
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DNT: A DEEPLY NORMALIZED TRANSFORMER
THAT CAN BE TRAINED BY MOMENTUM SGD

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers have become the de facto backbone of modern deep learning, yet
their training typically demands an advanced optimizer with adaptive learning
rate like AdamW, rather than a momentum SGDW (mSGDW). Previous works
show that it is mainly due to a heavy-tailed distribution of the gradients. In this
paper, we introduce a Deeply Normalized Transformer (DNT), that is meticulously
engineered to overcome the heavy-tailed gradients issue, enabling seamless training
with vanilla mSGDW while yielding comparable performance to the Transformers
trained via AdamW. Specifically, in DNT, we strategically integrate normalization
techniques at proper positions in the Transformers to effectively modulate the
Jacobian matrices of each layer, balance the influence of weights, activations, and
their interactions, and thus enable the distributions of gradients concentrated. We
provide both theoretical justifications of the normalization technique used in our
DNT and extensive empirical evaluation on two popular Transformer architectures,
validating that: a) DNT outperforms its counterparts (i.e., ViT and GPT), and b)
DNT can be effectively trained with a vanilla mSGDW.

1 INTRODUCTION

Transformer (Vaswani et al., 2017) has revolutionized numerous domains in artificial intelligence,
demonstrated remarkable capabilities across natural language processing (Radford et al., 2018; 2019;
Brown et al., 2020; Dubey et al., 2024; Team, 2023; Liu et al., 2024), computer vision (Dosovitskiy
et al., 2020; Liu et al., 2022; Dehghani et al., 2023), AIGC (Ramesh et al., 2021; Peebles & Xie,
2023), and multi-modal applications (Li et al., 2022; Liu et al., 2023a) and become the de facto
backbone of modern deep learning.

Nowadays it is widely accepted that Adam (Kingma & Ba, 2014) or its descendant
AdamW (Loshchilov & Hutter, 2019) are the standard optimizer for training Transformers; whereas
the classical SGD (Robbins & Monro, 1951) and its variants (Nesterov, 1983; 1998; Johnson &
Zhang, 2013), e.g., momentum SGD (mSGD), usually under-perform when training Transformers.
Despite of its heavier load on GPU memory than mSGD, Adam is used as the optimizer in most
recent studies on Large Language Models (LLMs) (Dubey et al., 2024; Team, 2023; Liu et al., 2024)
and multi-modal models (Li et al., 2022; Liu et al., 2023a). Naturally, an interesting question arises:

Can Transformers be trained via mSGD to yield performance matched to that is
trained via Adam? Or, under what conditions?

To answer these questions, we need to understand why mSGD typically underperforms Adam
when training Transformer. Previous studies (Simsekli et al., 2019; Zhang et al., 2020) reveal that
the fundamental reason lies in the statistical property of the stochastic gradients in Transformer
architectures. Unlike Convolutional Neural Networks (CNNs) (LeCun et al., 1998; He et al., 2016)
that are trained on tasks like ImageNet, where the entries of the gradients are typically small and
well-concentrated, the gradients of Transformer typically exhibit heavy-tailed distributions, as shown
in blue in Figure 1. This heavy-tailed distribution means that the amplitudes of the gradient entries
span a wide range and thus it is hard to keep step with each others when updating weights. Thus,
Adam uses a normalized term between the first-order term (i.e. gradients) and the square-root of the
second-order term. Owing the normalization, Adam is robust to the heavy-tail distribution of the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Absolute Value of Gradient ×10 4

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

D
en

si
ty

Wq in ViT
Wq in V-DNT

0.0 0.2 0.4 0.6 0.8 1.0
Absolute Value of Gradient ×10 4

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

D
en

si
ty

Wk in ViT
Wk in V-DNT

0.0 0.2 0.4 0.6 0.8 1.0
Absolute Value of Gradient ×10 4

0.000

0.001

0.002

0.003

0.004

0.005

D
en

si
ty

Wv in ViT
Wv in V-DNT

0.0 0.2 0.4 0.6 0.8 1.0
Absolute Value of Gradient ×10 4

0.000

0.001

0.002

0.003

0.004

0.005

D
en

si
ty

Wv in ViT
Wv in V-DNT

0.0 0.2 0.4 0.6 0.8 1.0
Absolute Value of Gradient ×10 4

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

D
en

si
ty

W1 in ViT
W1 in V-DNT

0.0 0.2 0.4 0.6 0.8 1.0
Absolute Value of Gradient ×10 4

0.000

0.002

0.004

0.006

0.008

0.010

D
en

si
ty

W2 in ViT
W2 in V-DNT

FIGURE 1: Distributions of the absolute values of the entries in gradients for ViT with PreNorm
(marked in blue) and our V-DNT (marked in orange), where V-DNT denotes the vision variant of our
DNT. We observe that the gradients in our V-DNT are typically quite small and well concentrated;
whereas the gradient distributions of the standard ViT have a long tail.

gradients. This explains why Adam has become the standard optimizer for training Transformer in
practice. On contrary, mSGD directly uses the first-order gradient with momentum to update the
weights, and thus the weights updating has difficulty to keep pace with each others. Consequently, an
interesting question turns out to be: can we help mSGD to relieve the issue of heavy-tail gradients in
training Transformers? And how?

To mitigate the issue of heavy-tail gradients in training Transformers with mSGD, we propose to add or
adjust the positions of normalization operations in Transformers, motivated by analyzing the Jacobian
matrix of different modules. Roughly speaking, we use the properly positioned normalization operator
to amend the Jacobian matrix of ∂y

∂x less affected by the weights, activations, or joint influence of
both the weights and activations.

As illustrated in orange in Figure 1, we observe that our designed architecture, a Deeply Normalized
Transformer (termed as DNT), exhibits a more concentrated gradient distribution than its counterpart
which has a heavy-tailed distribution. In this paper, we provide not only theoretical justification for
the properly positioned normalization operator in our DNT, but also empirical evaluations to further
validate that our DNT outperforms its counterparts, i.e., ViT and GPT, on ImageNet classification
and OpenWebText tasks. Since that the distributions of the gradients of DNT are more concentrated,
training it with the vanilla mSGD can yield performance on par with that with Adam optimizer.

To the best of our knowledge, this is the first work to show that using a vanilla mSGD can train a Trans-
former to achieve performance comparable to that of using Adam—provided that the Transformer
architecture is properly modified to mitigate the issue of heavy-tail gradients.

2 PRELIMINARIES

This section will provide some preliminaries on high-dimensional random vectors, which enjoy many
nice properties that are different from their low-dimensional counterparts. Two simple yet useful
theorems are introduced below. Proofs can be found in Lemma 3.2.4 of (Vershynin, 2018).

Theorem 1 (Concentration of norm). Let x be an isotropic random vector in Rd. Then, we have
E∥x∥22 = d. Moreover, if x and y are two independent isotropic random vectors, then E⟨x,y⟩2 = d.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Theorem 2 (Almost orthogonality of high-dimensional independent vectors). Let us normalize the
random vectors x and y in Theorem 1, setting x := x

∥x∥2
and y := y

∥y∥2
, in a high-dimensional

space, the independent and isotropic random vectors x and y, tend to be almost orthogonal,

Theorem 1 establishes that ∥x∥2 ≍
√
d, ∥y∥2 ≍

√
d and ⟨x,y⟩ ≍

√
d with high probability, which

implies that cosine of the angle θ between two random vectors x and y satisfies cos(θ) ≍ 1√
d

.
Theorem 2 implies that in high-dimensional space (i.e., d is very large), two random vectors are
almost orthogonal. Thus, given z = x+ y where x and y are two high-dimensional random vectors,
we have ∥z∥2 ≍

√
∥x∥22 + ∥y∥22.

Jacobian of normalization. Normalization (Ioffe & Szegedy, 2015; Ba et al., 2016; Zhang &
Sennrich, 2019) is a technique widely used in deep learning. It is used to stabilize and accelerate
the training process. For example, LayerNorm is defined as LN(x) = γ ⊙

√
dy√

∥y∥2
2+ϵ

+ β, and y =(
I − 1

d11
⊤)x, where ϵ > 0 is a smoothing factor, d is the feature dimension of x, γ and β are two

learnable Rd vectors, γ and β are usually initialized to 1 and 0. Most recently, some recent LLMs
(Touvron et al., 2023; Chowdhery et al., 2023; Team, 2023; Liu et al., 2024) uses RMSNorm (Zhang &
Sennrich, 2019) to replace LayerNorm, where RMSNorm is defined as: RMSN(x) = γ⊙

√
dx√

∥x∥2
2+ϵ

.

Compared to LayerNorm, RMSNorm does not use the centering term and the bias term.

