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ABSTRACT

Transformers have become the de facto backbone of modern deep learning, yet
their training typically demands an advanced optimizer with adaptive learning
rate like AdamW, rather than a momentum SGDW (mSGDW). Previous works
show that it is mainly due to a heavy-tailed distribution of the gradients. In this
paper, we introduce a Deeply Normalized Transformer (DNT), that is meticulously
engineered to overcome the heavy-tailed gradients issue, enabling seamless training
with vanilla mSGDW while yielding comparable performance to the Transformers
trained via AdamW. Specifically, in DNT, we strategically integrate normalization
techniques at proper positions in the Transformers to effectively modulate the
Jacobian matrices of each layer, balance the influence of weights, activations, and
their interactions, and thus enable the distributions of gradients concentrated. We
provide both theoretical justifications of the normalization technique used in our
DNT and extensive empirical evaluation on two popular Transformer architectures,
validating that: a) DNT outperforms its counterparts (i.e., ViT and GPT), and b)
DNT can be effectively trained with a vanilla mSGDW.

1 INTRODUCTION

Transformer (Vaswani et al., 2017) has revolutionized numerous domains in artificial intelligence,
demonstrated remarkable capabilities across natural language processing (Radford et al., |2018};[2019;
Brown et al.| 2020; Dubey et al., 2024; Teaml 2023; [Liu et al., 2024), computer vision (Dosovitskiy:
et al.} |2020; |Liu et al., 20225 [Dehghani et al., 2023), AIGC (Ramesh et al., 2021} Peebles & Xie,
2023)), and multi-modal applications (Li et al.| [2022} [Liu et al., 2023a) and become the de facto
backbone of modern deep learning.

Nowadays it is widely accepted that Adam (Kingma & Bal 2014) or its descendant
AdamW (Loshchilov & Hutter}, 2019) are the standard optimizer for training Transformers; whereas
the classical SGD (Robbins & Monro, [1951) and its variants (Nesterovl, [1983; (1998} Johnson &
Zhang| 2013), e.g., momentum SGD (mSGD), usually under-perform when training Transformers.
Despite of its heavier load on GPU memory than mSGD, Adam is used as the optimizer in most
recent studies on Large Language Models (LLMs) (Dubey et al., 2024; Team) |2023;; Liu et al., 2024)
and multi-modal models (Li et al.| 20225 [Liu et al.,|2023a)). Naturally, an interesting question arises:

Can Transformers be trained via mSGD to yield performance matched to that is
trained via Adam? Or, under what conditions?

To answer these questions, we need to understand why mSGD typically underperforms Adam
when training Transformer. Previous studies (Simsekli et al.l 2019; Zhang et al.| [2020) reveal that
the fundamental reason lies in the statistical property of the stochastic gradients in Transformer
architectures. Unlike Convolutional Neural Networks (CNNs) (LeCun et al., {1998 He et al., 2016)
that are trained on tasks like ImageNet, where the entries of the gradients are typically small and
well-concentrated, the gradients of Transformer typically exhibit heavy-tailed distributions, as shown
in blue in Figure (1| This heavy-tailed distribution means that the amplitudes of the gradient entries
span a wide range and thus it is hard to keep step with each others when updating weights. Thus,
Adam uses a normalized term between the first-order term (i.e. gradients) and the square-root of the
second-order term. Owing the normalization, Adam is robust to the heavy-tail distribution of the
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FIGURE 1: Distributions of the absolute values of the entries in gradients for ViT with PreNorm
(marked in blue) and our V-DNT (marked in ), where V-DNT denotes the vision variant of our
DNT. We observe that the gradients in our V-DNT are typically quite small and well concentrated;
whereas the gradient distributions of the standard ViT have a long tail.

gradients. This explains why Adam has become the standard optimizer for training Transformer in
practice. On contrary, mSGD directly uses the first-order gradient with momentum to update the
weights, and thus the weights updating has difficulty to keep pace with each others. Consequently, an
interesting question turns out to be: can we help mSGD to relieve the issue of heavy-tail gradients in
training Transformers? And how?

To mitigate the issue of heavy-tail gradients in training Transformers with mSGD, we propose to add or
adjust the positions of normalization operations in Transformers, motivated by analyzing the Jacobian
matrix of different modules. Roughly speaking, we use the properly positioned normalization operator
to amend the Jacobian matrix of g—g less affected by the weights, activations, or joint influence of
both the weights and activations.

As illustrated in orange in Figure[I] we observe that our designed architecture, a Deeply Normalized
Transformer (termed as DNT), exhibits a more concentrated gradient distribution than its counterpart
which has a heavy-tailed distribution. In this paper, we provide not only theoretical justification for
the properly positioned normalization operator in our DNT, but also empirical evaluations to further
validate that our DNT outperforms its counterparts, i.e., ViT and GPT, on ImageNet classification
and OpenWebText tasks. Since that the distributions of the gradients of DNT are more concentrated,
training it with the vanilla mSGD can yield performance on par with that with Adam optimizer.

To the best of our knowledge, this is the first work to show that using a vanilla mSGD can train a Trans-
former to achieve performance comparable to that of using Adam—provided that the Transformer
architecture is properly modified to mitigate the issue of heavy-tail gradients.

2 PRELIMINARIES

This section will provide some preliminaries on high-dimensional random vectors, which enjoy many
nice properties that are different from their low-dimensional counterparts. Two simple yet useful
theorems are introduced below. Proofs can be found in Lemma 3.2.4 of (Vershynin, [2018).

Theorem 1 (Concentration of norm). Let « be an isotropic random vector in R, Then, we have
E||z||3 = d. Moreover; if © and y are two independent isotropic random vectors, then E(x,y)? = d.
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Theorem 2 (Almost orthogonality of high-dimensional independent Vectors) Let us normalize the
random vectors x and y in Theorem 1, setting © := Hml\ andy : ”y” , in a high-dimensional

space, the independent and isotropic random vectors T and vy, tend to be almost orthogonal,

Theoremestablishes that |||z < V/d, ||ly|2 < v/d and (z, y) = /d with high probability, which

implies that cosine of the angle 6 between two random vectors x and y satisfies cos(6) =< ﬁ.

Theorem [2| implies that in high-dimensional space (i.e., d is very large), two random vectors are
almost orthogonal. Thus, given z = & + y where x and y are two high-dimensional random vectors,

we have || z|l2 < v/|lz|3 + [|lyl|3.

Jacobian of normalization. Normalization (loffe & Szegedyl 2015} Ba et al., 2016; Zhang &

Sennrich, 2019) is a technique widely used in deep learning. It is used to stabilize and accelerate

the training process. For example, LayerNorm is defined as LN(z) = v ® H‘f”y+ + 3, andy =

(I — éllT) a, where € > 0 is a smoothing factor, d is the feature dimension of x, vy and 3 are two

learnable R? vectors, ~ and 3 are usually initialized to 1 and 0. Most recently, some recent LLMs
(Touvron et al., 2023 |Chowdhery et al.,[2023; |Team, [2023; |Liu et al., 2024)) uses RMSNorm (Zhang &

Sennrichl [2019) to replace LayerNorm, where RMSNorm is defined as: RMSN(xz) =~ © II\[Her
x €

Compared to LayerNorm, RMSNorm does not use the centering term and the bias term.

