

000 001 DISTDF: TIME-SERIES FORECASTING NEEDS 002 JOINT-DISTRIBUTION WASSERSTEIN ALIGNMENT 003 004

005 **Anonymous authors**
006 Paper under double-blind review

007 008 ABSTRACT 009

011 Training time-series forecast models requires aligning the conditional distribution
012 of model forecasts with that of the label sequence. The standard direct forecast
013 (DF) approach resorts to minimizing the conditional negative log-likelihood of
014 the label sequence, typically estimated using the mean squared error. However,
015 this estimation proves to be biased in the presence of label autocorrelation. In
016 this paper, we propose DistDF, which achieves alignment by alternatively min-
017 imizing a discrepancy between the conditional forecast and label distributions.
018 Because conditional discrepancies are difficult to estimate from finite time-series
019 observations, we introduce a newly proposed joint-distribution Wasserstein dis-
020 crepancy for time-series forecasting, which provably upper bounds the conditional
021 discrepancy of interest. This discrepancy admits tractable, differentiable estimation
022 from empirical samples and integrates seamlessly with gradient-based training.
023 Extensive experiments show that DistDF improves the performance of diverse
024 forecast models and achieves the state-of-the-art forecasting performance. Code is
025 available at <https://anonymous.4open.science/r/DistDF-F66B>.

026 1 INTRODUCTION 027

028 Time-series forecasting, which entails predicting future values based on historical observations,
029 plays a critical role in numerous applications, such as stock trend analysis in finance (Li et al.,
030 2025a), website traffic prediction in e-commerce (Chen et al., 2023), and trajectory forecasting in
031 robotics (Fan et al., 2023). In the era of deep learning, the development of effective forecast models
032 hinges on two aspects (Wang et al., 2025f): (1) *How to design neural architecture serving as the*
033 *forecast models?* and (2) *How to design learning objective driving model training?* Both aspects are
034 essential for achieving high forecast performance.

035 The design of neural architectures has been extensively investigated in recent studies. A central
036 challenge involves effectively capturing the autocorrelation structures inherent in the input sequences.
037 To this end, a variety of neural architectures have been proposed (Wang et al., 2023b; Lin et al., 2024).
038 Recent discourse emphasizes the comparison between Transformer-based models—which leverage
039 self-attention mechanisms to capture autocorrelation and scale effectively (Nie et al., 2023; Liu et al.,
040 2024; Piao et al., 2024)—and linear models, which use linear projections to model autocorrelation and
041 often achieve competitive performance with reduced complexity (Yi et al., 2023b; Zeng et al., 2023;
042 Yue et al., 2025). These developments illustrate a rapidly evolving aspect in time-series forecasting.

043 In contrast, the design of learning objectives remains comparatively under-explored (Li et al., 2025c;
044 Qiu et al., 2025a; Kudrat et al., 2025b). Current approaches typically define the learning objective by
045 estimating the conditional likelihood of the label sequence. In practice, this is often implemented
046 as the mean squared error (MSE), which has become a standard objective for training forecast
047 models (Lin et al., 2025). However, MSE neglects the autocorrelation structure of the label sequence,
048 leading to biased likelihood estimation (Wang et al., 2025g). Some efforts transform the label
049 sequence into conditionally decorrelated components to eliminate the bias (Wang et al., 2025f;g).
050 Nevertheless, as demonstrated in this work, such conditional decorrelation cannot be guaranteed in
051 practice; thus, the bias persists. *Therefore, likelihood-based methods are fundamentally limited by*
052 *biased likelihood estimation that impedes model training.*

053 To bypass the limitation of previous widely used likelihood-based methods, we propose Distribution-
aware Direct Forecast (DistDF), which trains forecast models by minimizing the discrepancy between

054 the conditional distributions of forecast and label sequences. Since directly estimating conditional
 055 discrepancies is intractable given finite time-series observations, we introduce the joint-distribution
 056 Wasserstein discrepancy for unbiased time-series forecasting. It upper-bounds the conditional discrepancy
 057 of interest, enables differentiation, and can be estimated from finite time-series observations,
 058 making it well-suited for integration with gradient-based optimization of time-series forecast models.
 059

060 Our main contributions are summarized as follows:

061 • We demonstrate a fundamental limitation in prevailing likelihood-based learning objectives for
 062 time-series forecasting: biased likelihood estimation that hampers effective model training.
 063

064 • We propose DistDF, a training framework that aligns the conditional distributions of forecasts and
 065 labels, with a newly proposed joint-distribution Wasserstein discrepancy, ensuring the alignment of
 066 conditional distributions and admitting tractable estimation from finite time-series observations.
 067

068 • We perform comprehensive empirical evaluations to demonstrate the effectiveness of DistDF, which
 069 enhances the performance of state-of-the-art forecast models across diverse datasets.

070 2 PRELIMINARIES

071 2.1 PROBLEM DEFINITION

072 In this paper, we focus on the multi-step time-series forecasting problem. We use uppercase letters
 073 (*e.g.*, X) to denote matrices and lowercase letters (*e.g.*, x) to denote scalars. Given a time-series dataset
 074 S with D covariates, the historical sequence at time step n is defined as $X = [S_{n-H+1}, \dots, S_n] \in \mathbb{R}^{H \times D}$, and the label sequence is defined as $Y = [S_{n+1}, \dots, S_{n+T}] \in \mathbb{R}^{T \times D}$, where H is the
 075 lookback window size and T is the forecast horizon. Modern models adopt a direct forecasting (DF)
 076 approach, generating all T forecast steps simultaneously (Liu et al., 2024). Thus, the target is to learn
 077 a model $g : \mathbb{R}^{H \times D} \rightarrow \mathbb{R}^{T \times D}$ that maps X to a forecast sequence \hat{Y} approximating Y ¹.
 078

079 The development of forecast models encompasses two principal aspects: (1) neural network archi-
 080 tectures that effectively encode historical sequences (Zeng et al., 2023; Liu et al., 2024), and (2)
 081 learning objectives for training neural networks (Wang et al., 2025f;g). It is important to emphasize
 082 that this work focuses on the design of learning objectives rather than proposing novel architectures.
 083 Nevertheless, we provide a concise review of both aspects for contextual completeness.
 084

085 2.2 NEURAL NETWORK ARCHITECTURES IN TIME-SERIES FORECASTING

086 Architectural developments aim to encode historical sequences to obtain informative representa-
 087 tion (Wu et al., 2025; Qiu et al., 2025b). Representative classic architectures include recurrent neural
 088 networks (Gu et al., 2021), convolutional neural networks (Luo and Wang, 2024), and graph neural
 089 networks (Yi et al., 2023a). A central theme in recent literature is the comparison of Transformer
 090 and non-Transformer architectures. Transformers (*e.g.*, PatchTST (Nie et al., 2023), TQNet (Lin
 091 et al., 2025), TimeBridge (Liu et al., 2025)) demonstrate strong scalability on large datasets but often
 092 entail substantial computational cost. In contrast, non-Transformer models (*e.g.*, TimeMixer (Wang
 093 et al., 2024), FreTS (Yi et al., 2023b)) offer greater computational efficiency but may be less scal-
 094 able. Recent advances include hybrid architectures that combine Transformer and non-Transformer
 095 components for their complementary strengths (Lin et al., 2024), as well as the integration of Fourier
 096 analysis for efficient learning (Piao et al., 2024; Yi et al., 2025).
 097

098 2.3 LEARNING OBJECTIVES IN TIME-SERIES FORECASTING

099 Learning objective developments have largely focused on aligning the conditional distributions of
 100 model forecasts $\mathbb{P}(\hat{Y}|X)$ with those of the label sequence $\mathbb{P}(Y|X)$. To this end, the most common
 101 objective is the MSE, which measures the point-wise error between the forecast and label sequences
 102