The Jacobian matrix of RMSNorm with respect to x is calculated as follows

∂ RMSN(x)

∂x
=

√
d√

∥x∥22 + ϵ
diag(γ)

(
I − xx⊤

∥x∥22 + ϵ

)
.

We use RMSNorm as our default normalization technique when mentioning of normalization, but our
analysis can be generalized to the other normalization methods. Here we use a numerator layout for
all our gradients derivation throughout this paper.

Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951) is a classical and fundamental
optimization algorithm in machine learning for training models by minimizing their cost functions.
However, the vanilla SGD often suffers from slow convergence, especially in complex optimization
landscapes with ravines, saddle points, or local minima. To address these limitations, momentum
SGD (Nesterov, 1983; 2013; Sutskever et al., 2013) was introduced as an extension of the basic SGD
algorithm. Momentum SGD (Nesterov, 1983; 2013; Sutskever et al., 2013) introduces a velocity term
m that accumulates gradients over time, i.e., mt+1 = µmt +∇L(wt), wt+1 = wt − αtmt+1

where µ ∈ [0, 1) is the momentum coefficient1 that determines how much of the previous velocity
is retained and αt is the learning rate for the time step t. Unlike in the vanilla SGD, mSGD allows
the optimization to build up a “momentum” in direction of persistent gradient descent, which can
effectively dampen the oscillations in high-curvature directions.

3 THEORETICAL JUSTIFICATION ON WHY DNT CAN BE TRAINED WITH
MOMENTUM SGD

3.1 PROBLEM 1: WHAT IS THE ROOT CAUSE OF HEAVY-TAIL DISTRIBUTION OF GRADIENTS?

Previous works (Zhang et al., 2020; Simsekli et al., 2019) have pointed out that a heavy-tailed
distribution of the stochastic gradients is a root cause of SGD’s poor performance. Here, we will
investigate this issue by analyzing the backpropagation of Transformers.

Suppose xl+1 = f(xl) and we have obtained ∂L
∂xl+1 in a backpropagation process, then we can

calculate ∂L
∂xl using a numerator layout as ∂L

∂xl = ∂L
∂xl+1

∂xl+1

∂xl , where ∂xl+1

∂xl is called as the Jacobian
matrix. Having had ∂L

∂xl , for any a forward layer with xl = W lxl−1, we can compute ∂L
∂W l as

∂L
∂W l

=
∂L
∂xl

xl−1⊤ =
∂L

∂xl+1

∂xl+1

∂xl
xl−1⊤. (1)

1Typical values for µ range from 0.9 to 0.99. In default, for all our experiments, we set µ to 0.90.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

From Equation 1, we observe that the heavy-tail problem in gradients is indeed closely related to
the large diversity of the singular values in the Jacobian matrix ∂xl+1

∂xl . The Jacobian matrix can
have highly diverse singular values for several reasons: 1) the weight matrix contains very diverse
singular values; 2) the activations span widely, leading to Jacobians with very uneven singular value
distributions. When a matrix has a wide range of singular values (i.e., a very large condition number),
it means that the transformation stretches the input very differently along different directions. During
backpropagation, it will cause a heavy-tail problem in the gradients.

Therefore, a reasonable solution to relieve the heavy-tail issue is to constrain the uneven singular
value distribution of the Jacobian matrix via controlling the weight matrix and activations. This is
the basic idea in our paper.

3.2 PROBLEM 2: MITIGATE THE HEAVY-TAIL GRADIENT PROBLEM BY ANALYZING THE
JACOBIAN MATRIX

In this subsection, we will describe how we use different normalizations—adding or adjusting the
position of the normalizations—to constrain the Jacobian matrix to relieve the heavy-tail gradient
issue. Note that we do not claim that we discover any new normalization methods, instead, we
provide our understanding on how each normalization affects the Jacobian matrix. We refer the
readers to (Loshchilov et al., 2025; Zhu et al., 2025; Qi et al., 2025b; 2023) for more discussions
about normalization. We will use red, green, blue, purple, magenta to denote its relationship with
InputNorm, PreNorm, MidNorm, PostNorm and QKNorm, individually.

WE/PE InputNorm Blocks

(A) InputNorm

PreNorm SA/FFN +

(B) PreNorm

SA/FFN MidNorm +

(C) MidNorm

SA/FFN + PostNorm

(D) PostNorm

Wq QKNorm

Wk QKNorm

Wv

A

MatMul

(E) QKNorm

FIGURE 2: Five different normalization methods. The only difference between them is the position
of normalization. In (A), WE/PE indicates word embedding and patch embedding.

3.2.1 INPUTNORM

Definition of InputNorm. InputNorm in Transformer is defined as the normalization that is applied
after the first word embedding in NLP or the first patch embedding in vision Transformer. As shown
in Figure 2 (d), InputNorm is defined as

x0 = InputNorm(h), where h = Embedding(i), (2)
where i is the input and Embedding(·) denotes word embedding or patch embedding. For a standard
residual block in Transformer, we have that:
xl+1 = xl + f(xl) = xl−1 + f(xl−1) + f(xl) = x0 + f(x0) + f(x1) + · · ·+ f(xl−1) + f(xl).

Each xl will be the input into some modules, such as normalization, self-attention and feed-forward
layers. The Jacobian matrices of some modules are sensitive to the norm of the input, such as
LayerNorm and the dot-product self-attention.

Under the assumption that random vectors are almost orthogonal in high dimension, we have that

∥xl+1∥2 ≍
√
(∥x0∥22 + ∥f(x0)∥22 + · · ·+ ∥f(xl)∥22). (3)

Proposition 1 (Effect of norm of input embedding on gradients). In a high-dimensional settings
when all parameters and activations are high-dimensional, if the norm of x0 is very large, it will
lead to gradient vanishing problem in all subsequent layers, provided that InputNorm is not used.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

It means that if the norm of x0 is large, then the norm ∥xl+1∥2 in each layer will also be large. If
∥xl+1∥2 is the input into a normalization layer, according to the Jacobian equation of normalization
∂ RMSN(xl+1)

∂xl+1 =
√
d√

∥xl+1∥2
2+ϵ

diag(γ)
(
I − xl+1xl+1⊤

∥xl+1∥2
2+ϵ

)
, the gradient flow in each layer will be

significantly affected by the norm of x0. Thus, we need to constrain the norm of x0 before it is used
as the input into the following layer.
Remark 1. The norm of x0 has a large influence of the gradient flow of the subsequent layers. If it is
very large, it will lead to gradient vanishing, and if it is very small, it may lead to gradient exploding.
Meanwhile, the network is also sensitive to the change of the norm of x0.

3.2.2 PRENORM

Definition of PreNorm. A PreNorm in Transformer is defined as the normalization that is applied
before the self-attention or the feed-forward components. As shown in Figure 2 (b), PreNorm is
defined as

Y = Self-Attention(X ′),where x′ = PreNorm(x). (4)

A single-head self-attention is defined as

Y = WvXA,

where P = X⊤Wq
⊤WkX , A = softmax(P√

dq

), A is called as the attention matrix, and P√
dq

is

called as the logit, in which A ∈ Rn×n,X ∈ Rd×n,Wq ∈ Rdq×d,Wk ∈ Rdq×d,Wv ∈ Rdv×d.
Herein, our goal is to calculate ∂vec(Y)

∂vec(X) .

By vectorization of Y = WvXA, we have

∂vec(Y) = (A⊤ ⊗Wv)∂vec(X) + (In ⊗WvX)∂vec(A).

Putting together all these terms, we have that

∂vec(Y)

∂vec(X)
= (A⊤ ⊗Wv) + (In ⊗Wv X)

J√
dq

(
(X⊤ Wk

⊤Wq ⊗ In)C + (In ⊗ X⊤ Wq
⊤Wk)

)
.

(5)
where Cdn is the commutation matrix, ⊗ denotes the Kronecker product.

For simplicity, we denote

J = blockdiag
(
diag(A:,1)−A:,1A

⊤
:,1, . . . , diag(A:,n)−A:,nA

⊤
:,n

)
.

The detailed derivation process can also be found in prior work (Qi et al., 2025a). Nevertheless, we
note here that rather than analyzing W⊤

q Wk in the self-attention module, we analyze the influence
of X . According to the Jacobian matrix in Equation 5, we have the following proposition.
Proposition 2 (PreNorm can stabilize the gradient in self-attention module.). If, for each col-
umn X:,i, we have X

′

:,i = giX:,i, according to Equation 4, with the same Wq,Wk,Wv,

Y = Self-Attention(X) and Y ′ = Self-Attention(X ′). Then we have ∂vec(Y)
∂vec(X) =

∂vec(Y ′)
∂vec(X′) .