The Jacobian matrix of RMSNorm with respect to « is calculated as follows

ORMSN(z)  Vd ding(v) <I_ mmT>

- ][5 + €

ox
V]l + e

We use RMSNorm as our default normalization technique when mentioning of normalization, but our
analysis can be generalized to the other normalization methods. Here we use a numerator layout for
all our gradients derivation throughout this paper.

Stochastic Gradient Descent (SGD) (Robbins & Monrol, [1951) is a classical and fundamental
optimization algorithm in machine learning for training models by minimizing their cost functions.
However, the vanilla SGD often suffers from slow convergence, especially in complex optimization
landscapes with ravines, saddle points, or local minima. To address these limitations, momentum
SGD (Nesterov, 1983|2013} |Sutskever et al.,[2013)) was introduced as an extension of the basic SGD
algorithm. Momentum SGD (Nesterov, 1983} [2013;; |Sutskever et al., 2013)) introduces a velocity term
m that accumulates gradients over time, i.e., M1 = pmy; + VL(w;), Wip1 = W — @My
where 1 € [0, 1) is the momentum coefﬁcientﬂ that determines how much of the previous velocity
is retained and o is the learning rate for the time step ¢. Unlike in the vanilla SGD, mSGD allows
the optimization to build up a “momentum” in direction of persistent gradient descent, which can
effectively dampen the oscillations in high-curvature directions.

3 THEORETICAL JUSTIFICATION ON WHY DNT CAN BE TRAINED WITH
MOMENTUM SGD

3.1 PROBLEM 1: WHAT IS THE ROOT CAUSE OF HEAVY-TAIL DISTRIBUTION OF GRADIENTS?

Previous works (Zhang et al.l 2020; |Simsekli et al., |2019) have pointed out that a heavy-tailed
distribution of the stochastic gradients is a root cause of SGD’s poor performance. Here, we will
investigate this issue by analyzing the backpropagation of Transformers.

Suppose x!T! = f(x!) and we have obtained ag% in a backpropagation process, then we can

ac oL oL ox'tt

1 . .
calculate 5= using a numerator layout as SuT = BT HaT where 2 a — 1is called as the Jacobian

ENRY RN 2 Y I | oL
matrix. Hav1ng had 2 aml , for any a forward layer with ' = W'z'™", we can compute 5377 as

oL oL ;T oL ozt T
oWl ozl T dxitl ol T M

"Typical values for y range from 0.9 to 0.99. In default, for all our experiments, we set 1 to 0.90.
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From Equation [} we observe that the heavy-tail problem in gradients is indeed closely related to

the large diversity of the singular values in the Jacobian matrix 85:;1 . The Jacobian matrix can
have highly diverse singular values for several reasons: 1) the weight matrix contains very diverse
singular values; 2) the activations span widely, leading to Jacobians with very uneven singular value
distributions. When a matrix has a wide range of singular values (i.e., a very large condition number),
it means that the transformation stretches the input very differently along different directions. During
backpropagation, it will cause a heavy-tail problem in the gradients.

Therefore, a reasonable solution to relieve the heavy-tail issue is to constrain the uneven singular
value distribution of the Jacobian matrix via controlling the weight matrix and activations. This is
the basic idea in our paper.

3.2 PROBLEM 2: MITIGATE THE HEAVY-TAIL GRADIENT PROBLEM BY ANALYZING THE
JACOBIAN MATRIX

In this subsection, we will describe how we use different normalizations—adding or adjusting the
position of the normalizations—to constrain the Jacobian matrix to relieve the heavy-tail gradient
issue. Note that we do not claim that we discover any new normalization methods, instead, we
provide our understanding on how each normalization affects the Jacobian matrix. We refer the
readers to (Loshchilov et al.| 2025} |Zhu et al.| [2025;|Q1 et al., 2025b;2023) for more discussions
about normalization. We will use red, , blue, purple, magenta to denote its relationship with
InputNorm, PreNorm, MidNorm, PostNorm and QKNorm, individually.

Y J»
S D e N N O O

(A) InputNorm (B) PreNorm (c) MidNorm

QKNorm

(D) PostNorm (E) QKNorm

FIGURE 2: Five different normalization methods. The only difference between them is the position
of normalization. In (A), WE/PE indicates word embedding and patch embedding.

3.2.1 INPUTNORM

Definition of InputNorm. InputNorm in Transformer is defined as the normalization that is applied
after the first word embedding in NLP or the first patch embedding in vision Transformer. As shown
in Figure 2] (d), InputNorm is defined as

O = InputNorm(h), where h = Embedding(4), 2)

where ¢ is the input and Embedding(-) denotes word embedding or patch embedding. For a standard
residual block in Transformer, we have that:

't =gl 4 f(2) =2 4 f@ ) + f(@) = a0+ f(@0) + flah) o+ fET) + f().
Each ! will be the input into some modules, such as normalization, self-attention and feed-forward

layers. The Jacobian matrices of some modules are sensitive to the norm of the input, such as
LayerNorm and the dot-product self-attention.

Under the assumption that random vectors are almost orthogonal in high dimension, we have that

Iz < \/( I3 + 11 @O)[3 + - + [Lf(=)]I3)- )

Proposition 1 (Effect of norm of input embedding on gradients). In a high-dimensional settings
when all parameters and activations are high-dimensional, if the norm of x° is very large, it will
lead to gradient vanishing problem in all subsequent layers, provided that InputNorm is not used.
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It means that if the norm of xV is large, then the norm ||z'*!||5 in each layer will also be large. If
||&!*1||2 is the input into a normalization layer, according to the Jacobian equation of normalization

ORMSN(z'th) Vd . 41 141 T . ] )
DTt T = T diag(y) (I — WW , the gradient flow in each layer will be

significantly affected by the norm of =°. Thus, we need to constrain the norm of = before it is used
as the input into the following layer.

Remark 1. The norm of ° has a large influence of the gradient flow of the subsequent layers. If it is
very large, it will lead to gradient vanishing, and if it is very small, it may lead to gradient exploding.
Meanwhile, the network is also sensitive to the change of the norm of z°.

3.2.2 PRENORM

Definition of PreNorm. A PreNorm in Transformer is defined as the normalization that is applied
before the self-attention or the feed-forward components. As shown in Figure [2] (b), PreNorm is
defined as

Y = Self-Attention(X"), where ' = PreNorm(z). 4)
A single-head self-attention is defined as
Y=W,XA,
where P = X TWqTWkX , A = softmax( \7;7), A is called as the attention matrix, and \ZTQ is

called as the logit, in which A € R"*" X € R>*" W, € R4a*d W) € Rla*d W, € Rb>d,

Herein, our goal is to calculate gzzzg; .

By vectorization of Y = W, X A, we have
ovec(Y) = (AT @ W,)dvec(X) + (I, @ W, X )dvec(A).
Putting together all these terms, we have that
Ovec(Y') J
Ovec(X) \/@

where C'y,, is the commutation matrix, ® denotes the Kronecker product.