103 ¹Hereafter, we consider the univariate case ($D = 1$) for clarity. In the multivariate case, each variable can be
 104 treated as a separate univariate case when computing the learning objectives.
 105

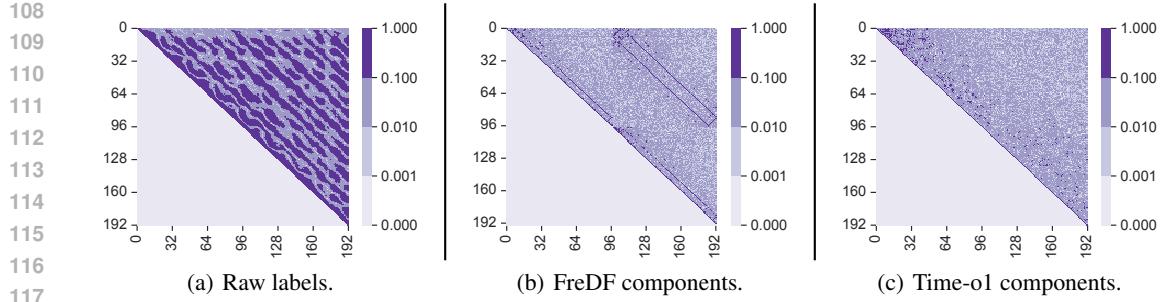


Figure 1: The conditional correlation of label components given X , where the forecast horizon is set to $T = 192$. The correlation matrices are computed for the raw labels (a), the frequency components in FreDF (b) (Wang et al., 2025g) and the principal components in Time-o1 (c) (Wang et al., 2025f).

(Dai et al., 2024; Chen et al., 2025; Lin et al., 2025):

$$\mathcal{L}_{\text{mse}} = \left\| Y_{|X} - \hat{Y}_{|X} \right\|_2^2 = \sum_{t=1}^T \left(Y_{|X,t} - \hat{Y}_{|X,t} \right)^2, \quad (1)$$

where $Y_{|X}$ is the label sequence given historical sequence X , $\hat{Y}_{|X}$ is the forecast sequence. However, the MSE objective is known to be biased since it overlooks the presence of label autocorrelation (Wang et al., 2025g). To mitigate this issue, several alternative learning objectives have been proposed. One line of work advocates aligning the overall shape of the forecast and label sequence (e.g., Dilate (Le Guen and Thome, 2019) and PS (Kudrat et al., 2025a)). These approaches accommodate autocorrelation by emphasizing sequence-level differences, but lack theoretical guarantees for achieving an unbiased objective. Another line of work transforms labels into decorrelated components before alignment. This strategy reduces bias and improves forecasting performance (Wang et al., 2025f,g), showcasing the benefits of refining learning objectives for time-series forecasting.

3 METHODOLOGY

3.1 MOTIVATION

The primary objective in training time-series forecast models is to align the conditional distribution of model-generated forecasts with that of the label sequence. Likelihood-based approaches seek this by maximizing the conditional likelihood of the label sequence. A common practice is to estimate the negative log-likelihood through the mean squared error (MSE), which has become the predominant objective for training time-series forecast models (Lin et al., 2025). However, MSE treats each future step as an independent prediction task and thus ignores the autocorrelation structure of the label sequence, where each observation typically depends on its predecessors (Zeng et al., 2023). Such an oversight renders MSE biased from the true negative log-likelihood of the label sequence. This issue is termed as autocorrelation bias and formalized in Theorem 3.1.

Theorem 3.1 (Autocorrelation bias). *Suppose $Y_{|X} \in \mathbb{R}^T$ is the label sequence given historical sequence X , $\hat{Y}_{|X} \in \mathbb{R}^T$ is the forecast sequence, $\Sigma_{|X} \in \mathbb{R}^{T \times T}$ is the conditional covariance of $Y_{|X}$. The bias of MSE from the negative log-likelihood of the label sequence given X is expressed as:*

$$\text{Bias} = \left\| Y_{|X} - \hat{Y}_{|X} \right\|_{\Sigma_{|X}^{-1}}^2 - \left\| Y_{|X} - \hat{Y}_{|X} \right\|_2^2. \quad (2)$$

where $\|v\|_{\Sigma_{|X}^{-1}}^2 = v^\top \Sigma_{|X}^{-1} v$. It vanishes if the conditional covariance $\Sigma_{|X}$ is the identity matrix².

Some might argue that the bias can be eliminated by first transforming the label sequence into conditionally decorrelated components and then applying MSE component-wise. For example,

²The pioneering work (Wang et al., 2025f) derives the bias from the marginal likelihood of Y assuming it follows a Gaussian distribution. In contrast, this work clarifies that it is the conditional distribution of Y given X that is Gaussian. Consequently, we derive the bias from the conditional log-likelihood of Y .

162 **FreDF** (Wang et al., 2025g) uses Fourier transform to obtain frequency components; **Time-o1** (Wang
 163 et al., 2025f) employs principal component analysis to obtain principal components. This strategy
 164 does eliminate the bias if the resulting components were truly conditionally decorrelated (see The-
 165 orem 3.1). However, one key distinction warrants emphasis: both Fourier and principal component
 166 transformations guarantee only *marginally decorrelated* of the obtained components (*i.e.*, diagonal
 167 Σ), not the required *conditional decorrelation* (*i.e.*, diagonal $\Sigma_{|X}$)³; thus the bias persists. *Hence,*
 168 *likelihood-based methods are limited by biased likelihood estimation which hampers model training.*

169 **Case study.** We conduct a case study on the Traffic dataset to illustrate the limitations of likelihood-
 170 based methods. As shown in Fig. 1(a), the conditional correlation matrix reveals substantial off-
 171 diagonal values—over 50.3% exceed 0.1—illustrating the presence of autocorrelation effects. In
 172 contrast, Fig. 1(b) presents the conditional correlations of the latent components extracted by FreDF
 173 and Time-o1 (Wang et al., 2025g;f). While the non-diagonal elements are notably reduced, residual
 174 correlations remain, indicating that these methods do not fully eliminate autocorrelation in the
 175 transformed components. Consequently, applying a point-wise loss to these transformed components
 176 continues to ignore autocorrelation and yields bias.

177 Given the substantial challenges faced by likelihood-based methods, it is worthwhile to explore
 178 alternative strategies to align conditional distributions for model training. One plain strategy is directly
 179 minimizing a *distributional discrepancy between the conditional distributions* (Courty et al., 2017),
 180 which can effectively achieve alignment while bypassing the complexity of likelihood estimation.
 181 Importantly, there are two questions that warrant investigation. *How to devise a discrepancy to align*
 182 *the two conditional distributions? Does it effectively improve forecast performance?*

184 3.2 ALIGNING CONDITIONAL DISTRIBUTIONS VIA JOINT-DISTRIBUTION BALANCING

186 In this section, we aim to align the conditional distributions, *i.e.*, $\mathbb{P}_{\hat{Y}|X}$ and $\mathbb{P}_{Y|X}$, by minimizing
 187 a discrepancy metric between them. As with general distribution alignment tasks, the choice of
 188 discrepancy metric is crucial (Xu et al., 2021). We select the Wasserstein discrepancy from optimal
 189 transport theory, which measures the discrepancy between two distributions as the minimum cost
 190 required to transform one into the other. Its ability to remain informative for distributions with
 191 disjoint supports, combined with its robust theoretical properties and proven empirical success, makes
 192 it a principled choice for this work (Courty et al., 2017). An informal definition is provided in
 193 Definition 3.2.