According to Proposition 2, we have the following remark.
Remark 2. PreNorm will guarantee that the norms of vectors X which is the input to the self-
attention layers are in a relatively stable range of norms. According to Equation 5, we see that if
these norms of X are relatively stable, then the Jacobian matrix will also be stable relative to X .
Meanwhile, since the gradients of Wq,Wk,Wv are directly relative to X , a stable X will guarantee
that Wq,Wk,Wv obtains relatively stable gradients.

3.2.3 MIDNORM

Definition of MidNorm. A MidNorm in Transformer is defined as the normalization that is applied
after the self-attention and feed-forward components and meanwhile before the residual shortcut. As
shown in Figure 2 (b), MidNorm is defined as

y = MidNorm(z),where z = W2 ReLU(W1x). (6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

In the self-attention, Wv and Wo can be seen as similar function as W1 and W2 in FFN. If we only
use single-head attention, then we have z = WoWvx.

The Jacobian matrix of an FFN can be computed as: Jz(x) = ∂ FFN(x;W1,W2)
∂x =

W2 diag (1 (W1x > 0))W1. The Jacobian matrix of an RMSNorm layer is ∂y
∂z =

√
d

∥z∥2
diag(γ)

(
I − zz⊤

∥z∥2
2

)
. The joint Jacobian matrix of an FFN and an RMSNorm is

∂y

∂x
=

∂y

∂z

∂z

∂x
=

√
d diag(γ)

(
I − zz⊤

∥z∥22

)
W2 diag (1 (W1x > 0))W1

∥W2 ReLU(W1x)∥2
. (7)

Proposition 3 (The effect of MidNorm). Let W = W2 diag (1(W1x>0))W1

∥W2 ReLU(W1x)∥2
, in a high-dimensional

settings when W1, W2 and x are high-dimensional and random, the singular values of W will be
only related to the shape of W1 and W2, and will be independent to the magnitude of W1 and W2.

According to Proposition 3, we have the following remark.

Remark 3. MidNorm can effectively guarantee that the norms of W1, W2, Wv, and Wo will not
affect the Jacobian matrix as shown in Equation 7. It means that even the magnitudes of these weight
matrices are very large, it will not magnify the gradients.

3.2.4 POSTNORM

Definition of PostNorm. A PostNorm in Transformer is defined as the normalization that is applied
after the residual block. As shown in Figure 2 (d), PostNorm is defined as

xl+1 = PostNorm(zl+1),where zl+1 = xl + f(xl;W l+1). (8)

Proposition 4 (PostNorm is sensitive to the vector norm of activation). If zl+1 in Equation 8 is very
large, then it will significantly decrease the gradient.

Proof. From Equation 8, we have ∂xl+1

∂zl+1 =
√
d

∥zl+1∥ (I−
zl+1zl+1⊤

∥zl+1∥2
2

). If ∥zl+1∥ is very large, according

to ∂L
∂zl+1 = ∂L

∂xl+1
∂xl+1

∂zl+1 , we have that the gradient of ∂L
∂zl+1 will be significantly decreased.

In a classical Transformer (Vaswani et al., 2017), if f(x;W1,W2) = W2 ReLU(W1x), along with
the training process, σ1(W1) (the largest singular value of W1) and σ1(W2) will usually become
too large (e.g., around 1000). In this way, ∥f(xl;W l+1)∥2 will be very large, it means zl+1 in
Equation 8 will be very large. Therefore, we have that PostNorm under this circumstance will lead to
gradient vanishing.

Remark 4. We need to be very careful when using PostNorm, we must ensure that the norm of the
input vector to PostNorm is within a reasonable range, otherwise the network is likely to cause a
gradient vanishing when zl being very large or a gradient exploding zl when zl being very small.

3.2.5 QKNORM

Definition of QKNorm. A QKNorm (Henry et al., 2020) in Transformer is defined as the normal-
ization that is applied on queries and keys in the self-attention block. As shown in Figure 2 (e),
self-attention with QKNorm (Dehghani et al., 2023) is defined as

Y = WvXA′,where A′ = softmax(
P ′
√
dh

), P ′ = Q′⊤K ′, (9)

in which q′
i and k′

i are the i-th column and the j-th column in Q′ and K ′, individually, and we have

q′
i = QKNorm(Wqxi) = γq ⊙

√
dhWqxi

∥Wqxi∥2
=

√
dh diag(γq)

Wqxi

∥Wqxi∥2
,

k′
j = QKNorm(Wkxj) = γk ⊙

√
dhWkxj

∥Wkxj∥2
=

√
dh diag(γk)

Wkxj

∥Wkxj∥2
,

(10)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where dh is the head dimension. To facilitate the derivation, we denote Q = WqX and K = WkX
as before, and use qi and kj to denote the i-th column and the j-th column in Q and K, individually.
Thus, we have that q′

i = QKNorm(qi) and k′
j = QKNorm(kj).

Moreover, we have that P ′
ij = q′⊤

i k
′
j , where P ′

ij is a scalar, and the gradient is computed as follows,

∂P ′
ij

∂x
= k′⊤

j

∂q′
i

∂x
+ q′⊤

i

∂k′
j

∂x

=
√
dh diag(γq)k

′⊤
j (I − q′

iq
′
i

∥q′
i∥22

)
Wq

∥Wqxi∥2
+
√
dh diag(γk)q

′⊤
i (I −

k′
jk

′
j

∥k′
j∥22

)
Wk

∥Wkxi∥2
.

(11)

Proposition 5 (Effect of QKNorm). In a high-dimensional settings, i.e., when all Wq, Wk and x

are high-dimensional and random, in Equation 11, the gradient term of
∂P ′

ij

∂x is independent of the
magnitudes Wq and Wk.

According to the Proposition, we have the following remark.

Remark 5. QKNorm can mitigate the joint effect of W⊤
q Wk to the gradient of the self-attention

layer. The fast increase of the singular values of W⊤
q Wk has been revealed to be a root reason

leading to model crash. Our analysis shows that QKNorm can effectively mitigate the reason to cause
model crash brought by W⊤

q Wk.

Though QKNorm can mitigate the problem brought by W⊤
q Wk, it cannot fully replace the role of

PreNorm, because PreNorm can jointly deal with the problem of Wq,Wk and Wv and the gradient
of Wv is also affected by the value of X .

3.3 DNT: A TRANSFORMER THAT CAN RELIEVE THE ISSUE OF HEAVY-TAIL GRADIENTS

WE/PE InputNorm

N

PreNorm SA with
QKNorm MidNorm + PreNorm FFN MidNorm +

FIGURE 3: DNT architecture. The second PreNorm marked with dashed and rounded corners is
optional. By default, we do not use the second PreNorm.

Having analyzed the effects of different normalizations, we use four types of normalizations, including
InputNorm, PreNorm, MidNorm and QKNorm, except for PostNorm. The reason why we do not use
PostNorm is that it may bring in some training problem. Finally, we illustrate our DNT in Figure 3.

Our DNT model commences with word embeddings or patch encodings (WE/PE). Then, the initial
representations undergo the InputNorm processing, establishing the normalized embeddings for
subsequent operations. The core transformer block consists of N blocks. In each block, prior to self-
attention, a PreNorm is applied, followed by a self-attention augmented with query-key normalization
(i.e., QKNorm). Subsequently, a MidNorm processes the attention outputs before integrating via a
residual connection. In the second sub-block, a selective PreNorm precedes the feed-forward network
(FFN), after FFN, there is a MidNorm, and a final residual connection completes the information
flow. This entire structure is replicated N times to form the complete network.

We visualize the effects of each normalization in our DNT network in Figure 4. According to
the analysis mentioned above, we summarize the advantages of our DNT model as following: a)
the magnitude of x0 will significantly affect the gradient of each layer in the Transformer, but we
introduce InputNorm to resolve the influence of x0; b) PreNorm can constrain the norm of each
column in activations X in each timestep, and thus amend the Jacobian matrix of self-attention to
not be significantly affected by the magnitude of X; c) MidNorm will amend the Jacobian matrix of
each sub-block (i.e., the sub-block with self-attention and the sub-block with FFN) in our DNT to not
be affected by the magnitude of W1, W2, Wv and Wo; d) QKNorm can relieve or even remove the
influence of the magnitude of Wq and Wk on the Jacobian matrix of self-attention, and thus reduce

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

InputNorm Wq,Wk,Wv,Wo,W1,W2

X0, X1, . . . , XL

(A) Influence of InputNorm.

PreNorm Wq,Wk,Wv

X0, X1, . . . , XL

(B) Influence of PreNorm.

MidNorm Wv,Wo,W1,W2

X0, X1, . . . , XL

(C) Influence of MidNorm.