=AW+ (T, oW, X) (( X'"W," W, eL)C+(I,® X' WqTWk)).

&)

For simplicity, we denote

J = blockdiag (diag(A. 1) — A, 1A}, ... diag(A.,) — A.,A]).
The detailed derivation process can also be found in prior work (Q1 et al.,|2025a)). Nevertheless, we
note here that rather than analyzing WqT W, in the self-attention module, we analyze the influence
of X. According to the Jacobian matrix in Equation[5} we have the following proposition.

Proposition 2 (PreNorm can stabilize the gradient in self-attention module.). If, for each col-

umn X.;, we have X:’Z- = ¢;X.; according to Equation with the same Wy, Wi, W,

Y = Self-Attention(X) and Y’ = Self-Attention(X"’). Then we have SLZE§§ = g:zg;;

According to Proposition [2] we have the following remark.

Remark 2. PreNorm will guarantee that the norms of vectors X which is the input to the self-
attention layers are in a relatively stable range of norms. According to Equation 5] we see that if
these norms of X are relatively stable, then the Jacobian matrix will also be stable relative to X.
Meanwhile, since the gradients of W, Wy, W, are directly relative to X, a stable X will guarantee
that Wy, Wy, W, obtains relatively stable gradients.

3.2.3 MIDNORM

Definition of MidNorm. A MidNorm in Transformer is defined as the normalization that is applied
after the self-attention and feed-forward components and meanwhile before the residual shortcut. As
shown in Figure ] (b), MidNorm is defined as

y = MidNorm(z), where z = W3 ReLU(W;x). (6)
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In the self-attention, W,, and W, can be seen as similar function as W; and W5 in FFN. If we only
use single-head attention, then we have z = W, W, x.

The Jacobian matrix of an FFN can be computed as: Jy(x) = W

W, diag (1 (Wix > 0))W;. The Jacobian matrix of an RMSNorm layer is g—g
N diag(vy) <I _ zE ) The joint Jacobian matrix of an FFN and an RMSNorm is

1=l =13/ "

oy _ oy o
dx 0z oz

)

= Vd diag(v) (I 2z’ ) W, diag (1 (Wiz > 0))W;

1213 W3 ReLU(W, ) [,

Proposition 3 (The effect of MidNorm). Let W = Wﬂ é[i,igéiéml‘f,?g))ﬁ Wi in a high-dimensional
2

settings when W1, Wy and x are high-dimensional and random, the singular values of W will be
only related to the shape of W1 and W, and will be independent to the magnitude of W1 and W.

According to Proposition 3| we have the following remark.

Remark 3. MidNorm can effectively guarantee that the norms of W1, Wy, W,,, and W, will not
affect the Jacobian matrix as shown in Equation[]} It means that even the magnitudes of these weight
matrices are very large, it will not magnify the gradients.

3.2.4 POSTNORM

Definition of PostNorm. A PostNorm in Transformer is defined as the normalization that is applied
after the residual block. As shown in Figure 2] (d), PostNorm is defined as

x!T! = PostNorm(z!™!), where 21 = ! + f(a!; Wit1). 8)

Proposition 4 (PostNorm is sensitive to the vector norm of activation). If z!*! in Equation ES’] is very
large, then it will significantly decrease the gradient.

. 1+1 I+1 14+1T . .
Proof. From Equatlon we have g‘:l“ = HZ\/EIH (I- z\lz’il\lg ). If | 2!+ || is very large, according

141 . . . .
to aszﬂ = 82{11 gzl +7, we have that the gradient of % will be significantly decreased. O

In a classical Transformer (Vaswani et al., [2017), if f(x; W7, Wy) = W3 ReLU (Wi ), along with
the training process, o1 (W) (the largest singular value of W) and o1 (W5) will usually become
too large (e.g., around 1000). In this way, || f(z'; WT1)||5 will be very large, it means z!*1 in
Equation [§] will be very large. Therefore, we have that PostNorm under this circumstance will lead to
gradient vanishing.

Remark 4. We need to be very careful when using PostNorm, we must ensure that the norm of the
input vector to PostNorm is within a reasonable range, otherwise the network is likely to cause a
gradient vanishing when z' being very large or a gradient exploding z* when z' being very small.

3.2.5 QKNORM

Definition of QKNorm. A QKNorm (Henry et al., 2020) in Transformer is defined as the normal-
ization that is applied on queries and keys in the self-attention block. As shown in Figure [2] (e),
self-attention with QKNorm (Dehghani et al.,[2023)) is defined as

/

vy,

in which g} and k! are the i-th column and the j-th column in @’ and K, individually, and we have

Y = W,X A’ where A’ = softmax(——=), P'=Q'"K’, )

/ @quz . qui
q; = QKNorm(W,z;) =~ @7:\/£d1ag'y —_
(Wewt) =700 W, ) Woei, o
k: = QKNorm(Wix;) = Y, © ~——? = 1/d}, dia — 0§
J Q ( k ]) Yk ||ka]||2 h g("/k) ||kaJH2
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where d}, is the head dimension. To facilitate the derivation, we denote @ = W, X and K = W, X
as before, and use g; and k; to denote the i-th column and the j-th column in @ and K, individually.
Thus, we have that g; = QKNorm(g;) and k; = QKNorm(k;).

Moreover, we have that Pl’ ;= q ZT k’., where Pi’ J is a scalar, and the gradient is computed as follows,

O _ 7o + q/T%
ox 7 ox ' Oz
. T q.q; W, . )T L W
— dy diag(y k'] (I — 190y Vi 4 Jd diag(yi)g!] (T — —2h) Tk
v lalI3 " [[Wo]2 15115 [[Whi]|2
(11
Proposition 5 (Effect of QKNorm). In a high-dimensional settings, i.e., when all Wy, W), and x

oP; . .
5. is independent of the

T

are high-dimensional and random, in Equation the gradient term of
magnitudes Wy and W

According to the Proposition, we have the following remark.

Remark 5. QKNorm can mitigate the joint effect of WqT Wy to the gradient of the self-attention

layer. The fast increase of the singular values of Wq—r Wi has been revealed to be a root reason
leading to model crash. Our analysis shows that QKNorm can effectively mitigate the reason to cause

model crash brought by Wq—r Wi.

Though QKNorm can mitigate the problem brought by WqT Wy, it cannot fully replace the role of
PreNorm, because PreNorm can jointly deal with the problem of W, W}, and W, and the gradient
of W, is also affected by the value of X.

3.3 DNT: A TRANSFORMER THAT CAN RELIEVE THE ISSUE OF HEAVY-TAIL GRADIENTS

—>

; 7T TN
WE/PE [—>| InputNorm PreNorm SA with MidNorm PreNorm —>| FEN MidNorm >
QKNorm N )

FIGURE 3: DNT architecture. The second PreNorm marked with dashed and rounded corners is
optional. By default, we do not use the second PreNorm.