194 **Definition 3.2** (Wasserstein discrepancy). *Let α and β be random variables with probability distri-
 195 butions \mathbb{P}_α and \mathbb{P}_β ; $\mathcal{S}_\alpha = [\alpha_1, \dots, \alpha_n]$ and $\mathcal{S}_\beta = [\beta_1, \dots, \beta_m]$ be empirical samples from \mathbb{P}_α and \mathbb{P}_β .
 196 The optimization problem seeks a feasible plan $P \in \mathbb{R}_+^{n \times m}$ to transport α to β at the minimum cost:*

$$197 \mathcal{W}_p(\mathbb{P}_\alpha, \mathbb{P}_\beta) := \min_{P \in \Pi(\alpha, \beta)} \langle D, P \rangle, \\ 198 \Pi(\mathbb{P}_\alpha, \mathbb{P}_\beta) := \begin{cases} P_{i,1} + \dots + P_{i,m} = a_i, i = 1, \dots, n, \\ P_{1,j} + \dots + P_{n,j} = b_j, j = 1, \dots, m, \\ P_{i,j} \geq 0, i = 1, \dots, n, j = 1, \dots, m, \end{cases} \quad (3)$$

203 where \mathcal{W}_p denotes the p -Wasserstein discrepancy; $D \in \mathbb{R}_+^{n \times m}$ represents the pairwise distances
 204 calculated as $D_{i,j} = \|\alpha_i - \beta_j\|_p^p$; $a = [a_1, \dots, a_n]$ and $b = [b_1, \dots, b_m]$ are the weights of samples
 205 in α and β , respectively; n and m are the numbers of samples; Π defines the set of constraints.

207 A natural approach to aligning the conditional distributions is to minimize the Wasserstein discrepancy
 208 $\mathcal{W}_p(\mathbb{P}_{Y|X}, \mathbb{P}_{\hat{Y}|X})$. However, this approach suffers from an **estimation difficulty**. For any given X ,
 209 a typical dataset often provides only a single associated label sequence Y , and the forecast model
 210 produces only a single output \hat{Y} . Thus, the empirical sets ($\mathcal{S}_{Y|X}$ and $\mathcal{S}_{\hat{Y}|X}$) each contain only a
 211 single sample, which is insufficient to represent the underlying conditional distributions and renders
 212 the discrepancy uninformative. Crucially, this limitation is not unique to the Wasserstein discrepancy;
 213 any distributional discrepancy metric becomes degenerate in the absence of multiple samples.

214
 215 ³According to Theorem 3.3 (Wang et al., 2025g) and Lemma 3.2 (Wang et al., 2025f), the components
 obtained by Fourier and principal component transformations are marginal decorrelated.

216 **Lemma 3.3** (Kim et al. (2022)). *For any $p \geq 1$, the joint-distribution Wasserstein discrepancy upper
217 bounds the expected conditional-distribution Wasserstein discrepancy:*

$$219 \quad \int \mathcal{W}_p(\mathbb{P}_{Y|X}, \mathbb{P}_{\hat{Y}|X}) d\mathbb{P}(X) \leq \mathcal{W}_p(\mathbb{P}_{X,Y}, \mathbb{P}_{X,\hat{Y}}). \quad (4)$$

221 *where the equality holds if $p = 1$ or the conditional Wasserstein term is constant with respect to X .*

223 To bypass this estimation difficulty, we advocate the joint-distribution Wasserstein discrepancy,
224 $\mathcal{W}_p(\mathbb{P}_{X,Y}, \mathbb{P}_{X,\hat{Y}})$, for training time-series forecast models. This proxy is advantageous for two
225 reasons. First, it provides a provable **upper bound** on the expected conditional discrepancy (see
226 Lemma 3.3), ensuring that minimizing the joint discrepancy effectively aligns the conditional dis-
227 tributions of interest. Second, it is readily **estimable** from finite time-series observations, since the
228 empirical samples $\mathcal{S}_{X,Y}$ and $\mathcal{S}_{X,\hat{Y}}$ can be constructed from the entire dataset, yielding sufficient
229 samples to compute a meaningful and informative discrepancy.

230 **Theorem 3.4** (Alignment property). *The conditional distributions are aligned, i.e., $\mathbb{P}_{Y|X} = \mathbb{P}_{\hat{Y}|X}$ if
231 the joint-distribution Wasserstein discrepancy is minimized to zero, i.e., $\mathcal{W}_p(\mathbb{P}_{X,Y}, \mathbb{P}_{X,\hat{Y}}) = 0$.*

232 **Lemma 3.5** (Peyré and Cuturi (2019)). *Suppose $\mathbb{P}_{X,Y}$ and $\mathbb{P}_{X,\hat{Y}}$ obey Gaussian distributions
233 $\mathcal{N}(\mu_{X,Y}, \Sigma_{X,Y})$ and $\mathcal{N}(\mu_{X,\hat{Y}}, \Sigma_{X,\hat{Y}})$, respectively. The squared \mathcal{W}_2 discrepancy can be calculated
234 as the Bures-Wasserstein discrepancy:*

$$236 \quad \mathcal{BW}(\mu_{X,Y}, \mu_{X,\hat{Y}}, \Sigma_{X,Y}, \Sigma_{X,\hat{Y}}) = \left\| \mu_{X,Y} - \mu_{X,\hat{Y}} \right\|_2^2 + \mathcal{B}(\Sigma_{X,Y}, \Sigma_{X,\hat{Y}}), \quad (5)$$

238 *where $\mathcal{B}(\Sigma_{X,Y}, \Sigma_{X,\hat{Y}}) = \text{Tr} \left(\Sigma_{X,Y} + \Sigma_{X,\hat{Y}} - 2\sqrt{\Sigma_{X,Y}^{1/2} \Sigma_{X,\hat{Y}} \Sigma_{X,Y}^{1/2}} \right)$, $\text{Tr}(\cdot)$ denotes matrix trace.*

241 **Theoretical Justification.** Theorem 3.4 shows that minimizing the joint-distribution Wasserstein
242 discrepancy to zero guarantees the alignment of conditional distributions. This result enables using the
243 joint discrepancy as a learning objective for training forecast models. Under a Gaussian assumption
244 (likewise MSE), this discrepancy has an analytical form (Lemma 3.5), obviating the need to solve the
245 complex transport problem of Definition 3.2. The proof is available in Appendix A.

246 The use of Wasserstein discrepancy for distribution alignment is highly inspired by domain adaptation
247 field (Courty et al., 2017). However, one key distinction warrants emphasis. Domain adaptation
248 dominantly aligns the *marginal distributions of inputs* to improve generalization; in contrast, we
249 align the *conditional distributions* of model outputs and labels to perform supervised training. To our
250 knowledge, this represents a technically innovative strategy.

252 3.3 MODEL IMPLEMENTATION

254 In this section, we present the implementation
255 specifics of DistDF, a framework that leverages
256 the joint-distribution Wasserstein discrepancy
257 to enhance the training of time-series forecast
258 models. The principal steps of the algorithm are
259 formalized in Algorithm 1.

260 Given historical sequences X and corresponding
261 label sequences $Y \in \mathbb{R}^{B \times T}$, where B denotes
262 batch size and T denotes forecast horizon; the
263 forecast model g is employed to generate the
264 forecast sequences, denoted as \hat{Y} (step 1). Sub-
265 sequentially, we define two joint sequences, which
266 are constructed by concatenating X with Y and
267 \hat{Y} along the time axis, respectively (step 2), expressed as $Z = [X, Y]$ and $\hat{Z} = [X, \hat{Y}]$.