QKNorm Wq,Wk

Q,K

(D) Influence of QKNorm.

FIGURE 4: Influence of different normalizations. For instance, InputNorm stabilizes
Wq,Wk,Wv,Wo,W1,W2 by constraining X0, X1, . . . , XL.

the risk of problems, such as rank collapse (Noci et al., 2022), entropy collapse (Zhai et al., 2023), or
spectral energy concentration (Qi et al., 2025a) caused by W⊤

q Wk.

In DNT, we use four different types of normalizations. We observe that nGPT (Loshchilov et al.,
2025) also uses some of the normalizations mentioned above. Here, we would like to emphasize
the differences between DNT and nGPT that: a) DNT provides theoretical justifications for each
normalization in different position; b) DNT uses InputNorm rather than PostNorm, whereas nGPT
use many PostNorms but not InputNorm; c) nGPT normalizes the activations or the weights into
spheres, whereas DNT only normalizes the activations but does not requires activations on spheres.

We term our model as Deeply Normalized Transformer (DNT for short), because it is designed by
properly adding or positioning normalization operators in the conventional Transformer. For vision
problem, we term it as V-DNT, and for language problem, we term it as L-DNT. The key difference
between V-DNT and L-DNT is that V-DNT uses patch embedding, but L-DNT uses word embedding
and mask for attention computation.

0k 25k 50k 75k 100k 125k 150k 175k 200k
Step

2.84

2.89

2.94

2.99

3.04

3.10

3.15

3.20

3.25

3.30

Va
l L

os
s

OpenWebText Val Loss
AdamW-GPT2-Small
AdamW-L-DNT-Small
mSGDW-GPT2-Small
mSGDW-L-DNT-Small

0 20 40 60 80 100 120 140 160
Epoch

0.0

20.0

40.0

60.0

80.0

A
cc

ur
ac

y

ImageNet Validation Accuracy

AdamW-ViT-Large
AdamW-V-DNT-Large
mSGDW-ViT-Large
mSGDW-V-DNT-Large

FIGURE 5: Validation loss (Left) on OpenWebText and recognition accuracy (Right) on ImageNet.
We compare L-DNT-Small (124M) to GPT2-Small (124M), and V-DNT-Large (307M) to ViT-Large
(307M). By effectively relieving the heavy-tail gradient problem, our DNT network trained with
naive mSGDW can achieve competitive performance to AdamW (Val loss 2.849 vs. 2.863 on
OpenWebText, Acc 81. 5% vs. 82. 1% on ImageNet). However, in classical Transformer with
PreNorm, the performance of mSGDW under-performs AdamW significantly (Val loss 2.906 vs 2.867
on OpenWebText, Acc 78.2% vs 81.7% on ImageNet). See Appendix C for the training parameters.

4 EXPERIMENTS

We conducted experiments with two popular Transformer architectures: Vision Transformer (ViT)
and Generative Pretrained Transformer (GPT). Our implementation leverages established repositories:
timm (Wightman, 2019) for ViT and nanoGPT (Karpathy, 2022) for GPT models. For experiments

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

with ViT, we utilized two model scales: ViT-Large (307M parameters) and ViT-Huge (632M),
following the configurations described in (Dosovitskiy et al., 2020). The data augmentation strategy
aligns with (Xie et al., 2024) to ensure fair comparison with previously reported results. For
experiments with GPT, we employed the nanoGPT implementation focusing on GPT2-Small (124M)
and GPT2-Large (774M) variants due to computational constraints. The results of our baselines align
with previous work, including Sophia (Liu et al., 2023b) on OpenWebText and MAE (He et al., 2022)
on ImageNet. Training was conducted using PyTorch (Paszke et al., 2019) with bfloat16 precision on
A800 GPUs, employing a cosine learning rate schedule.

4.1 VISUALIZATION OF GRADIENTS OF DNT AND TRANSFORMER WITH PRENORM

To visually compare the standard Transformer with our DNT, we visualized the gradients of different
weights, including Wq,Wk,Wv,Wo,W1,W2. We chose the early checkpoints of the model
training for visualization, but we found that the same phenomenon is also presented in the middle
and later stages of the model training. The visualization is shown in Figure 1, we can see that, DNT
network can well relieve the issue of heavy tail gradient distribution. For instance, in the Transformer,
the absolute values of gradients almost distribute even across [0, 10−4], but the absolute values of
gradients in DNT mainly concentrate around [0, 10−5].

4.2 MSGDW ACHIEVES PERFORMANCE ON PAR WITH ADAMW.

We also give a quantitative comparison of the standard Transformer and DNT trained with Adam
and mSGD on OpenWebText and ImageNet in Table 1. We can see that training our DNT model via
mSGDW achieves a similar result to that is trained with AdamW. We can also see that using mSGDW
to train our DNT model greatly outperforms the performance of using mSGDW to train the standard
Transformer. In Figure 5, we display the validation loss on OpenWebText and the training accuracy
on ImageNet along with the training process. Note that we did not tune the learning rate too much.
We just followed the learning rate settings in the previous works Karpathy (2022); Liu et al. (2023b).
We believe tuning learning rate will bring in some differences. But overall, DNT network can enable
mSGDW compete with AdamW.

TABLE 1: Quantitative comparison of standard ViT/GPT2 and V-DNT/L-DNT trained with AdamW
and mSGDW on OpenWebText and ImageNet. Results on ImageNet is based on 150 epochs, and
results on OpenWebText is based on 200K steps.

ImageNet (Acc. ↑) OpenWebText (Val Loss. ↓)
Optimizer Types of Model 307M 632M 124M 774M 1436M

AdamW ViT/GPT2 81.7 80.8 2.867 2.492 2.435

AdamW V-DNT/L-DNT 82.1 81.9 2.863 2.481 2.396
mSGDW ViT/GPT2 78.2 73.5 2.906 2.544 2.472

mSGDW V-DNT/L-DNT 81.5 81.2 2.849 2.503 2.408

4.3 HOW MUCH MEMORY MSGDW SAVES RATHER THAN ADAMW?

We compare the memory usage by mSGDW and AdamW. The results are shown in Table 2. Theoreti-

TABLE 2: Comparision of GPU memory used by mSGDW and AdamW trained on 1.4B DNT
model. DNT+AdamW means the network usage and the optimizer usage of GPU memory. † denotes
Theoretical calculated values, and ‡ denotes practically observed values.

AdamW mSGDW DNT+AdamW DNT+mSGDW

Memory 11.5† GB 5.7† GB ≈ 67‡ GB ≈ 61‡ GB

cally, we can calculate that the memory taken by AdamW (only the optimizer part) is 11.5GB, and

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

the memory costed by mSGDW (only the optimizer part) is 5.7GB. In the experiment, we obtained
DNT+AdamW (model plus optimizer) costs 67GB, and DNT+mSGDW (model plus optimizer) costs
61GB. Using mSGDW instead of AdamW on 1.4B model can save around 6GB memory.

4.4 ABLATION STUDY

Comparision of different normalization methods. We conduct ablation study of five different
normalization methods. Figure 7 in the Appendix D illustrates these five different network settings.
Let us brief introduce these five settings below: 1) Setting 1: Standard transformer with prenorm,
which we abbreviate as S1; 2) Setting 2: S1 + QKNorm; 3) Setting 3: S2 + InputNorm; 4) Setting 4:
2 PreNorms + MidNorm + QKNorm + InputNorm; 5) Setting 5: only 1 PreNorm before self-attention
+ MidNorm + QKNorm + InputNorm. We use momentum mSGDW for all training in this subsection.
All models were trained with the same hyper-parameters. The results are shown in Figure 6.

We have the following observations,

• On the OpenWebText dataset, the original PreNorm setting (S1) shows the worst performance. The
performance of S2 is similar to that of S1. S3 with input obtained a better performance. Finally, S4
and S5 obtained the best performance. Meanwhile, the performance of S4 and S5 is similar.

• On the ImageNet dataset, the original PreNorm setting (S1) is significantly worse than the other
four Settings. S3 achieves the best setting, and S4 and S5 also obtain excellent performance.

100k 120k 140k 160k 180k 200k
Step

2.84

2.87

2.90

2.94

2.97

3.00

3.03

3.07

3.10

3.13

Va
l L

os
s

OpenWebText Val Loss
S1
S2
S3
S4
S5

0 20 40 60 80 100 120 140 160
Epoch

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

A
cc

ur
ac

y

ImageNet Validation Accuracy
S1
S2
S3
S4
S5

FIGURE 6: Ablation study of different settings using mSGD optimizer on ImageNet and OpenWeb-
Text. Left side shows accuracy curve of Huge vision model (632M) on ImageNet. Right side shows
the validation loss of language model (124M) on OpenWebText.