Having analyzed the effects of different normalizations, we use four types of normalizations, including
InputNorm, PreNorm, MidNorm and QKNorm, except for PostNorm. The reason why we do not use
PostNorm is that it may bring in some training problem. Finally, we illustrate our DNT in Figure

Our DNT model commences with word embeddings or patch encodings (WE/PE). Then, the initial
representations undergo the InputNorm processing, establishing the normalized embeddings for
subsequent operations. The core transformer block consists of N blocks. In each block, prior to self-
attention, a PreNorm is applied, followed by a self-attention augmented with query-key normalization
(i.e., QKNorm). Subsequently, a MidNorm processes the attention outputs before integrating via a
residual connection. In the second sub-block, a selective PreNorm precedes the feed-forward network
(FFN), after FFN, there is a MidNorm, and a final residual connection completes the information
flow. This entire structure is replicated N times to form the complete network.

We visualize the effects of each normalization in our DNT network in Figure ] According to
the analysis mentioned above, we summarize the advantages of our DNT model as following: a)
the magnitude of =° will significantly affect the gradient of each layer in the Transformer, but we
introduce InputNorm to resolve the influence of 2°; b) PreNorm can constrain the norm of each
column in activations X in each timestep, and thus amend the Jacobian matrix of self-attention to
not be significantly affected by the magnitude of X'; ¢) MidNorm will amend the Jacobian matrix of
each sub-block (i.e., the sub-block with self-attention and the sub-block with FFN) in our DNT to not
be affected by the magnitude of W, W5, W, and W,,; d) QKNorm can relieve or even remove the
influence of the magnitude of W, and W, on the Jacobian matrix of self-attention, and thus reduce
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x0 xt ... xF x0 xt ..., xt
M—>[Wq, Wy, Wy, W, Wy, Wz] ’ PreNorm }—> Wy, Wi, Wy
(A) Influence of InputNorm. (B) Influence of PreNorm.

X0 x1, ..., xL QK
M—>vaWoYW17W2 M—>quwk

(¢) Influence of MidNorm. (D) Influence of QKNorm.

FIGURE 4: Influence of different normalizations. For instance, InputNorm stabilizes
Wy, Wi, W,, W,, W1, W5 by constraining X, X', ... XL,

the risk of problems, such as rank collapse (Noci et al., [2022), entropy collapse (Zhai et al., [2023), or
spectral energy concentration (Qi et al.,[2025a) caused by Wq—r Wi.

In DNT, we use four different types of normalizations. We observe that nGPT (Loshchilov et al.|
2025) also uses some of the normalizations mentioned above. Here, we would like to emphasize
the differences between DNT and nGPT that: a) DNT provides theoretical justifications for each
normalization in different position; b) DNT uses InputNorm rather than PostNorm, whereas nGPT
use many PostNorms but not InputNorm; ¢) nGPT normalizes the activations or the weights into
spheres, whereas DNT only normalizes the activations but does not requires activations on spheres.

We term our model as Deeply Normalized Transformer (DNT for short), because it is designed by
properly adding or positioning normalization operators in the conventional Transformer. For vision
problem, we term it as V-DNT, and for language problem, we term it as L-DNT. The key difference
between V-DNT and L-DNT is that V-DNT uses patch embedding, but L-DNT uses word embedding
and mask for attention computation.

OpenWebText Val Loss ImageNet Validation Accuracy

\ —— AdamW-GPT2-Small

325 —— AdamW-L-DNT-Small

\ MSGDW-GPT2-Small

320 \ —— mSGDW-L-DNT-Small
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o
o
=

Val Loss
Accuracy
S
S
o

20.0
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mSGDW-ViT-Large

0.0 mSGDW-V-DNT-Large

0k 25k 50k 75k 100k 125k 150k 175k 200k 0 20 40 60 80 100 120 140 160
Step Epoch

FIGURE 5: Validation loss (Left ) on OpenWebText and recognition accuracy (Right) on ImageNet.
We compare L-DNT-Small (124M) to GPT2-Small (124M), and V-DNT-Large (307M) to ViT-Large
(307M). By effectively relieving the heavy-tail gradient problem, our DNT network trained with
naive mSGDW can achieve competitive performance to AdamW (Val loss 2.849 vs. 2.863 on
OpenWebText, Acc 81. 5% vs. 82. 1% on ImageNet). However, in classical Transformer with
PreNorm, the performance of mSGDW under-performs AdamW significantly (Val loss 2.906 vs 2.867
on OpenWebText, Acc 78.2% vs 81.7% on ImageNet). See Appendixfor the training parameters.

4 EXPERIMENTS

We conducted experiments with two popular Transformer architectures: Vision Transformer (ViT)
and Generative Pretrained Transformer (GPT). Our implementation leverages established repositories:
timm (Wightman, |2019)) for ViT and nanoGPT (Karpathy, [2022)) for GPT models. For experiments



Under review as a conference paper at ICLR 2026

with ViT, we utilized two model scales: ViT-Large (307M parameters) and ViT-Huge (632M),
following the configurations described in (Dosovitskiy et al.,|2020). The data augmentation strategy
aligns with (Xie et al., |2024) to ensure fair comparison with previously reported results. For
experiments with GPT, we employed the nanoGPT implementation focusing on GPT2-Small (124M)
and GPT2-Large (774M) variants due to computational constraints. The results of our baselines align
with previous work, including Sophia (Liu et al.,2023b) on OpenWebText and MAE (He et al., 2022)
on ImageNet. Training was conducted using PyTorch (Paszke et al.l 2019) with bfloat16 precision on
A800 GPUs, employing a cosine learning rate schedule.

4.1 VISUALIZATION OF GRADIENTS OF DNT AND TRANSFORMER WITH PRENORM

To visually compare the standard Transformer with our DNT, we visualized the gradients of different
weights, including W, W, W,, W, W;, W,. We chose the early checkpoints of the model
training for visualization, but we found that the same phenomenon is also presented in the middle
and later stages of the model training. The visualization is shown in Figure[T} we can see that, DNT
network can well relieve the issue of heavy tail gradient distribution. For instance, in the Transformer,
the absolute values of gradients almost distribute even across [0, 1074], but the absolute values of
gradients in DNT mainly concentrate around [0, 10~°].

4.2 MSGDW ACHIEVES PERFORMANCE ON PAR WITH ADAMW.

We also give a quantitative comparison of the standard Transformer and DNT trained with Adam
and mSGD on OpenWebText and ImageNet in Table[I] We can see that training our DNT model via
mSGDW achieves a similar result to that is trained with AdamW. We can also see that using mSGDW
to train our DNT model greatly outperforms the performance of using mSGDW to train the standard
Transformer. In Figure[5] we display the validation loss on OpenWebText and the training accuracy
on ImageNet along with the training process. Note that we did not tune the learning rate too much.
We just followed the learning rate settings in the previous works Karpathy| (2022); |Liu et al.| (2023b)).
We believe tuning learning rate will bring in some differences. But overall, DNT network can enable
mSGDW compete with AdamW.