268 To quantify the discrepancy term $\mathcal{L}_{\text{dist}}$, we compute the first- and second-order statistics of Z and \hat{Z} ,
269 i.e., the mean vectors (μ_Z and $\mu_{\hat{Z}}$) and covariance matrices (Σ_Z and $\Sigma_{\hat{Z}}$) (steps 3-4). The discrepancy
term $\mathcal{L}_{\text{dist}}$ is then evaluated using the Bures-Wasserstein metric (step 5), as defined in Lemma 3.5.

Algorithm 1 The workflow of DistDF.

Input: X : historical sequences, Y : label sequences.

Parameter: α : the relative weight of the discrepancy, g : the forecast model to generate forecast sequence.

Output: \mathcal{L}_α : the obtained learning objective.

```

1:  $\hat{Y} \leftarrow g(X)$ 
2:  $Z \leftarrow \text{concat}(X, Y)$ ,  $\hat{Z} \leftarrow \text{concat}(X, \hat{Y})$ 
3:  $\mu_Z \leftarrow \text{mean}(Z)$ ,  $\Sigma_Z \leftarrow \text{cov}(Z)$ 
4:  $\mu_{\hat{Z}} \leftarrow \text{mean}(\hat{Z})$ ,  $\Sigma_{\hat{Z}} \leftarrow \text{cov}(\hat{Z})$ 
5:  $\mathcal{L}_{\text{dist}} \leftarrow \mathcal{BW}(\mu_Z, \mu_{\hat{Z}}, \Sigma_Z, \Sigma_{\hat{Z}})$ 
6:  $\mathcal{L}_{\text{mse}} \leftarrow \|Y - \hat{Y}\|_2^2$ 
7:  $\mathcal{L}_\alpha := \alpha \cdot \mathcal{L}_{\text{dist}} + (1 - \alpha) \cdot \mathcal{L}_{\text{mse}}$ 

```

270
271
272 Table 1: Long-term forecasting performance.
273
274
275
276
277
278
279
280
281
282
283
284

Models	DistDF (Ours)		TimeBridge (2025)		Fredformer (2024)		iTransformer (2024)		FreTS (2023)		TimesNet (2023)		MICN (2023)		TiDE (2023)		PatchTST (2023)		DLinear (2023)	
Metrics	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTm1	0.378	0.394	0.387	0.400	<u>0.387</u>	<u>0.398</u>	0.411	0.414	0.414	0.421	0.438	0.430	0.396	0.421	0.413	0.407	0.389	0.400	0.403	0.407
ETTm2	0.277	0.321	0.281	0.326	<u>0.280</u>	<u>0.324</u>	0.295	0.336	0.316	0.365	0.302	0.334	0.308	0.364	0.286	0.328	0.303	0.344	0.342	0.392
ETTh1	0.430	0.429	<u>0.442</u>	0.440	0.447	<u>0.434</u>	0.452	0.448	0.489	0.474	0.472	0.463	0.533	0.519	0.448	0.435	0.459	0.451	0.456	0.453
ETTh2	0.367	0.393	0.377	0.403	<u>0.377</u>	0.402	0.386	0.407	0.524	0.496	0.409	0.420	0.620	0.546	0.378	<u>0.401</u>	0.390	0.413	0.529	0.499
ECL	0.172	0.267	<u>0.176</u>	0.271	0.191	0.284	0.179	<u>0.270</u>	0.199	0.288	0.212	0.306	0.192	0.302	0.215	0.292	0.195	0.286	0.212	0.301
Traffic	0.417	0.279	0.426	<u>0.282</u>	0.486	0.336	<u>0.426</u>	0.285	0.538	0.330	0.631	0.338	0.529	0.312	0.624	0.373	0.468	0.298	0.625	0.384
Weather	0.248	0.275	0.252	<u>0.277</u>	0.261	0.282	0.269	0.289	<u>0.249</u>	0.293	0.271	0.295	0.264	0.321	0.272	0.291	0.267	0.288	0.265	0.317
PEMS03	0.104	0.215	0.112	0.223	0.146	0.260	0.122	0.233	0.149	0.261	0.126	0.230	<u>0.106</u>	<u>0.223</u>	0.316	0.370	0.170	0.282	0.216	0.322
PEMS08	0.123	0.223	<u>0.139</u>	<u>0.239</u>	0.171	0.271	0.149	0.247	0.174	0.275	0.152	0.243	0.153	0.258	0.318	0.378	0.201	0.303	0.249	0.332

285 Note: We fix the input length as 96 following Liu et al. (2024). **Bold** and underlined denote best and second-best results, respectively. Avg indicates average
286 results over horizons: T=96, 192, 336 and 720. DistDF employs the top-performing baseline on each dataset as its underlying forecast model.

287 Given the complexity of directly optimizing the Bures–Wasserstein discrepancy and its lack of
288 inherent pairing awareness, we integrate it with the mean squared error to promote training stability
289 and facilitate convergence (steps 6–7), following the established practices (Wang et al., 2025f;g):

$$290 \quad \mathcal{L}_\alpha := \alpha \cdot \mathcal{L}_{\text{dist}} + (1 - \alpha) \cdot \mathcal{L}_{\text{mse}}. \quad (6)$$

291 where $0 \leq \alpha \leq 1$ balances the contribution of the distributional discrepancy term.

292 By minimizing the distributional discrepancy, DistDF effectively aligns the conditional distributions
293 of the forecast and label sequences, thereby refining the model’s forecast performance. DistDF
294 preserves the principal benefits of the canonical DF framework (Zeng et al., 2023; Liu et al., 2024),
295 such as efficient inference and multi-task learning capability. Moreover, DistDF is model-agnostic,
296 which renders it a plugin-and-play component to improve the training of different forecast models.

299 4 EXPERIMENTS

300 To demonstrate the efficacy of DistDF, the following aspects deserve empirical investigation:

- 303 **1. Performance:** Does DistDF perform well? In Section 4.2, we benchmark DistDF against state-of-the-art baselines, and in Section 4.3, we compare it with alternative learning objectives.
- 306 **2. Gain:** Why does it work? In section 4.4, we perform an ablative study, dissecting the individual
307 components of DistDF and clarifying their contributions to forecast accuracy.
- 308 **3. Generality:** Does it support other models and discrepancy measures? In Section 4.5, we examine
309 its compatibility with various models and discrepancies, with further results in Appendix D.4.
- 311 **4. Sensitivity:** Is it sensitive to hyperparameters? In Section 4.6, we analyze the sensitivity of
312 DistDF to the hyperparameter α , showing stable performance across a broad parameter range.
- 313 **5. Efficiency:** What is the computational cost of it? In Appendix D.7, we evaluate the running cost
314 of DistDF across different scenarios.

315 4.1 SETUP

316 **Datasets.** We evaluate our methods using several standard public benchmarks for long-term time-
317 series forecasting, following Wu et al. (2023). Specifically, we use the ETT dataset (four subsets),
318 ECL, Traffic, Weather, and PEMS (Liu et al., 2024). All datasets are split chronologically into
319 training, validation, and test sets. Comprehensive dataset statistics are presented in Appendix C.1.

321 **Baselines.** We compare DistDF to a range of competitive baselines, categorized as: (1) Transformer-
322 based models—PatchTST (Nie et al., 2023), iTransformer (Liu et al., 2024), Fredformer (Piao et al.,
323 2024) and TimeBridge (Liu et al., 2025); (2) Non-Transformer based models—DLinear (Zeng et al.,
2023), TiDE (Das et al., 2023), MICN (Wang et al., 2023b) and FreTS (Yi et al., 2023b).