5 CONCLUSION

We have introduced a novel architecture, Deeply Normalized Transformer (DNT), which enables
efficient training with vanilla momentum SGDW (mSGDW), achieving performance on par with
AdamW-optimized Transformers. Unlike traditional approaches that rely on sophisticated optimizers
to address the challenges of heavy-tailed gradient distributions, our DNT properly integrated nor-
malization techniques into the architecture of Transformer to regulate the Jacobian matrices of each
block, effectively balance the contributions of weights, activations, and their interactions, and thus
make the gradient distribution concentrated. Our findings demonstrated that a properly designed
architecture can make a simple optimizers like mSGDW just as effective as sophisticated ones and
opened new opportunities for creating more efficient, scalable, and accessible Transformer models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work presents a novel deeply normalized Transformer architecture. It does not involve human
subjects and poses no potential risks. The study is free from conflicts of interest, sponsorship issues,
or concerns related to discrimination, bias, or fairness. All data used adhere to legal and ethical
standards, and privacy and security considerations have been addressed. Our work fully adheres to
research integrity principles, and no ethical concerns have arisen during the course of this study.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide comprehensive experimental details in the Appendices,
including theoretical proofs, experimental settings, and configurations. Our implementation builds on
nanoGPT and timm. The ImageNet and OpenWebText datasets are publicly available.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd:
Compressed optimisation for non-convex problems. In International Conference on Machine
Learning, pp. 560–569. PMLR, 2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in neural information processing systems, 36:49205–49233, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International Conference on Machine Learning,
pp. 7480–7512. PMLR, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2020.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alex Henry, Prudhvi Raj Dachapally, Shubham Shantaram Pawar, and Yuxuan Chen. Query-key
normalization for transformers. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pp. 4246–4253, 2020.

G Hinton. Rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA:
Neural Networks for Machine Learning, 13, 2012.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26, 2013.

Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Andrej Karpathy. NanoGPT. https://github.com/karpathy/nanoGPT, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Yann LeCun, L eon Bottou, Yoshua Bengio, et al. Gradient-based learning applied to document
recognition. PROCEEDINGS OF THE IEEE, pp. 1, 1998.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888–12900. PMLR, 2022.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36:34892–34916, 2023a.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023b.

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12009–12019, 2022.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. In International
Conference on Learning Representations, 2019.

Ilya Loshchilov, Cheng-Ping Hsieh, Simeng Sun, and Boris Ginsburg. ngpt: Normalized transformer
with representation learning on the hypersphere. The Thirteenth International Conference on
Learning Representations, 2025.

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of conver-
gence o (1/kˆ 2). In Doklady an ussr, volume 269, pp. 543–547, 1983.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

Yurri Nesterov. Introductory lectures on convex programming volume i: Basic course. 1998.

Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, and Aurelien
Lucchi. Signal propagation in transformers: Theoretical perspectives and the role of rank collapse.
Advances in Neural Information Processing Systems, 35:27198–27211, 2022.

12

https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://github.com/karpathy/nanoGPT

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Xianbiao Qi, Jianan Wang, Yihao Chen, Yukai Shi, and Lei Zhang. Lipsformer: Introducing
lipschitz continuity to vision transformers. In The Eleventh International Conference on Learning
Representations, 2023.

Xianbiao Qi, Yelin He, Jiaquan Ye, Chun-Guang Li, Bojia Zi, Xili Dai, Qin Zou, and Rong Xiao.
Taming transformer without using learning rate warmup. The Thirteenth International Conference
on Learning Representations, 2025a.

Xianbiao Qi, Jiaquan Ye, Yelin He, Chun-Guang Li, Bojia Zi, Xili Dai, Qin Zou, and Rong
Xiao. Stable-transformer: Towards a stable transformer training, 2025b. URL https:
//openreview.net/forum?id=lkRjnNW0gb.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, pp. 8821–8831. Pmlr, 2021.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Umut Simsekli, Levent Sagun, and Mert Gurbuzbalaban. A tail-index analysis of stochastic gradient
noise in deep neural networks. In International Conference on Machine Learning, pp. 5827–5837.
PMLR, 2019.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
and momentum in deep learning. In International conference on machine learning, pp. 1139–1147.
PMLR, 2013.

Terence Tao. Topics in random matrix theory, volume 132. American Mathematical Soc., 2012.

Qwen Team. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Jing Wang and Anna Choromanska. A survey of optimization methods for training dl models:
Theoretical perspective on convergence and generalization. arXiv preprint arXiv:2501.14458,
2025.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

13

https://openreview.net/forum?id=lkRjnNW0gb
https://openreview.net/forum?id=lkRjnNW0gb
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov
momentum algorithm for faster optimizing deep models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

Huizhuo Yuan, Yifeng Liu, Shuang Wu, Xun Zhou, and Quanquan Gu. Mars: Unleashing the power
of variance reduction for training large models. arXiv preprint arXiv:2411.10438, 2024.

Shuangfei Zhai, Tatiana Likhomanenko, Etai Littwin, Dan Busbridge, Jason Ramapuram, Yizhe
Zhang, Jiatao Gu, and Joshua M Susskind. Stabilizing transformer training by preventing attention
entropy collapse. In International Conference on Machine Learning, pp. 40770–40803. PMLR,
2023.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural
Information Processing Systems, 32, 2019.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances in Neural
Information Processing Systems, 33:15383–15393, 2020.

Jiachen Zhu, Xinlei Chen, Kaiming He, Yann LeCun, and Zhuang Liu. Transformers without
normalization. arXiv preprint arXiv:2503.10622, 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A LLM USAGE

During the preparation of this work, the authors used ChatGPT for language editing and to assist in
the creation of TikZ diagrams. The models were firstly prompted with draft text or rough sketches
to improve clarity and fluency of language and to generate code snippets for figures. Then, we
carefully reviewed and modified all generated content. The core ideas, research, analysis, and
conclusions remain entirely the work of the authors, and the LLMs were not involved in any
intellectual contribution.

B PROOF OF PROPOSITION 2, 3 AND 5

Propostion 1 and Proposition 4 are very easy to prove, we have given a brief proof in the main body.
Therefore, in the appendix, we only provide the proof of Proposition 2, 3 and 5.

B.1 PROOF OF PROPOSITION 2 ON PRENORM

Proof. A single-head self-attention can be defined as

Y = WvXA,

where P = X⊤Wq
⊤WkX, A = softmax(P√

dq

). A is called as the attention matrix and P√
dq

is

called as the logit, A ∈ Rn×n,X ∈ Rd×n,Wv ∈ Rdv×d . Here, our goal is to calculate ∂vec(Y)
∂vec(X) .

By vectorization of Y = WvXA, we have

∂vec(Y) = (A⊤ ⊗Wv)∂vec(X) + (In ⊗WvX)∂vec(A).

Bringing in all the terms, we get the following formula

∂vec(Y)

∂vec(X)
= (A⊤ ⊗Wv) + (In ⊗WvX)

J√
dq

(
(X⊤Wk

⊤Wq ⊗ In)Cdn + (In ⊗X⊤Wq
⊤Wk)

)
,

where Cdn is the commutation matrix 2.

where ∂vec(Y)
∂vec(A) = In ⊗WvX , ∂vec(A)

∂vec(P) =
J√
dq

, and we have

J = blockdiag(diag(A:,1)−A:,1A
⊤
:,1, . . . , diag(A:,n)−A:,nA

⊤
:,n).

J is a function of A, and A is a function of X associated with softmax function. Obviously, ∂vec(Y)
∂vec(X)

is a high-order function of X and J makes the analysis more complex.

Here, we give an analysis of the Jacobian matrix of the linear attention module, where A = P√
dq

and

P = X⊤Wq
⊤WkX . For the linear attention, we have the Jacobian matrix as,

∂vec(Y)

∂vec(X)
= (A⊤ ⊗Wv) +

(In ⊗WvX)√
dq

(
(X⊤Wk

⊤Wq ⊗ In)C + (In ⊗X⊤Wq
⊤Wk)

)
. (12)

Obviously, if the norm of each feature vector for each token is large, the magnitude of each element
in ∂vec(Y)

∂vec(X) will have large probability to be large, and the singular value of ∂vec(Y)
∂vec(X) may be magnified

second-orderly by the norm of each column in X .

If for each column X:,i, we have X
′

:,i = giX:,i, with the same Wq,Wk,Wv, we have Y = Y ′

given Y = Self-Attention(X) and Y ′ = Self-Attention(X ′) because we will obtain the same
input as the self-attention after the PreNorm.