TABLE 1: Quantitative comparison of standard ViT/GPT2 and V-DNT/L-DNT trained with AdamW
and mSGDW on OpenWebText and ImageNet. Results on ImageNet is based on 150 epochs, and
results on OpenWebText is based on 200K steps.

ImageNet (Acc. 7) OpenWebText (Val Loss. |)
Optimizer  Types of Model 307M 632M 124M  774M 1436M

AdamW ViT/GPT2 81.7 80.8 2.867 2492 2.435
AdamW  V-DNT/L-DNT  82.1 81.9 2.863 2.481 2.396
mSGDW ViT/GPT2 78.2 73.5 2906 2544 2472
mSGDW  V-DNT/L-DNT  81.5 81.2 2.849 2.503 2.408

4.3 HoOw MUCH MEMORY MSGDW SAVES RATHER THAN ADAMW ?
We compare the memory usage by mSGDW and AdamW. The results are shown in Table 2] Theoreti-

TABLE 2: Comparision of GPU memory used by mSGDW and AdamW trained on 1.4B DNT
model. DNT+AdamW means the network usage and the optimizer usage of GPU memory. T denotes
Theoretical calculated values, and { denotes practically observed values.

AdamW  mSGDW DNT+AdamW DNT+mSGDW
Memory 11.5TGB  5.71 GB ~ 67 GB ~ 61 GB

cally, we can calculate that the memory taken by AdamW (only the optimizer part) is 11.5GB, and
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the memory costed by mSGDW (only the optimizer part) is 5.7GB. In the experiment, we obtained
DNT+AdamW (model plus optimizer) costs 67GB, and DNT+mSGDW (model plus optimizer) costs
61GB. Using mSGDW instead of AdamW on 1.4B model can save around 6GB memory.

4.4 ABLATION STUDY

Comparision of different normalization methods. We conduct ablation study of five different
normalization methods. Figure[7)in the Appendix [D]illustrates these five different network settings.
Let us brief introduce these five settings below: 1) Setting 1: Standard transformer with prenorm,
which we abbreviate as S1; 2) Setting 2: S1 + QKNorm; 3) Setting 3: S2 + InputNorm; 4) Setting 4:
2 PreNorms + MidNorm + QKNorm + InputNorm; 5) Setting 5: only 1 PreNorm before self-attention
+ MidNorm + QKNorm + InputNorm. We use momentum mSGDW for all training in this subsection.
All models were trained with the same hyper-parameters. The results are shown in Figure[§]

We have the following observations,
* On the OpenWebText dataset, the original PreNorm setting (S1) shows the worst performance. The

performance of S2 is similar to that of S1. S3 with input obtained a better performance. Finally, S4
and S5 obtained the best performance. Meanwhile, the performance of S4 and S5 is similar.

* On the ImageNet dataset, the original PreNorm setting (S1) is significantly worse than the other
four Settings. S3 achieves the best setting, and S4 and S5 also obtain excellent performance.

OpenWebText Val Loss ImageNet Validation Accuracy

o ~ o
e e S
o o =)

%]
e
o

~
©
=

Val Loss
Accuracy
w S
S S
o o

~
S
=

2.90

—
e
o

2.87

e
o

284 100k 120k 140k 160k 180k 200k 0 20 40 60 80 100 120 140 160
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FIGURE 6: Ablation study of different settings using mSGD optimizer on ImageNet and OpenWeb-
Text. Left side shows accuracy curve of Huge vision model (632M) on ImageNet. Right side shows
the validation loss of language model (124M) on OpenWebText.

5 CONCLUSION

We have introduced a novel architecture, Deeply Normalized Transformer (DNT), which enables
efficient training with vanilla momentum SGDW (mSGDW), achieving performance on par with
AdamW-optimized Transformers. Unlike traditional approaches that rely on sophisticated optimizers
to address the challenges of heavy-tailed gradient distributions, our DNT properly integrated nor-
malization techniques into the architecture of Transformer to regulate the Jacobian matrices of each
block, effectively balance the contributions of weights, activations, and their interactions, and thus
make the gradient distribution concentrated. Our findings demonstrated that a properly designed
architecture can make a simple optimizers like mSGDW just as effective as sophisticated ones and
opened new opportunities for creating more efficient, scalable, and accessible Transformer models.

10
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A LLM USAGE

During the preparation of this work, the authors used ChatGPT for language editing and to assist in
the creation of TikZ diagrams. The models were firstly prompted with draft text or rough sketches
to improve clarity and fluency of language and to generate code snippets for figures. Then, we
carefully reviewed and modified all generated content. The core ideas, research, analysis, and
conclusions remain entirely the work of the authors, and the LLMs were not involved in any
intellectual contribution.

B PROOF OF PROPOSITION 2, 3 AND 5

Propostion 1 and Proposition 4 are very easy to prove, we have given a brief proof in the main body.
Therefore, in the appendix, we only provide the proof of Proposition 2, 3 and 5.

B.1 PROOF OF PROPOSITION 2 ON PRENORM

Proof. A single-head self-attention can be defined as

Y = VVvXAv

o xTw T _ P : : : P_
where P =X "W, W, X, A = softmax( \/@) A is called as the attention matrix and N is
Ovec(Y)
Ovec(X) "

called as the logit, A € R™*", X € R¥" W, € R%*¢  Here, our goal is to calculate
By vectorization of Y = W, X A, we have
ovec(Y) = (AT @ W,)dvec(X) + (I, ® W, X )dvec(A).

Bringing in all the terms, we get the following formula

Ovec(Y')
Ovec(X)

J
=(AT @W,) + (I, ® W, X)

(XTWi "W, @ L)Cun + (I & X W, Wi)),

5

where Cy,, is the commutation matrixﬂ

where gzzg; =I,W,X, gzzig‘gg = ﬁ, and we have

J = blockdiag(diag(A. 1) — A.1 A/, ... diag(A.,) — A.,A]).

i

J is a function of A, and A is a function of X associated with softmax function. Obviously, 332253

is a high-order function of X and J makes the analysis more complex.

Here, we give an analysis of the Jacobian matrix of the linear attention module, where A = ﬁ and
q

P=X TWqTWkX . For the linear attention, we have the Jacobian matrix as,

aVeC(Y) _ T (In®WvX) T T - T
vec(x) ~ A ®WU)+T<(X Wi W, 8 L)C + (Lo X W, Wi)). (12)

Obviously, if the norm of each feature vector for each token is large, the magnitude of each element

gz:zg§; will have large probability to be large, and the singular value of g::zgg may be magnified

second-orderly by the norm of each column in X.

in

If for each column X. ;, we have X/l = ¢;X.;, with the same W,, W;,, W,, we have Y =Y’
given Y = Self-Attention(X) and Y’ = Self-Attention(X’) because we will obtain the same
input as the self-attention after the PreNorm.

https://en.wikipedia.org/wiki/Commutation_matrix
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After PreNorm, we have PreNorm(X) = PreNorm(X'), according to Equation [5| we have
Ovec(Y) _ Ovec(Y')
Ovec(X) ~— Ovec(X')"

Until here, we have prove the Proposition

Furthermore, we would like to conduct a deeper analysis of the gradient of the loss with respect to
the weights. In a backpropagation, since we have obtained we would like to further analyze

oL oL oL
Ovec(Wy)? Ovec(Wy)? dvec(W,,) "

oL
Ovec(Y)’

For the weight matrix W, we have

oL 0L 0Ovec(Y) dvec(A) Ovec(P)
Ovec(W,)  Ovec(Y) Ovec(A) dvec(P) dvec(W,)’ 13
__or J T T
For the weight matrix Wy, we have
oL 0L Ovec(Y) dvec(A) Ovec(P)
ovec(Wy)  Ovec(Y') Ovec(A) dvec(P) Ovec(Wy,)’
or J o . (14)
= Fvec(¥) (I, @ W, X) N (X' W,X)").
For the weight matrix W,,, we know that vec(Y') = ((X A)" @ I) vec(W,,), thus we have
oL 0L Ovec(Y)
ovec(W,)  Ovec(Y) Ovec(W,,)’
or (15)

- ovec(Y) ((ATXT) ? I) .