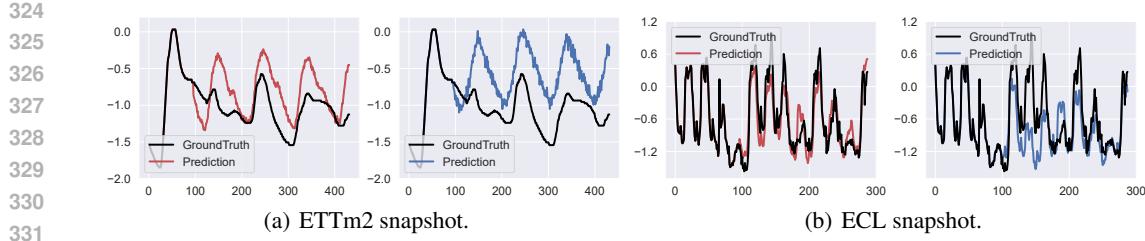
Figure 2: The forecast sequence of DF (in blue) and DistDF (in red), with historical length $H = 96$.

Table 2: Comparative results with other objectives for time-series forecasting.

Metrics	DistDF		Time-o1		FreDF		Koopman		Dilate		Soft-DTW		DF		
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
TimeBridge	ETTm1	0.383	0.397	<u>0.383</u>	<u>0.397</u>	0.386	0.398	0.460	0.438	0.387	0.400	0.395	0.402	0.387	0.400
	ETTTh1	0.434	0.436	0.439	0.438	<u>0.439</u>	<u>0.436</u>	0.459	0.449	0.464	0.452	0.452	0.445	0.442	0.440
	ECL	0.172	0.267	0.175	0.268	0.175	<u>0.267</u>	0.182	0.277	0.176	0.271	<u>0.173</u>	0.268	0.176	0.271
	Weather	0.248	0.275	<u>0.250</u>	<u>0.275</u>	0.254	0.276	0.269	0.293	0.252	0.277	0.260	0.280	0.252	0.277
Fredformer	ETTm1	0.378	0.394	<u>0.379</u>	0.393	0.384	<u>0.394</u>	0.389	0.400	0.389	0.400	0.397	0.402	0.387	0.398
	ETTTh1	0.430	0.429	<u>0.431</u>	0.429	0.438	0.434	0.452	0.443	0.453	0.442	0.460	0.449	0.447	0.434
	ECL	0.173	0.266	<u>0.178</u>	0.270	0.179	0.272	0.190	0.282	0.187	0.280	0.206	0.298	0.191	0.284
	Weather	0.255	0.277	<u>0.255</u>	0.276	0.256	<u>0.277</u>	0.257	0.279	0.258	0.280	0.261	0.280	0.261	0.282

Note: **Bold** and underlined denote best and second-best results, respectively. The reported results are averaged over forecast horizons: $T=96, 192, 336$ and 720 . When metric values coincide up to three decimal places, **Bold** indicates the numerically superior result based on full precision.

Implementation. Baseline implementations closely follow the official codebase from Piao et al. (2024). To ensure fair comparison, the drop-last trick is disabled for all models, as recommended in Qiu et al. (2024). All models are trained with the Adam optimizer (Kingma and Ba, 2015). When integrating DistDF into a baseline forecast model, we retain all hyperparameters from the public benchmarks (Liu et al., 2024; Piao et al., 2024), only tuning α and the learning rate. Experiments are run on Intel(R) Xeon(R) Platinum 8383C CPUs with 32 NVIDIA RTX H100 GPUs. Further implementation details are provided in Appendix C.

4.2 OVERALL PERFORMANCE

Table 1 reports the long-term forecasting results. DistDF consistently enhances the performance of base models across all evaluated datasets. For instance, on ETTh1, DistDF reduces the MSE of TimeBridge by 0.016. Similar improvements observed on other benchmarks confirm its robustness and generalizability. We attribute these empirical improvements to DistDF’s ability to align conditional distributions, a property supported by its theoretical guarantees (Theorem 3.4).

Showcases. To further illustrate the practical benefits, we compare the forecast sequences of DF and DistDF in Fig. 2. While a model trained with the standard DF objective captures the overall trend, it fails to accurately track fine-grained variations, such as rapid changes between steps 100 and 200. In contrast, DistDF produces forecasts that more precisely reflect these subtle and rapid changes, highlighting its effectiveness in improving real-world forecasting accuracy.

4.3 LEARNING OBJECTIVE COMPARISON

Table 2 presents a comparison between DistDF and several established time-series learning objectives: Time-o1 (Wang et al., 2025f), FreDF (Wang et al., 2025g), Koopman (Lange et al., 2021), Dilate (Le Guen and Thome, 2019), Soft-DTW (Cuturi and Blondel, 2017), and DPTA (Sakoe and Chiba, 2003). In this comparison, all methods are integrated into both TimeBridge and Fredformer using their official implementations for ensuring fairness.

In general, shape alignment objectives (Dilate, Soft-DTW, DPTA) improve marginally over standard DF, consistent with findings by Le Guen and Thome (2019). This suggests that heuristic shape-level alignment does not guarantee alignment of conditional distributions. FreDF and Time-o1 reduce

378
379
380 Table 3: Ablation study results.
381
382
383
384
385
386
387
388
389
390
391
392

Model	Align μ	Align Σ	Data	T=96		T=192		T=336		T=720		Avg	
				MSE	MAE								
DF	\times	\times	ETTm1	0.326	0.361	0.365	0.382	0.396	0.404	0.459	0.444	0.387	0.398
			ETTh1	0.377	0.396	0.437	<u>0.425</u>	0.486	0.449	0.488	0.467	0.447	0.434
			ECL	0.142	<u>0.239</u>	0.161	<u>0.257</u>	0.182	0.278	0.217	0.309	0.176	0.271
			Weather	0.168	0.211	0.214	0.254	0.273	0.297	0.353	<u>0.347</u>	0.252	0.277
DistDF †	\checkmark	\times	ETTm1	<u>0.318</u>	<u>0.359</u>	<u>0.361</u>	<u>0.382</u>	<u>0.393</u>	<u>0.404</u>	<u>0.453</u>	<u>0.440</u>	<u>0.381</u>	<u>0.396</u>
			ETTh1	0.375	<u>0.394</u>	0.435	0.426	<u>0.471</u>	<u>0.446</u>	<u>0.457</u>	<u>0.455</u>	<u>0.435</u>	<u>0.430</u>
			ECL	0.142	0.239	<u>0.160</u>	0.257	0.180	<u>0.273</u>	0.217	<u>0.307</u>	0.175	<u>0.269</u>
			Weather	0.168	0.211	<u>0.213</u>	<u>0.253</u>	0.273	0.296	<u>0.349</u>	0.348	<u>0.251</u>	0.277
DistDF ‡	\times	\checkmark	ETTm1	0.328	0.365	0.364	0.385	0.395	0.406	0.457	0.441	0.386	0.399
			ETTh1	<u>0.374</u>	0.396	<u>0.430</u>	0.430	0.476	0.451	0.476	0.472	0.439	0.437
			ECL	<u>0.141</u>	0.239	0.161	0.257	<u>0.179</u>	0.273	<u>0.216</u>	0.307	<u>0.174</u>	0.269
			Weather	<u>0.168</u>	0.211	0.214	0.253	<u>0.270</u>	<u>0.296</u>	0.353	<u>0.347</u>	0.251	<u>0.277</u>
DistDF	\checkmark	\checkmark	ETTm1	<u>0.316</u>	<u>0.357</u>	<u>0.359</u>	<u>0.381</u>	<u>0.392</u>	<u>0.404</u>	<u>0.448</u>	<u>0.437</u>	<u>0.379</u>	<u>0.395</u>
			ETTh1	<u>0.373</u>	<u>0.393</u>	<u>0.428</u>	<u>0.425</u>	<u>0.466</u>	<u>0.445</u>	<u>0.453</u>	<u>0.453</u>	<u>0.430</u>	<u>0.429</u>
			ECL	<u>0.137</u>	<u>0.235</u>	<u>0.159</u>	<u>0.257</u>	<u>0.178</u>	<u>0.272</u>	<u>0.212</u>	<u>0.302</u>	<u>0.172</u>	<u>0.267</u>
			Weather	<u>0.164</u>	<u>0.209</u>	<u>0.212</u>	<u>0.252</u>	<u>0.270</u>	<u>0.295</u>	<u>0.348</u>	<u>0.345</u>	<u>0.248</u>	<u>0.275</u>

393 Note: **Bold** and underlined denote best and second-best results, respectively. When metric values coincide up to three decimal places, **Bold** indicates the
394 numerically superior result based on full precision.