2https://en.wikipedia.org/wiki/Commutation_matrix

15

https://en.wikipedia.org/wiki/Commutation_matrix

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

After PreNorm, we have PreNorm(X) = PreNorm(X ′), according to Equation 5, we have
∂vec(Y)
∂vec(X) =

∂vec(Y ′)
∂vec(X′) .

Until here, we have prove the Proposition 1.

Furthermore, we would like to conduct a deeper analysis of the gradient of the loss with respect to
the weights. In a backpropagation, since we have obtained ∂L

∂vec(Y) , we would like to further analyze
∂L

∂vec(Wq)
, ∂L
∂vec(Wk)

, ∂L
∂vec(Wv)

.

For the weight matrix Wq , we have

∂L
∂vec(Wq)

=
∂L

∂vec(Y)

∂vec(Y)

∂vec(A)

∂vec(A)

∂vec(P)

∂vec(P)

∂vec(Wq)
,

=
∂L

∂vec(Y)
(In ⊗WvX)

J√
dq

(
(WkX)⊤ ⊗X⊤)C.

(13)

For the weight matrix Wk, we have

∂L
∂vec(Wk)

=
∂L

∂vec(Y)

∂vec(Y)

∂vec(A)

∂vec(A)

∂vec(P)

∂vec(P)

∂vec(Wk)
,

=
∂L

∂vec(Y)
(In ⊗WvX)

J√
dq

(
X⊤ ⊗ (WqX)⊤

)
.

(14)

For the weight matrix Wv , we know that vec(Y) =
(
(XA)⊤ ⊗ I

)
vec(Wv), thus we have

∂L
∂vec(Wv)

=
∂L

∂vec(Y)

∂vec(Y)

∂vec(Wv)
,

=
∂L

∂vec(Y)

(
(A⊤X⊤)⊗ I

)
.

(15)

We can see that in Equations 13 14 15, the gradients of loss with respect to Wq,Wk,Wv are all
related to X . After PreNorm, X is in a relatively stable range, thus, we can promise the range of
value X will not greatly affect the gradients of Wq,Wk,Wv .

In conclusion, normalization of X can help stablize the gradient of the loss function with respect to
Wq,Wk,Wv , and meanwhile help make ∂vec(Y)

∂vec(X) more stable and flat.

B.2 PROOF OF PROPOSITION 3 ON MIDNORM

Proof. Starting with the definition W1 = W
∥y∥ where y = Wx and W ∈ Rm×n, let’s derive the

relationship between singular values:

For a random matrix W with i.i.d. entries (mean 0, variance σ2
W) and a random vector x with i.i.d.

entries (mean 0, variance σ2
x):

E[∥y∥2] = E[∥Wx∥2] = E[xTW TWx]

Using the trace property:

E[xTW TWx] = E[tr(xTW TWx)] = E[tr(WxxTW T)]

With x and W independent, and E[xxT] = σ2
xIn:

E[tr(WxxTW T)] = E[tr(Wσ2
xInW

T)] = σ2
xE[tr(WW T)]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

For W with i.i.d. entries, E[tr(WW T)] = m · n · σ2
W

Therefore:
E[∥y∥2] = σ2

x ·m · n · σ2
W = m · n · σ2

W · σ2
x

By concentration of measure principles, ∥y∥2 concentrates around its expectation with high probabil-
ity:

∥y∥2 ≈ E[∥y∥2] = m · n · σ2
W · σ2

x

Taking the square root:

∥y∥ ≈
√
m · n · σW · σx with high probability

For the SVD of W = UΣV T , where Σ contains singular values σi(W), the singular values of W1

are:

σi(W1) = σi

(
W

∥y∥

)
=

σi(W)

∥y∥

Substituting our concentration result:

σi(W1) ≈
σi(W)√

m · n · σW · σx

For large random matrices with i.i.d. entries, random matrix theory (Horn & Johnson, 2012; Tao,
2012) tells us that the largest singular value follows:

σ1(W) ≈ (
√
m+

√
n)σW

Substituting this into our expression:

σ1(W1) ≈
(
√
m+

√
n)σW√

m · n · σW · σx
=

√
m+

√
n√

m · n · σx
. (16)

This derivation result in Equation 16 shows that in high dimensions, the largest singular value of
W1 becomes essentially deterministic, depending only on the dimensions of W and the statistical
property σx (standard variance of each entry in x) of the random vector x. If m = n, then we have,
σ1(W1) ≈ 2√

m·σx
.

B.3 PROOF OF PROPOSITION 5 ON QKNORM

Proof. Self-attention with QKNorm (Dehghani et al., 2023) is defined as:

Y = WvXA,

where A′ = softmax(P ′
√
dh
), P ′ = Q′⊤K ′, and q′

i and k′
i are the i-th column and the j-th column in

Q′ and K ′ individually, and we define

q′
i = RMSN(Wqxi) = γq ⊙

√
dhWqxi

∥Wqxi∥2
=
√
dh diag(γq)

Wqxi

∥Wqxi∥2
,

k′
j = RMSN(Wkxj) = γk ⊙

√
dhWkxj

∥Wkxj∥2
=
√
dh diag(γk)

Wkxj

∥Wkxj∥2
.

To facilitate our derivation, we will use Q = WqX and K = WkX as before, we use qi and
kj to denote the i-th column and the j-th column in Q and K individually. Thus, we can denote
q′
i = RMSN(qi) and k′

j = RMSN(kj).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Therefore, according to the product rule and chain rule, we can denote the Jacobian matrix of Y with
respect to X as follows:
∂vec(Y)

∂vec(X)
= (A

′⊤ ⊗ Wv) + (In ⊗ WvX)
∂vec(A′)

∂vec(X)

= (A
′⊤ ⊗ Wv) + (In ⊗ WvX)

∂vec(A′)

∂vec(P ′)

∂vec(P ′)

∂vec(X)

= (A
′⊤ ⊗ Wv) + (In ⊗ WvX)

∂vec(A′)

∂vec(P ′)

(
∂vec(P ′)

∂vec(Q′)

∂vec(Q′)

∂vec(X′)
+

∂vec(P ′)

∂vec(K′)

∂vec(K′)

∂vec(X′)

)
= (A

′⊤ ⊗ Wv) + (In ⊗ WvX)
∂vec(A′)

∂vec(P ′)

(
∂vec(P ′)

∂vec(Q′)

∂vec(Q′)

∂vec(Q)

∂vec(Q)

∂vec(X)
+

∂vec(P ′)

∂vec(K′)

∂vec(K′)

∂vec(K)

∂vec(K)

∂vec(X)

)

To derive out ∂vec(Y)
∂vec(X) , we need to derive out each term in the above equation.

Since we know P ′ = Q′⊤K ′, then we have,

∂vec(P ′)

∂vec(K ′)
= I ⊗Q′⊤

Similarly, we have
∂vec(P ′)

∂vec(Q′)
= (K ′⊤ ⊗ I) ·CdN

where CdN is the communication matrix.

We have,

JQ′

Q =
∂vec(Q′)

∂vec(Q)
= blockdiag

(
∂q′

1

∂q1
,
∂q′

2

∂q2
, . . . ,

∂q′
N

∂qN

)
,

JK′

K =
∂vec(K ′)

∂vec(K)
= blockdiag

(
∂k′

1

∂k1
,
∂k′

2

∂k2
, . . . ,

∂k′
N

∂kN

)
where

∂q′
i

∂qi
=

√
dh

∥qi∥
diag(γq)

(
I − qiq

⊤
i

∥qi∥2

)
.

We have,
∂vec(Q)

∂vec(X)
= I ⊗Wq,

∂vec(K)

∂vec(X)
= I ⊗Wk.

we also have

∂q′
i

∂xi
=

∂q′
i

∂qi

∂qi
∂xi

=

√
dh

∥qi∥
diag(γq)

(
I − qiq

⊤
i

∥qi∥2

)
Wq =

√
dh diag(γq)

(
I − qiq

⊤
i

∥qi∥2

)
Wq

∥Wqxi∥
,

∂k′
j

∂xj
=

∂k′
j

∂kj

∂kj

∂xj
=

√
dh

∥kj∥
diag(γk)

(
I −

kjk
⊤
j

∥kj∥2

)
Wk =

√
dh diag(γk)

(
I −

kjk
⊤
j

∥kj∥2

)
Wk

∥Wkxi∥
.

In Proposition 3, we have proved that in a high-dimensional setting, the singular values of W
∥Wx∥ is

independent to the magnitude of W . Thus, until now, we have proved the Proposition 5.

Further, we would like to discuss the Jacobian matrix ∂vec(Y)
∂vec(X) after QKNorm. We have,

∂vec(Y)

∂vec(X)
= (A′⊤⊗Wv)+(In⊗WvX)

J√
dh

(
(K′⊤ ⊗ I) ·CdNJQ′

Q (I ⊗Wq) + (I ⊗Q′⊤)JK′
K (I ⊗Wk)

)
.