We can see that in Equations [T3][T4][I5} the gradients of loss with respect to W, Wy, W, are all
related to X . After PreNorm, X is in a relatively stable range, thus, we can promise the range of
value X will not greatly affect the gradients of W, W, W,,.

In conclusion, normalization of X can help stablize the gradient of the loss function with respect to

W,, W, W,,, and meanwhile help make g;’:zg ; more stable and flat. O

B.2 PROOF OF PROPOSITION 3 ON MIDNORM

Proof. Starting with the definition W; = % where y = Wz and W € R™*", let’s derive the
relationship between singular values:

For a random matrix W Wlth i.i.d. entries (mean 0, variance CTW) and a random vector x with i.i.d.
entries (mean 0, variance o )

Elly|*] = E[|Wz|?] = E[z" W W]
Using the trace property:
Elz"WTWz] = Eftr(x” W Wa)] = Eju(Waa! W)

With  and W independent, and E[zzT] = 021,,:
Efr(Wzz'W7T)] = Eu(WolL,W7T)] = ¢2E[r( WWT)]
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For W with i.i.d. entries, E[r(WWT)| =m - n- o},

Therefore:
Elllyl’) = 0% -m-n-ofy =m-n-opy - o}

concentrates around its expectation with high probabil-
ity:
Iyl ~ Elllyl*] = m - n-ofy - o2

Taking the square root:
llyl| = vm - n - ow - o, with high probability

For the SVD of W = UXV T, where X contains singular values o; (W), the singular values of W

are.
W — o (W) W)
oi(W) = Z(||y|> vl

Substituting our concentration result:
Vmen-ow -0y

For large random matrices with i.i.d. entries, random matrix theory (Horn & Johnson, [2012; [Tao,
2012) tells us that the largest singular value follows:

1 (W) ~ (Vi + V)ow
Substituting this into our expression:

WAt VA)ow _
W)~ e o on Vo (16)

This derivation result in Equation [16]shows that in high dimensions, the largest singular value of
W becomes essentially deterministic, depending only on the dimensions of W and the statistical
property o, (standard variance of each entry in x) of the random vector . If m = n, then we have,
01 (Wl ) ~ ﬁ . O

Ui(Wl) ~

B.3 PROOF OF PROPOSITION 5 ON QKNORM

Proof. Self-attention with QKNorm (Dehghani et al.} 2023)) is defined as:
Y =W, XA,

where A’ = softmax(\%h), P =Q' "K' and q; and k; are the i-th column and the j-th column in

Q' and K’ individually, and we define

Vd,Wz; Wyx;
g, = RMSN(W,z;) = v, ® ~————-— Ti_ Vd » diag(yq) i
”Wq 1H2 H qwzHQ
VWi, Wyix;
k' = RMSN(Wix;) = 7 © ~—ee— 2 = \/dj, diag(vg) merr—2—
J (Wies) Wiz, Wia,l,

To facilitate our derivation, we will use Q = W, X and K = W;X as before, we use g; and
k; to denote the i-th column and the j-th column in @ and K individually. Thus, we can denote
= RMSN(qg;) and k; = RMSN(k;).
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Therefore, according to the product rule and chain rule, we can denote the Jacobian matrix of Y with
respect to X as follows:

Ovec(A’)

dvec(X)

Ovec(A’) dvec(P’)
Ovec(P’) Ovec(X)
Ovec(A”) (8vec(P'

Ovec(Y)
Ovec(X)

=(A"T @W.) + (In ® W, X)

=(AT @W,) + (In ® Wy X)

= AT W, + (I, ® W, X)

Ovec(Q')  Ovec(P’) Bvec(K'))

)
Avec(P’) \ Ovec(Q’) dvec(X’) = Ovec(K’) dvec(X')
T Ovec(A’) [ Ovec(P’) dvec(Q’) dvec(Q)  Ovec(P’) Ovec(K') dvec(K)
=@ oW+ .8 WUX)Bvec(P’) (avec(Q’) Ovec(Q) Ovec(X)  Ovec(K') Ovec(K) 6vec(X)>

To derive out gz:zg§; , we need to derive out each term in the above equation.
Since we know P’ = Q' K, then we have,
Ovec(P’)
=7 T
Ovec(K') ©Q
Similarly, we have
Ovec(P’)
— = (K'"®I)-C
8VCC(Q/) ( ® ) dN
where Cy is the communication matrix.
We have,
, avec( Q) ) <8q’ oqh oq’
J9 = = blockdia L= 2N
Q 7 9vec(Q) £\ 0q," 9q dqn
/ 8vec(K’) ok Okj Ok'y
J = blockdi —
K = Gvec(K) 0 N\ Gy Oky' T Dk
where ) .
9q; dp . 9:q;
B o (120,
9q;i gl ! gl
We have,
Ovec(Q)
=IW,
Ovec(X) ©Wa,
Ovec(K)
=1 W,
Ovec(X) @ W

we also have

oq. 0q.0q; dp < q:q; ) < qiq-T) W,
[ ? — dia I — L dla c )
dz: ~ og 0w ] "\ T g VerdiagOva) (I =112 ) o]

ok; Ok} 0k;  +/d, kik, kik] W,
diag(ve) | I - = /dy diag(v) [ T — :
5%‘ ~ Okjoz; Ikl [k ||2 ksl ) [[Wha||

In Proposition 3, we have proved that in a high-dimensional setting, the singular values of ”W ”
independent to the magnitude of W. Thus, until now, we have proved the Proposition 5.

Further, we would like to discuss the Jacobian matrix gvecg after QKNorm. We have,

Ovec(Y')

J
_ !/T “7 “r X
Ovec(X) (A7 eW)+(1.eW, X)

vy

(KT oD Cad§ T Wy +TeQTIK ToW).
(17)
It should be noted that
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e K’ and Q’ are two normalized terms that have relatively stable range of values.

* the Jacobian matrix of J, 8 s relatively independent to the magnitude of @Q and JE "is relatively
independent to the magnitude of K in a high-dimensional setting.

» QKNorm cannot fully replace the value of PreNorm because 232283 in Equation [17|is directly
affected by X.