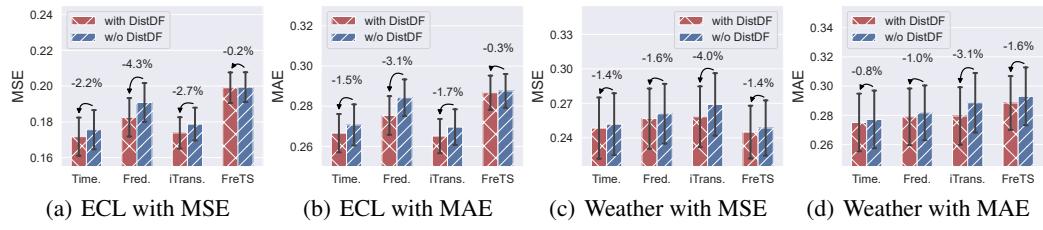


Figure 3: Improvement of DistDF applied to different forecast models, shown with colored bars for means over forecast lengths (96, 192, 336, 720) and error bars for 50% confidence intervals.

the bias in likelihood estimation and improve performance. However, as established in Section 3.1, residual bias remains, preventing unbiased alignment of conditional distributions. DistDF minimizes the discrepancy between conditional distributions, achieving unbiased alignment with theoretical guarantees (see Theorem 3.4), and consequently delivers superior performance.

4.4 ABLATION STUDIES

Table 3 examines the two components in the joint-distribution Wasserstein discrepancy (5): mean alignment and covariance alignment. The main findings are as follows:

- DistDF † augments DF by aligning only the means of the joint distributions, omitting the $\mathcal{B}(\cdot)$ in (5). This approach outperforms DF, illustrating that mean alignment of joint distributions can improve the alignment of the conditional distributions between label and forecast sequence.
- DistDF ‡ improves DF by aligning only the variance of joint distributions, exclusively involving $\mathcal{B}(\cdot)$ in (5). This approach also leads to improvements over DF in most cases, illustrating that variance alignment of joint distributions improves the alignment of the conditional distributions.
- DistDF combines both mean and variance alignment for comprehensive joint distribution matching. It yields the best results, demonstrating a synergistic effect when both components are integrated.

4.5 GENERALIZATION STUDIES

In this section, we assess the generalizability of DistDF by applying it to different distribution discrepancy measures and across various forecast models.

Varying discrepancy. We evaluate alternative discrepancy measures to align the joint distribution and report the results in Table 4. Specifically, we consider Kullback-Leibler (KL) divergence, maxi-

432 Table 4: Comparative results with other discrepancies for aligning the joint distributions.
433

434	435	436	437	438	439		440		441		442		443		
					444 Discrepancy		445 Ours		446 EMD		447 MMD@Linear		448 MMD@RBF		449 KL
451 Metrics	452 MSE	453 MAE	454 Metrics	455 MSE	456 MAE	457 Metrics	458 MSE	459 MAE	460 Metrics	461 MSE	462 MAE	463 Metrics	464 MSE	465 MAE	
TimeBridge	ETTm1	0.383	0.398	0.388	0.400	<u>0.385</u>	0.400	0.387	<u>0.399</u>	0.387	0.400	0.387	0.400	0.387	0.400
	ETTh1	0.433	<u>0.437</u>	0.441	0.439	0.438	0.437	0.441	0.440	<u>0.437</u>	0.438	0.442	0.440	0.442	0.440
	ECL	0.172	<u>0.267</u>	0.177	0.272	0.174	0.269	<u>0.172</u>	0.266	0.176	0.271	0.176	0.271	0.176	0.271
	Weather	0.248	<u>0.275</u>	0.251	<u>0.276</u>	0.253	0.278	<u>0.250</u>	0.276	0.253	0.277	0.252	0.277	0.252	0.277
Fredformer	ETTm1	0.379	0.395	0.386	0.397	<u>0.380</u>	<u>0.395</u>	0.385	0.397	0.385	0.397	0.387	0.398	0.387	0.398
	ETTh1	0.429	0.431	0.445	0.435	<u>0.437</u>	<u>0.432</u>	0.444	0.435	0.444	0.435	0.447	0.434	0.447	0.434
	ECL	0.183	<u>0.275</u>	0.187	0.280	0.188	0.280	0.187	0.280	<u>0.187</u>	<u>0.279</u>	0.191	0.284	0.191	0.284
	Weather	0.257	<u>0.279</u>	<u>0.261</u>	<u>0.282</u>	0.262	0.282	0.262	0.282	0.261	0.282	0.261	0.282	0.261	0.282

439 Note: **Bold** and underlined denote best and second-best results, respectively. The reported results are averaged over forecast horizons: T=96, 192, 336 and 720.
440 When metric values coincide up to three decimal places, **Bold** indicates the numerically superior result based on full precision.

441 Table 5: Varying α results of TimeBridge

α	ETTh2		ECL		Weather	
	MSE	MAE	MSE	MAE	MSE	MAE
0	0.377	0.403	0.176	0.271	0.252	0.277
0.001	0.378	0.402	0.172	0.267	0.250	0.276
0.002	0.377	0.402	0.173	0.267	0.250	0.276
0.005	0.376	0.401	0.172	0.267	0.250	0.276
0.01	0.376	0.400	<u>0.172</u>	<u>0.267</u>	0.249	0.276
0.02	0.376	0.400	0.174	0.269	<u>0.249</u>	0.276
0.05	0.375	<u>0.399</u>	0.174	0.268	0.252	0.278
0.1	<u>0.375</u>	0.399	0.174	0.269	0.254	0.280
0.2	0.376	0.399	0.177	0.270	0.258	0.282
0.5	0.378	0.400	0.186	0.277	0.261	0.285
1	0.381	0.402	0.197	0.282	0.265	0.286

455 Note: **Bold** and underlined denote the best and second-best results.
456 When metric values coincide up to three decimal places, **Bold** indicates
457 the numerically superior result based on full precision.

458 Table 6: Varying α results of Fredformer.

α	ETTh2		ECL		Weather	
	MSE	MAE	MSE	MAE	MSE	MAE
0	0.377	0.402	0.191	0.284	0.261	0.282
0.001	0.371	0.397	0.182	0.275	0.257	<u>0.279</u>
0.002	0.372	0.398	0.181	0.274	0.257	0.279
0.005	0.372	0.398	0.182	0.275	0.257	0.280
0.01	<u>0.370</u>	0.397	0.183	0.275	0.257	<u>0.279</u>
0.02	0.369	0.395	<u>0.182</u>	0.275	0.258	0.280
0.05	0.370	<u>0.396</u>	0.187	0.279	0.259	0.281
0.1	0.371	0.397	0.196	0.287	0.261	0.283
0.2	0.372	0.398	0.209	0.298	0.263	0.285
0.5	0.376	0.399	0.230	0.317	0.266	0.287
1	0.386	0.406	0.239	0.326	0.268	0.290

458 Note: **Bold** and underlined denote the best and second-best results.
459 When metric values coincide up to three decimal places, **Bold** indicates
460 the numerically superior result based on full precision.