(17)

It should be noted that

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• K ′ and Q′ are two normalized terms that have relatively stable range of values.

• the Jacobian matrix of JQ′

Q is relatively independent to the magnitude of Q and JK′

K is relatively
independent to the magnitude of K in a high-dimensional setting.

• QKNorm cannot fully replace the value of PreNorm because ∂vec(Y)
∂vec(X) in Equation 17 is directly

affected by X .

QKNorm will elliviate the influence of the magnitude of Wq and Wk on the ∂vec(Y)
∂vec(X) . In the traditional

self-attention, ∂vec(Y)
∂vec(X) is largely affected by W⊤

q Wk. However, after QKNorm, ∂vec(Y)
∂vec(X) will only

be affected by independent Wq or Wk instead of the joint term W⊤
q Wk. This is important for the

training stability because the singular values of W⊤
q Wk will increase extremely fast when both

singular values of Wq and Wk are increasing.

C EXPERIMENTAL DETAILS

TABLE 3: Model configurations, peak learning rate and weight decay for different optimizers.

Acronym Size d_model n_head depth
AdamW mSGDW

LR WD LR WD

L-DNT-Small 124M 768 12 12 6e-4 0.1 1.0 1e-4

L-DNT-Large 774M 1280 20 36 6e-4 0.1 1.0 1e-4

L-DNT-XL 1436M 1536 24 48 6e-4 0.1 1.0 1e-4

V-DNT-Large 307M 1024 16 24 1e-3 0.1 0.5 2e-4

V-DNT-Huge 632M 1280 16 32 1e-3 0.1 0.1 1e-3

We conducted experiments on two popular architectures: Vision Transformer (ViT) and Generative
Pretrained Transformer (GPT). Our implementation leverages established repositories: timm (Wight-
man, 2019) for ViT and nanoGPT (Karpathy, 2022) for GPT models. We utilized five model
configurations: L-DNT-Small (124M parameters), L-DNT-Large (774M parameters), L-DNT-XL
(1436M parameters), V-DNT-Large (307M parameters), and V-DNT-Huge (632M parameters). Model
specifications including hidden dimension (d_model), number of attention heads (n_head), and net-
work depth are detailed in Table 3. Training was conducted using PyTorch (Paszke et al., 2019) with
bfloat16 precision GPUs, employing a cosine learning rate schedule.

All language models were trained on OpenWebText, using GPT-2 tokenizer. The training dataset
contains 9B tokens, with a validation set of 4.4M tokens, following the train-validation split from
nanoGPT. We employed distributed data parallel training with gradient accumulation. All models
were trained using bfloat16 precision. The 124M models were trained on machines with 8 GPUs,
774M models were trained with 16 A800 GPUs, while 1436M models were trained with 32 GPUs.
Our global batch sizes for 125M, 770M and 1436M models are 480, 512 and 512 individually. In
Sophia (Liu et al., 2023b), they use 480 global batch size for all models. For all language models,
we used 2000 steps or learning rate warmup to the maximum learning rate, and then used a cosine
learning rate decay. It takes around four days to train 200K steps for the 1.4B model on 32 GPUs.

All vision models were trained on ImageNet dataset. We trained each 150 epoches as (Xie et al.,
2024). We used a learning rate warmup of 60 epochs to the maximum learning rate, and then used a
cosine learning rate decay.

For our experiments, we focused on comparing AdamW and mSGDW optimizers. The hyperpa-
rameters for AdamW were carefully tuned, with β1 = 0.9 and β2 = 0.95, following the dominant

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

configuration in LLM pre-training literature. For weight decay, we used 0.1 for AdamW as (Karpathy,
2022; Liu et al., 2023b). We used the recommended learning rate by nanoGPT for AdamW in GPT.
Since our DNT is robust to large learning rate, we use 6e-4 for all our L-DNT models and 1e-3 for all
our V-DNT models for AdamW . For mSGDW, we simply use a rough grid search for the learning
rate, we cannot search a fine-grained learning rate and weight decay due to its requiring a lot of
resources. For the momentum in mSGDW, we used a default 0.9 for all experiments. We use the
implementation 3 of mSGDW from timm (Wightman, 2019). This implementation is a decoupled
weight decay regularization used in AdamW (Loshchilov & Hutter, 2019). Note that mSGDW is not
directly to add a weight decay in the original implementation of mSGD 4 in the official PyTorch, it
will have performance problem.

TABLE 4: Training configurations for ViT and V-DNT.

training config ViT-L/H (2242) ViT-L/H (2242) V-DNT-L/H (2242) V-DNT-L/H (2242)

optimizer AdamW mSGDW AdamW mSGDW

learning rate schedule cosine decay

peak learning rate 1e-3 0.5/0.1 1e-3 0.5/0.1

minimum learning rate 1e-8 1e-8 1e-8 1e-8

weight decay 0.1 2e-4/1e-3 0.1 2e-4/1e-3

optimizer momentum β1, β2 = 0.9, 0.99 µ = 0.9 β1, β2 = 0.9, 0.99 µ = 0.9

warmup epoches 60 60 60 60

weight init Truncated Xavier

batch size 1024

training epochs 150

randaugment (9, 0.5)

mixup 0.8

cutmix 1.0

random erasing 0

label smoothing 0.1

stochastic depth 0.1/0.5

gradient clip None

exp. mov. avg. (EMA) no

3https://github.com/huggingface/pytorch-image-models/blob/main/timm/
optim/sgdw.py

4https://pytorch.org/docs/stable/generated/torch.optim.SGD.html

20

https://github.com/huggingface/pytorch-image-models/blob/main/timm/optim/sgdw.py
https://github.com/huggingface/pytorch-image-models/blob/main/timm/optim/sgdw.py
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

TABLE 5: Training configurations for GPT and L-DNT.

training config GPT2-S/L/XL GPT2-S/L/XL L-DNT-S/L/XL L-DNT-S/L/XL

optimizer AdamW mSGDW AdamW mSGDW

learning rate schedule cosine decay

peak learning rate 6e-4/2.5e-4/1.5e-4 1.0 6e-4 1.0

minimum learning rate 6e-5 6e-5 6e-5 6e-5

weight decay 0.1 1e-4 0.1 1e-4

optimizer momentum β1, β2 = 0.9, 0.95 µ = 0.9 β1, β2 = 0.9, 0.95 µ = 0.9

warmup steps 2000 0 2000 0

weight init Xavier

tokens seen each update 480K/512K/512K

max iters 200K

batch size 480/512/512

sequence length 1024

dropout 0.0

bfloat16 True

gradient clipping 1.0

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

FIGURE 7: Five different settings of normalizations evaluated in the ablation study. (A) denotes the
standard Transformer with prenorm. (B) denotes (A) plus QKNorm, (C) denotes (B) plus InputNorm,
(D) and (E) denote two versions of our DNT.

WE/PE

N

PreNorm SA + PreNorm FFN +

(A) Setting 1

WE/PE

N

PreNorm SA with
QKNorm

+ PreNorm FFN +

(B) Setting 2

WE/PE InputNorm

N

PreNorm SA with
QKNorm

+ PreNorm FFN +

(C) Setting 3

WE/PE InputNorm

N

PreNorm SA with
QKNorm MidNorm + PreNorm FFN MidNorm +

(D) Setting 4

WE/PE InputNorm

N

PreNorm SA with
QKNorm MidNorm + FFN MidNorm +

(E) Setting 5

D FIVE DIFFERENT NETWORK SETTINGS

Figure 7 illustrates five different network settings. We have conducted a ablation study for these five
settings in the main body part.

E EXPERIMENTS ON LARGER MODEL

We further compare larger V-DNT and L-DNT models and original ViT and GPT2 models on
ImageNet and OpenWebText using mSGDW and AdamW. The results are shown in Figures 8, 9
and 10.

We see that on OpenWebText, L-DNT-large with mSGDW achieves a comparable performance with
L-DNT-large with AdamW and achieves a much better performance than GPT2-large with mSGDW.
Meanwhile, we find out that V-DNT-huge with mSGDW achieves a comparable performance with
V-DNT-huge with AdamW and obtains a much better performance than ViT-huge with mSGDW.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0k 25k 50k 75k 100k 125k 150k 175k 200k
Step

2.47

2.58

2.70

2.81

2.93

3.04

3.16

3.27

3.39

3.50

Va
l L

os
s

OpenWebText Val Loss
AdamW-GPT2-Large
AdamW-L-DNT-Large
mSGDW-GPT2-Large
mSGDW-L-DNT-Large

FIGURE 8: Comparison of GPT2-Large and L-DNT-Large (774M) on OpenWebText. All models
are trained with 200K in total. GPT2-Large training mSGDW under-performs GPT2-Large with
AdamW significantly, but L-DNT-Large with mSGDW can achieve a comparable performane with
L-DNT-Large with AdamW.