Sijjgg . In the traditional
Ovec(Y)

is largely affected by WqT W.. However, after QKNorm, Bvee () will only

QKNorm will elliviate the influence of the magnitude of W, and W, on the

Ovec(Y)
> Ovec(X)

be affected by independent W, or W}, instead of the joint term WqT W,. This is important for the
training stability because the singular values of WJ W will increase extremely fast when both
singular values of W, and W, are increasing.

self-attention

C EXPERIMENTAL DETAILS

TABLE 3: Model configurations, peak learning rate and weight decay for different optimizers.

AdamW mSGDW

Acronym Size d_model n_head depth

LR WD LR WD
L-DNT-Small  124M 768 12 12 6e-4 01 1.0 le4
L-DNT-Large  774M 1280 20 36 6e-4 01 1.0 le4
L-DNT-XL 1436M 1536 24 48 6e-4 01 1.0 le4
V-DNT-Large = 307M 1024 16 24 le3 01 05 2e4
V-DNT-Huge  632M 1280 16 32 le-3 0.1 0.1 le-3

We conducted experiments on two popular architectures: Vision Transformer (ViT) and Generative
Pretrained Transformer (GPT). Our implementation leverages established repositories: timm (Wight{
man, 2019) for ViT and nanoGPT (Karpathy, [2022) for GPT models. We utilized five model
configurations: L-DNT-Small (124M parameters), L-DNT-Large (774M parameters), L-DNT-XL
(1436M parameters), V-DNT-Large (307M parameters), and V-DNT-Huge (632M parameters). Model
specifications including hidden dimension (d_model), number of attention heads (n_head), and net-
work depth are detailed in Table[3] Training was conducted using PyTorch (Paszke et al., [2019) with
bfloat16 precision GPUs, employing a cosine learning rate schedule.

All language models were trained on OpenWebText, using GPT-2 tokenizer. The training dataset
contains 9B tokens, with a validation set of 4.4M tokens, following the train-validation split from
nanoGPT. We employed distributed data parallel training with gradient accumulation. All models
were trained using bfloat16 precision. The 124M models were trained on machines with 8 GPUs,
774M models were trained with 16 A800 GPUs, while 1436M models were trained with 32 GPUs.
Our global batch sizes for 125M, 770M and 1436M models are 480, 512 and 512 individually. In
Sophia (Liu et al., [2023b), they use 480 global batch size for all models. For all language models,
we used 2000 steps or learning rate warmup to the maximum learning rate, and then used a cosine
learning rate decay. It takes around four days to train 200K steps for the 1.4B model on 32 GPUs.

All vision models were trained on ImageNet dataset. We trained each 150 epoches as (Xie et al.}
2024)). We used a learning rate warmup of 60 epochs to the maximum learning rate, and then used a
cosine learning rate decay.

For our experiments, we focused on comparing AdamW and mSGDW optimizers. The hyperpa-
rameters for AdamW were carefully tuned, with 5; = 0.9 and 55 = 0.95, following the dominant
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configuration in LLM pre-training literature. For weight decay, we used 0.1 for AdamW as (Karpathyl
2022} |Liu et al.| 2023b)). We used the recommended learning rate by nanoGPT for AdamW in GPT.
Since our DNT is robust to large learning rate, we use 6e-4 for all our L-DNT models and 1e-3 for all
our V-DNT models for AdamW . For nSGDW, we simply use a rough grid search for the learning
rate, we cannot search a fine-grained learning rate and weight decay due to its requiring a lot of
resources. For the momentum in mSGDW, we used a default 0.9 for all experiments. We use the
implementation E] of mSGDW from timm (Wightman, |2019). This implementation is a decoupled
weight decay regularization used in AdamW (Loshchilov & Hutter, [2019). Note that mSGDW is not

directly to add a weight decay in the original implementation of mSGD

will have performance problem.

TABLE 4: Training configurations for ViT and V-DNT.

[in the official PyTorch, it

training config VIT-L/H (224%)  ViT-L/H (224%) V-DNT-L/H (224%) V-DNT-L/H (224?)
optimizer AdamW mSGDW AdamW mSGDW
learning rate schedule cosine decay

peak learning rate le-3 0.5/0.1 le-3 0.5/0.1
minimum learning rate le-8 le-8 le-8 le-8
weight decay 0.1 2e-4/1e-3 0.1 2e-4/1e-3
optimizer momentum 81,82 =0.9,0.99 ©w=0.9 51,82 =0.9,0.99 ©w=0.9
warmup epoches 60 60 60 60
weight init Truncated Xavier

batch size 1024

training epochs 150

randaugment (9,0.5)

mixup 0.8

cutmix 1.0

random erasing 0

label smoothing 0.1

stochastic depth 0.1/0.5

gradient clip None

exp. mov. avg. (EMA) no

*https://github.com/huggingface/pytorch-image-models/blob/main/timm/

optim/sgdw.py

*https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
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TABLE 5: Training configurations for GPT and L-DNT.

training config GPT2-S/L/XL GPT2-S/L/XL L-DNT-S/L/XL L-DNT-S/L/XL
optimizer AdamW mSGDW AdamW mSGDW
learning rate schedule cosine decay

peak learning rate 6e-4/2.5e-4/1.5¢e-4 1.0 6e-4 1.0
minimum learning rate 6e-5 6e-5 6e-5 6e-5
weight decay 0.1 le-4 0.1 le-4
optimizer momentum B, 82 =0.9,0.95 w=20.9 B1, 82 =0.9,0.95 uw=20.9
warmup steps 2000 0 2000 0
weight init Xavier

tokens seen each update 480K/512K/512K

max iters 200K

batch size 480/512/512

sequence length 1024

dropout 0.0

bfloat16 True

gradient clipping 1.0
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FIGURE 7: Five different settings of normalizations evaluated in the ablation study. (A) denotes the
standard Transformer with prenorm. (B) denotes (A) plus QKNorm, (C) denotes (B) plus InputNorm,
(D) and (E) denote two versions of our DNT.
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WE/PE > PreNorm SA with PreNorm FFN —>
QKNorm

(B) Setting 2

WE/PE InputNorm PreNorm SA with PreNorm FFN —>
QKNorm

(C) Setting 3

WE/PE InputNorm (-5 PreNorm SA with MidNorm PreNorm FEN MidNorm >
QKNorm

(D) Setting 4

—>{ WE/PE [—>{ InputNorm PreNorm SA with MidNorm FEN MidNorm L >
QKNorm

(E) Setting 5

—>

—>

—>

D FIVE DIFFERENT NETWORK SETTINGS

Figure[7illustrates five different network settings. We have conducted a ablation study for these five
settings in the main body part.