461 **462** **463** **464** **465** **466** **467** **468** **469** **470** **471** **472** **473** **474** **475** **476** **477** **478** **479** **480** **481** **482** **483** **484** **485** **486** **487** **488** **489** **490** **491** **492** **493** **494** **495** **496** **497** **498** **499** **500** **501** **502** **503** **504** **505** **506** **507** **508** **509** **510** **511** **512** **513** **514** **515** **516** **517** **518** **519** **520** **521** **522** **523** **524** **525** **526** **527** **528** **529** **530** **531** **532** **533** **534** **535** **536** **537** **538** **539** **540** **541** **542** **543** **544** **545** **546** **547** **548** **549** **550** **551** **552** **553** **554** **555** **556** **557** **558** **559** **560** **561** **562** **563** **564** **565** **566** **567** **568** **569** **570** **571** **572** **573** **574** **575** **576** **577** **578** **579** **580** **581** **582** **583** **584** **585** **586** **587** **588** **589** **590** **591** **592** **593** **594** **595** **596** **597** **598** **599** **600** **601** **602** **603** **604** **605** **606** **607** **608** **609** **610** **611** **612** **613** **614** **615** **616** **617** **618** **619** **620** **621** **622** **623** **624** **625** **626** **627** **628** **629** **630** **631** **632** **633** **634** **635** **636** **637** **638** **639** **640** **641** **642** **643** **644** **645** **646** **647** **648** **649** **650** **651** **652** **653** **654** **655** **656** **657** **658** **659** **660** **661** **662** **663** **664** **665** **666** **667** **668** **669** **670** **671** **672** **673** **674** **675** **676** **677** **678** **679** **680** **681** **682** **683** **684** **685** **686** **687** **688** **689** **690** **691** **692** **693** **694** **695** **696** **697** **698** **699** **700** **701** **702** **703** **704** **705** **706** **707** **708** **709** **710** **711** **712** **713** **714** **715** **716** **717** **718** **719** **720** **721** **722** **723** **724** **725** **726** **727** **728** **729** **730** **731** **732** **733** **734** **735** **736** **737** **738** **739** **740** **741** **742** **743** **744** **745** **746** **747** **748** **749** **750** **751** **752** **753** **754** **755** **756** **757** **758** **759** **760** **761** **762** **763** **764** **765** **766** **767** **768** **769** **770** **771** **772** **773** **774** **775** **776** **777** **778** **779** **780** **781** **782** **783** **784** **785** **786** **787** **788** **789** **790** **791** **792** **793** **794** **795** **796** **797** **798** **799** **800** **801** **802** **803** **804** **805** **806** **807** **808** **809** **810** **811** **812** **813** **814** **815** **816** **817** **818** **819** **820** **821** **822** **823** **824** **825** **826** **827** **828** **829** **830** **831** **832** **833** **834** **835** **836** **837** **838** **839** **840** **841** **842** **843** **844** **845** **846** **847** **848** **849** **850** **851** **852** **853** **854** **855** **856** **857** **858** **859** **860** **861** **862** **863** **864** **865** **866** **867** **868** **869** **870** **871** **872** **873** **874** **875** **876** **877** **878** **879** **880** **881** **882** **883** **884** **885** **886** **887** **888** **889** **890** **891** **892** **893** **894** **895** **896** **897** **898** **899** **900** **901** **902** **903** **904** **905** **906** **907** **908** **909** **910** **911** **912** **913** **914** **915** **916** **917** **918** **919** **920** **921** **922** **923** **924** **925** **926** **927** **928** **929** **930** **931** **932** **933** **934** **935** **936** **937** **938** **939** **940** **941** **942** **943** **944** **945** **946** **947** **948** **949** **950** **951** **952** **953** **954** **955** **956** **957** **958** **959** **960** **961** **962** **963** **964** **965** **966** **967** **968** **969** **970** **971** **972** **973** **974** **975** **976** **977** **978** **979** **980** **981** **982** **983** **984** **985** **986** **987** **988** **989** **990** **991** **992** **993** **994** **995** **996** **997** **998** **999** **1000** **1001** **1002** **1003** **1004** **1005** **1006** **1007** **1008** **1009** **1010** **1011** **1012** **1013** **1014** **1015** **1016** **1017** **1018** **1019** **1020** **1021** **1022** **1023** **1024** **1025** **1026** **1027** **1028** **1029** **1030** **1031** **1032** **1033** **1034** **1035** **1036** **1037** **1038** **1039** **1040** **1041** **1042** **1043** **1044** **1045** **1046** **1047** **1048** **1049** **1050** **1051** **1052** **1053** **1054** **1055** **1056** **1057** **1058** **1059** **1060** **1061** **1062** **1063** **1064** **1065** **1066** **1067** **1068** **1069** **1070** **1071** **1072** **10**

486 By minimizing this quantity, DistDF provably aligns the conditional distributions with theoretical
 487 guarantees for training forecast models. Extensive experiments corroborate that DistDF consistently
 488 yields improvements in forecast accuracy.

489 **Limitations.** According to Lemma 3.5, DistDF quantifies the divergence between the mean and
 490 covariance of the joint distributions, thereby capturing global distributional properties. However, it
 491 discards elementwise correspondences between forecast and label sequences—information critical
 492 for forecasting tasks. Therefore, DistDF is most effective when employed as a regularization term
 493 alongside the standard MSE loss, where MSE recovers elementwise correspondences and fully
 494 unleashes the potential of the proposed DistDF.

496 REPRODUCIBILITY STATEMENT

497 The anonymous downloadable source code is available at <https://anonymous.4open.science/r/DistDF-F66B>. For theoretical results, a complete proof of the claims is included in
 498 the Appendix A; For datasets used in the experiments, a complete description of the dataset statistics
 499 and processing workflow is provided in the Appendix C.

503 REFERENCES

504 Jason M. Altschuler, Jonathan Weed, and Philippe Rigollet. Near-linear time approximation algo-
 505 rithms for optimal transport via sinkhorn iteration. In *Proc. Adv. Neural Inf. Process. Syst.*, pages
 506 1964–1974, 2017.

507 Nicolas Bonneel, Michiel van de Panne, Sylvain Paris, and Wolfgang Heidrich. Displacement
 508 interpolation using lagrangian mass transport. *ACM Trans. Graph.*, 30(6):158, 2011.

509 Hui Chen, Viet Luong, Lopamudra Mukherjee, and Vikas Singh. Simpletm: A simple baseline for
 510 multivariate time series forecasting. In *The Thirteenth International Conference on Learning
 511 Representations*, 2025.

512 Zhichao Chen, Leilei Ding, Zhixuan Chu, Yucheng Qi, Jianmin Huang, and Hao Wang. Monotonic
 513 neural ordinary differential equation: Time-series forecasting for cumulative data. In *Proc. ACM
 514 Int. Conf. Inf. Knowl. Manag.*, pages 4523–4529, 2023.

515 Zhichao Chen, Haoxuan Li, Fangyikang Wang, Haotian Zhang, Hu Xu, Xiaoyu Jiang, Zhihuan Song,
 516 and Hao Wang. Rethinking the diffusion models for missing data imputation: A gradient flow
 517 perspective. In *Proc. Adv. Neural Inf. Process. Syst.*, 2024.