0k 25k 50k 75k 100k 125k 150k 175k 200k
Step

2.38

2.48

2.58

2.69

2.79

2.89

2.99

3.10

3.20

3.30

Va
l L

os
s

OpenWebText Val Loss
AdamW-GPT2-1.4B
AdamW-L-DNT-1.4B
mSGDW-GPT2-1.4B
mSGDW-L-DNT-1.4B

FIGURE 9: Comparison of GPT2-Large and L-DNT-Large (1436M) on OpenWebText. All models
are trained with 200K in total. GPT2-Large training mSGDW under-performs GPT2-Large with
AdamW significantly, but L-DNT-Large with mSGDW can achieve a comparable performane with
L-DNT-Large with AdamW.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100 120 140 160
Epoch

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

Ac
cu

ra
cy

ImageNet Validation Accuracy

AdamW-ViT-Huge
AdamW-V-DNT-Huge
mSGDW-ViT-Huge
mSGDW-V-DNT-Huge

FIGURE 10: Comparison of ViT-Huge and V-DNT-Huge (632M) on ImageNet. All models are
trained with 160 epochs in total. ViT-Huge training mSGDW under-performs ViT-Huge with AdamW
significantly, but V-DNT-Huge with mSGDW can achieve a comparable performane with V-DNT-
Huge with AdamW.

F MORE ABLATION STUDY

In this section, we conducted more ablation studies. In these experiments, we started with a complete
L-DNT model (we use setting 5 in Figure 7) that includes one InputNorm, two PreNorm layers, two
MidNorm layers, and one QKNorm. We removed InputNorm, PreNorm (both layers), MidNorm
(both layers), and QKNorm individually. To observe the instability issue, we trained each ablated
model with a relatively large learning rate (Adam optimizer with learning rate 0.3, without warmup).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0k 5k 10k 15k 20k 25k 30k
Step

10

100

1000

Va
l L

os
s

(L
og

 S
ca

le
)

OpenWebText Val Loss

Full DNT
Remove QKNorm
Remove PreNorm
Remove MidNorm
Remove InputNorm

FIGURE 11:

According to the experimental results, we observed that:

• When only removing QKNorm, the model collapsed after just a few training steps;

• When only removing PreNorm, the model began to collapse around 4000 steps;

• When only removing MidNorm, the model exhibited significant oscillations between 10K and 30K
steps;

• When only removing InputNorm, the model was able to converge normally even with the 0.3
learning rate.

Therefore, from the perspective of training stability, we conclude that the importance of these
normalization layers can be ranked in the following order: QKNorm > PreNorm ≈ MidNorm >
InputNorm.

Meanwhile, we also conducted an ablation study on the V-DNT model using AdamW, and we observed
a similar phenomenon. QKNorm is crucial, while PreNorm and MidNorm exhibit comparable stability.
InputNorm has a relatively minor impact on stability.

F.1 EXPERIMENTS USING MUON OPTIMIZER

In this section, we experimented with using the Muon optimizer to compare GPT-2 and DNT. Let us
give a brief introduction to Muon. Given an update G, performing SVD decomposition, we have
G = UΣV ⊤. As we know, Muon uses a Newton-Schulz method to approximate the UV ⊤ matrix.
In the current Muon implementation, for 2D matrices, we use Muon to approximate the matrices,
while for 1D vectors, we directly employ the AdamW optimizer.

In our experiments with Muon, we used a learning rate of 10−4 for 2D vectors and 6× 10−4 for 1D
matrices. We conducted four sets of experiments: GPT-2 with AdamW, DNT with AdamW, GPT-2
with Muon, and DNT with Muon. Same as previous experiments, we use 2000 steps warmup for all
four experiments. The results are presented in Figure 12.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0k 25k 50k 75k 100k 125k 150k 175k 200k
Step

2.84

2.90

2.96

3.03

3.09

3.15

3.21

3.28

3.34

3.40

Va
l L

os
s

OpenWebText Val Loss
AdamW-GPT2
AdamW-L-DNT
Muon-GPT2
Muon-L-DNT

FIGURE 12:

Based on experimental observations, we note the following two points:

• When using the learning rates (10−4, 6× 10−4), GPT-2 begins to show an increase in validation
loss after 50K training steps, indicating training instability. For DNT, we observe no instability
issues, and the training curve exhibits almost no fluctuations. Additionally, when using Muon,
DNT demonstrates significantly better convergence speed compared to DNT with AdamW.

• When both DNT and GPT-2 use AdamW, DNT shows slightly better performance than GPT-2.

G A BRIEF INTRODUCTION TO SOME EXISTING OPTIMIZERS

Optimization methods in deep learning can be broadly categorized into first-order methods and second-
order methods, each with distinct characteristics and applications. First-order optimization algorithms
dominate deep learning due to their computational efficiency, particularly for high-dimensional and
large-scale problems. First-order methods rely primarily on gradient information to find the minimum
or maximum of a function. Based on learning rate selection strategies, these methods can be divided
into optimizers with fixed step size and optimizers with adaptive learning rate.

Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951) serves as the foundational algorithm
for neural network optimization. It updates parameters in the opposite direction of the gradient of
the objective function. While simple and effective, vanilla SGD can struggle with navigating ravines
and saddle points in the loss landscape. Momentum SGD (mSGD) (Nesterov, 1983) addresses the
limitations of vanilla SGD by accelerating gradient descent in relevant directions while dampening
oscillations. This method augments the gradient direction with a fraction of the update vector from
the previous step, allowing faster convergence and helping escape local minima. Other notable
variants include signSGD (Bernstein et al., 2018), which uses only the sign of gradients for updates;
SVRG (Johnson & Zhang, 2013), which reduces variance in stochastic gradients; LARS (You et al.,
2017), which adjusts learning rates layer-wise.

Adaptive methods revolutionized gradient-based optimization by incorporating two key innovations.
First, they implement parameter-specific learning rate adaptation, performing smaller updates for

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

frequently occurring features and larger updates for infrequent features. Second, they incorporate
historical gradient information, often approximating second-order properties of the loss landscape.
AdaGrad (Duchi et al., 2011) adapts learning rates based on historical gradient information and
is particularly effective for sparse data. RMSprop (Hinton, 2012) addresses AdaGrad’s radically
diminishing learning rates by using an exponentially weighted moving average. Adam (Kingma &
Ba, 2014) combines momentum with adaptive learning rates, incorporating both first and second
moments of gradients. AdamW (Loshchilov & Hutter, 2019) modifies Adam with more effective
weight decay regularization, while Adafactor (Shazeer & Stern, 2018) provides a memory-efficient
adaptive method. Défossez et al. provides a unified formulation for adaptive methods like AdaGrad,
Adam, and AdaDelta.

The field continues to evolve with recent innovations including MUON (Jordan et al., 2024),
LION (Chen et al., 2023), Sophia (Liu et al., 2023b), and Mars (Yuan et al., 2024). These methods
represent the cutting edge of adaptive optimization techniques, further advancing efficiency and
performance in training deep learning models.

Wang & Choromanska (2025) give a detailed analysis and survey of optimization methods, we would
like to recommend the audience to refer to their paper for a full reference.

Remark. This paper is orthogonal to these works discussed in this section. Our primary contribution
is to demonstrate that vanilla mSGD can achieve strong performance on a Transformer architecture
when it does not have a heavy-tail problem in gradients. Notably, the optimizers discussed here can
also be effectively applied to our proposed DNT network.

27

	Introduction
	Preliminaries
	Theoretical Justification on Why DNT Can Be Trained with Momentum SGD
	Problem 1: What is the root cause of heavy-tail distribution of gradients?
	Problem 2: Mitigate the heavy-tail gradient problem by analyzing the Jacobian matrix
	InputNorm
	PreNorm
	MidNorm
	PostNorm
	QKNorm

	DNT: A Transformer that can relieve the issue of heavy-tail gradients

	Experiments
	Visualization of gradients of DNT and Transformer with PreNorm
	mSGDW achieves performance on par with AdamW.
	How much memory mSGDW saves rather than AdamW?
	Ablation study

	Conclusion
	LLM Usage
	Proof of Proposition 2, 3 and 5
	Proof of Proposition 2 on PreNorm
	Proof of Proposition 3 on MidNorm
	Proof of Proposition 5 on QKNorm

	Experimental details
	Five different network settings
	blueExperiments on larger model
	More ablation study
	Experiments using Muon optimizer

	A brief introduction to some existing optimizers