E EXPERIMENTS ON LARGER MODEL

We further compare larger V-DNT and L-DNT models and original ViT and GPT2 models on
ImageNet and OpenWebText using mSGDW and AdamW. The results are shown in Figures 8] [9]
and [T0l

We see that on OpenWebText, L-DNT-large with mSGDW achieves a comparable performance with
L-DNT-large with AdamW and achieves a much better performance than GPT2-large with mSGDW.
Meanwhile, we find out that V-DNT-huge with mSGDW achieves a comparable performance with
V-DNT-huge with AdamW and obtains a much better performance than ViT-huge with mSGDW.
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OpenWebText Val Loss

—— AdamW-GPT2-Large
3.39 —— AdamW-L-DNT-Large
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FIGURE 8: Comparison of GPT2-Large and L-DNT-Large (774M) on OpenWebText. All models
are trained with 200K in total. GPT2-Large training mSGDW under-performs GPT2-Large with
AdamW significantly, but L-DNT-Large with mSGDW can achieve a comparable performane with
L-DNT-Large with AdamW.
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— AdamW-GPT2-1.4B
—— AdamW-L-DNT-1.4B
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FIGURE 9: Comparison of GPT2-Large and L-DNT-Large (1436M) on OpenWebText. All models
are trained with 200K in total. GPT2-Large training mSGDW under-performs GPT2-Large with
AdamW significantly, but L-DNT-Large with mSGDW can achieve a comparable performane with
L-DNT-Large with AdamW.
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ImageNet Validation Accuracy
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FIGURE 10: Comparison of ViT-Huge and V-DNT-Huge (632M) on ImageNet. All models are
trained with 160 epochs in total. ViT-Huge training mSGDW under-performs ViT-Huge with AdamW
significantly, but V-DNT-Huge with mSGDW can achieve a comparable performane with V-DNT-
Huge with AdamW.

F MORE ABLATION STUDY

In this section, we conducted more ablation studies. In these experiments, we started with a complete
L-DNT model (we use setting 5 in Figure[7) that includes one InputNorm, two PreNorm layers, two
MidNorm layers, and one QKNorm. We removed InputNorm, PreNorm (both layers), MidNorm
(both layers), and QKNorm individually. To observe the instability issue, we trained each ablated
model with a relatively large learning rate (Adam optimizer with learning rate 0.3, without warmup).
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FIGURE 11: ................

According to the experimental results, we observed that:

* When only removing QKNorm, the model collapsed after just a few training steps;
* When only removing PreNorm, the model began to collapse around 4000 steps;

* When only removing MidNorm, the model exhibited significant oscillations between 10K and 30K
steps;

* When only removing InputNorm, the model was able to converge normally even with the 0.3
learning rate.

Therefore, from the perspective of training stability, we conclude that the importance of these
normalization layers can be ranked in the following order: QKNorm > PreNorm ~ MidNorm >
InputNorm.

Meanwhile, we also conducted an ablation study on the V-DNT model using AdamW, and we observed
a similar phenomenon. QKNorm is crucial, while PreNorm and MidNorm exhibit comparable stability.
InputNorm has a relatively minor impact on stability.

F.1 EXPERIMENTS USING MUON OPTIMIZER

In this section, we experimented with using the Muon optimizer to compare GPT-2 and DNT. Let us
give a brief introduction to Muon. Given an update GG, performing SVD decomposition, we have
G =UXV ". As we know, Muon uses a Newton-Schulz method to approximate the UV " matrix.
In the current Muon implementation, for 2D matrices, we use Muon to approximate the matrices,
while for 1D vectors, we directly employ the AdamW optimizer.

In our experiments with Muon, we used a learning rate of 10~ for 2D vectors and 6 x 10~ for 1D
matrices. We conducted four sets of experiments: GPT-2 with AdamW, DNT with AdamW, GPT-2
with Muon, and DNT with Muon. Same as previous experiments, we use 2000 steps warmup for all
four experiments. The results are presented in Figure[12]
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FIGURE 12: .....cc........

Based on experimental observations, we note the following two points:

» When using the learning rates (10~%, 6 x 10~%), GPT-2 begins to show an increase in validation
loss after 50K training steps, indicating training instability. For DNT, we observe no instability
issues, and the training curve exhibits almost no fluctuations. Additionally, when using Muon,
DNT demonstrates significantly better convergence speed compared to DNT with AdamW.

* When both DNT and GPT-2 use AdamW, DNT shows slightly better performance than GPT-2.

G A BRIEF INTRODUCTION TO SOME EXISTING OPTIMIZERS

Optimization methods in deep learning can be broadly categorized into first-order methods and second-
order methods, each with distinct characteristics and applications. First-order optimization algorithms
dominate deep learning due to their computational efficiency, particularly for high-dimensional and
large-scale problems. First-order methods rely primarily on gradient information to find the minimum
or maximum of a function. Based on learning rate selection strategies, these methods can be divided
into optimizers with fixed step size and optimizers with adaptive learning rate.

Stochastic Gradient Descent (SGD) (Robbins & Monrol |1951) serves as the foundational algorithm
for neural network optimization. It updates parameters in the opposite direction of the gradient of
the objective function. While simple and effective, vanilla SGD can struggle with navigating ravines
and saddle points in the loss landscape. Momentum SGD (mSGD) (Nesterov, |1983) addresses the
limitations of vanilla SGD by accelerating gradient descent in relevant directions while dampening
oscillations. This method augments the gradient direction with a fraction of the update vector from
the previous step, allowing faster convergence and helping escape local minima. Other notable
variants include signSGD (Bernstein et al.,[2018)), which uses only the sign of gradients for updates;
SVRG (Johnson & Zhang} 2013), which reduces variance in stochastic gradients; LARS (You et al.,
2017), which adjusts learning rates layer-wise.

Adaptive methods revolutionized gradient-based optimization by incorporating two key innovations.
First, they implement parameter-specific learning rate adaptation, performing smaller updates for
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frequently occurring features and larger updates for infrequent features. Second, they incorporate
historical gradient information, often approximating second-order properties of the loss landscape.
AdaGrad (Duchi et al., 2011) adapts learning rates based on historical gradient information and
is particularly effective for sparse data. RMSprop (Hinton, 2012) addresses AdaGrad’s radically
diminishing learning rates by using an exponentially weighted moving average. Adam (Kingma &
Ba, [2014)) combines momentum with adaptive learning rates, incorporating both first and second
moments of gradients. AdamW (Loshchilov & Hutter, 2019) modifies Adam with more effective
weight decay regularization, while Adafactor (Shazeer & Sternl 2018) provides a memory-efficient
adaptive method. Défossez et al. provides a unified formulation for adaptive methods like AdaGrad,
Adam, and AdaDelta.

The field continues to evolve with recent innovations including MUON (Jordan et al., 2024),
LION (Chen et al., 2023)), Sophia (Liu et al., |2023b), and Mars (Yuan et al., 2024). These methods
represent the cutting edge of adaptive optimization techniques, further advancing efficiency and
performance in training deep learning models.

Wang & Choromanskal (2025)) give a detailed analysis and survey of optimization methods, we would
like to recommend the audience to refer to their paper for a full reference.

Remark. This paper is orthogonal to these works discussed in this section. Our primary contribution
is to demonstrate that vanilla mSGD can achieve strong performance on a Transformer architecture
when it does not have a heavy-tail problem in gradients. Notably, the optimizers discussed here can
also be effectively applied to our proposed DNT network.
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