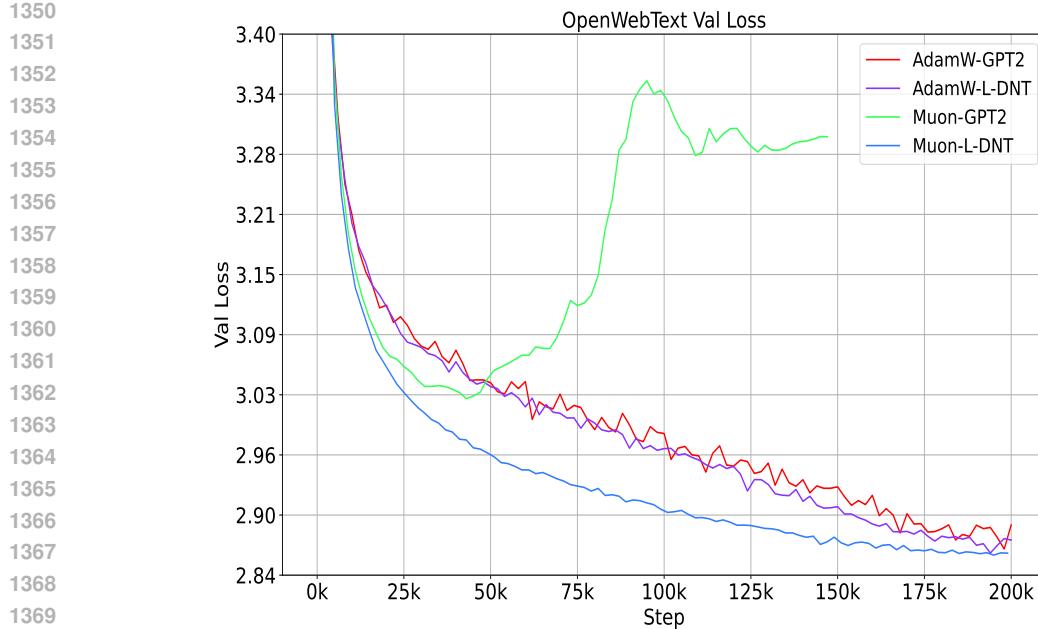


FIGURE 12:

Based on experimental observations, we note the following two points:

- When using the learning rates (10^{-4} , 6×10^{-4}), GPT-2 begins to show an increase in validation loss after 50K training steps, indicating training instability. For DNT, we observe no instability issues, and the training curve exhibits almost no fluctuations. Additionally, when using Muon, DNT demonstrates significantly better convergence speed compared to DNT with AdamW.
- When both DNT and GPT-2 use AdamW, DNT shows slightly better performance than GPT-2.

G A BRIEF INTRODUCTION TO SOME EXISTING OPTIMIZERS

Optimization methods in deep learning can be broadly categorized into first-order methods and second-order methods, each with distinct characteristics and applications. First-order optimization algorithms dominate deep learning due to their computational efficiency, particularly for high-dimensional and large-scale problems. First-order methods rely primarily on gradient information to find the minimum or maximum of a function. Based on learning rate selection strategies, these methods can be divided into optimizers with fixed step size and optimizers with adaptive learning rate.

Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951) serves as the foundational algorithm for neural network optimization. It updates parameters in the opposite direction of the gradient of the objective function. While simple and effective, vanilla SGD can struggle with navigating ravines and saddle points in the loss landscape. Momentum SGD (mSGD) (Nesterov, 1983) addresses the limitations of vanilla SGD by accelerating gradient descent in relevant directions while dampening oscillations. This method augments the gradient direction with a fraction of the update vector from the previous step, allowing faster convergence and helping escape local minima. Other notable variants include signSGD (Bernstein et al., 2018), which uses only the sign of gradients for updates; SVRG (Johnson & Zhang, 2013), which reduces variance in stochastic gradients; LARS (You et al., 2017), which adjusts learning rates layer-wise.

Adaptive methods revolutionized gradient-based optimization by incorporating two key innovations. First, they implement parameter-specific learning rate adaptation, performing smaller updates for

1404 frequently occurring features and larger updates for infrequent features. Second, they incorporate
1405 historical gradient information, often approximating second-order properties of the loss landscape.
1406 AdaGrad (Duchi et al., 2011) adapts learning rates based on historical gradient information and
1407 is particularly effective for sparse data. RMSprop (Hinton, 2012) addresses AdaGrad’s radically
1408 diminishing learning rates by using an exponentially weighted moving average. Adam (Kingma &
1409 Ba, 2014) combines momentum with adaptive learning rates, incorporating both first and second
1410 moments of gradients. AdamW (Loshchilov & Hutter, 2019) modifies Adam with more effective
1411 weight decay regularization, while Adafactor (Shazeer & Stern, 2018) provides a memory-efficient
1412 adaptive method. Défossez et al. provides a unified formulation for adaptive methods like AdaGrad,
1413 Adam, and AdaDelta.

1414 The field continues to evolve with recent innovations including MUON (Jordan et al., 2024),
1415 LION (Chen et al., 2023), Sophia (Liu et al., 2023b), and Mars (Yuan et al., 2024). These methods
1416 represent the cutting edge of adaptive optimization techniques, further advancing efficiency and
1417 performance in training deep learning models.

1418 Wang & Choromanska (2025) give a detailed analysis and survey of optimization methods, we would
1419 like to recommend the audience to refer to their paper for a full reference.

1420 **Remark.** This paper is orthogonal to these works discussed in this section. Our primary contribution
1421 is to demonstrate that vanilla mSGD can achieve strong performance on a Transformer architecture
1422 when it does not have a heavy-tail problem in gradients. Notably, the optimizers discussed here can
1423 also be effectively applied to our proposed DNT network.

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457