518 Lenaïc Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard. Scaling algorithms
 519 for unbalanced optimal transport problems. *Math. Comput.*, 87(314):2563–2609, 2018.

520 Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for domain
 521 adaptation. *IEEE Trans. Pattern Anal. Mach. Intell.*, 39(9):1853–1865, 2017.

522 Marco Cuturi and Mathieu Blondel. Soft-dtw: a differentiable loss function for time-series. In *Proc.
 523 Int. Conf. Mach. Learn.*, pages 894–903. PMLR, 2017.

524 Tao Dai, Beiliang Wu, Peiyuan Liu, Naiqi Li, Jigang Bao, Yong Jiang, and Shu-Tao Xia. Periodicity
 525 decoupling framework for long-term series forecasting. In *Proc. Int. Conf. Learn. Represent.*,
 526 2024.

527 Abhimanyu Das, Weihao Kong, Andrew Leach, Rajat Sen, and Rose Yu. Long-term forecasting with
 528 tide: Time-series dense encoder. *Trans. Mach. Learn. Res.*, 2023.

529 Jiajun Fan, Yuzheng Zhuang, Yuecheng Liu, Hao Jianye, Bin Wang, Jiangcheng Zhu, Hao Wang, and
 530 Shu-Tao Xia. Learnable behavior control: Breaking atari human world records via sample-efficient
 531 behavior selection. In *Proc. Int. Conf. Learn. Represent.*, pages 1–9, 2023.

532 Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
 533 state spaces. In *Proc. Int. Conf. Learn. Represent.*, 2021.

540 Leonid V Kantorovich. On the translocation of masses. *J. Math. Sci.*, 133(4):1381–1382, 2006.
 541

542 Young-geun Kim, Kyungbok Lee, and Myunghee Cho Paik. Conditional wasserstein generator. *IEEE*
 543 *Trans. Pattern Anal. Mach. Intell.*, 45(6):7208–7219, 2022.

544 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *Proc. Int. Conf.*
 545 *Learn. Represent.*, pages 1–9, 2015.

546 Dilfira Kudrat, Zongxia Xie, Yanru Sun, Tianyu Jia, and Qinghua Hu. Patch-wise structural loss for
 547 time series forecasting. In *Proc. Int. Conf. Mach. Learn.*, 2025a.

548 Dilfira Kudrat, Zongxia Xie, Yanru Sun, Tianyu Jia, and Qinghua Hu. Patch-wise structural loss for
 549 time series forecasting. In *Proc. Int. Conf. Mach. Learn.*, 2025b.

550 Henning Lange, Steven L Brunton, and J Nathan Kutz. From fourier to koopman: Spectral methods
 551 for long-term time series prediction. *Journal of Machine Learning Research*, 22(41):1–38, 2021.

552 Vincent Le Guen and Nicolas Thome. Shape and time distortion loss for training deep time series
 553 forecasting models. In *Proc. Adv. Neural Inf. Process. Syst.*, volume 32, 2019.

554 Haoxuan Li, Kunhan Wu, Chunyuan Zheng, Yanghao Xiao, Hao Wang, Zhi Geng, Fuli Feng,
 555 Xiangnan He, and Peng Wu. Removing hidden confounding in recommendation: a unified
 556 multi-task learning approach. *Proc. Adv. Neural Inf. Process. Syst.*, 36:54614–54626, 2024a.

557 Haoxuan Li, Chunyuan Zheng, Shuyi Wang, Kunhan Wu, Eric Wang, Peng Wu, Zhi Geng, Xu Chen,
 558 and Xiao-Hua Zhou. Relaxing the accurate imputation assumption in doubly robust learning for
 559 debiased collaborative filtering. In *Proc. Int. Conf. Mach. Learn.*, volume 235, pages 29448–29460,
 560 2024b.

561 Haoxuan Li, Chunyuan Zheng, Wenjie Wang, Hao Wang, Fuli Feng, and Xiao-Hua Zhou. Debiased
 562 recommendation with noisy feedback. In *Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data*
 563 *Mining*, page 1576–1586, 2024c.

564 Jianxin Li, Xiong Hui, and Wancai Zhang. Informer: Beyond efficient transformer for long sequence
 565 time-series forecasting. In *Proc. AAAI Conf. Artif. Intell.*, 2021.

566 Junjie Li, Yang Liu, Weiqing Liu, Shikai Fang, Lewen Wang, Chang Xu, and Jiang Bian. Mars: a
 567 financial market simulation engine powered by generative foundation model. In *Proc. Int. Conf.*
 568 *Learn. Represent.*, 2025a.

569 Qi Li, Zhenyu Zhang, Lei Yao, Zhaoxia Li, Tianyi Zhong, and Yong Zhang. Diffusion-based decou-
 570 pled deterministic and uncertain framework for probabilistic multivariate time series forecasting.
 571 In *Proc. Int. Conf. Learn. Represent.*, 2025b.

572 Xinyu Li, Yuchen Luo, Hao Wang, Haoxuan Li, Liuhua Peng, Feng Liu, Yandong Guo, Kun Zhang,
 573 and Mingming Gong. Towards accurate time series forecasting via implicit decoding. *Proc. Adv.*
 574 *Neural Inf. Process. Syst.*, 2025c.

575 Shengsheng Lin, Weiwei Lin, Xinyi Hu, Wentai Wu, Ruichao Mo, and Haocheng Zhong. Cyclenet:
 576 Enhancing time series forecasting through modeling periodic patterns. In *Proc. Adv. Neural Inf.*
 577 *Process. Syst.*, volume 37, pages 106315–106345, 2024.

578 Shengsheng Lin, Haojun Chen, Haijie Wu, Chunyun Qiu, and Weiwei Lin. Temporal query network
 579 for efficient multivariate time series forecasting. In *Proc. Int. Conf. Mach. Learn.*, 2025.

580 Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
 581 time series modeling and forecasting with sample convolution and interaction. In *Proc. Adv. Neural*
 582 *Inf. Process. Syst.*, 2022.

583 Peiyuan Liu, Beiliang Wu, Yifan Hu, Naiqi Li, Tao Dai, Jigang Bao, and Shu-tao Xia. Timebridge:
 584 Non-stationarity matters for long-term time series forecasting. In *Proc. Int. Conf. Mach. Learn.*,
 585 2025.

594 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 595 itransformer: Inverted transformers are effective for time series forecasting. In *Proc. Int. Conf.*
 596 *Learn. Represent.*, 2024.

597 Donghao Luo and Xue Wang. Moderntcn: A modern pure convolution structure for general time
 598 series analysis. In *Proc. Int. Conf. Learn. Represent.*, pages 1–43, 2024.

600 Simone Di Marino and Augusto Gerolin. An optimal transport approach for the schrödinger bridge
 601 problem and convergence of sinkhorn algorithm. *J. Sci. Comput.*, 85(2):27, 2020.

602 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
 603 words: Long-term forecasting with transformers. In *Proc. Int. Conf. Learn. Represent.*, 2023.

605 Gabriel Peyré and Marco Cuturi. Computational optimal transport. *Found. Trends Mach. Learn.*, 11
 606 (5–6):355–607, 2019.

607 Xihao Piao, Zheng Chen, Taichi Murayama, Yasuko Matsubara, and Yasushi Sakurai. Fredformer:
 608 Frequency debiased transformer for time series forecasting. In *Proceedings of the 30th ACM*
 609 *SIGKDD Conference on Knowledge Discovery and Data Mining*, pages 2400–2410, 2024.

611 Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoying
 612 Zhou, Christian S. Jensen, Zhenli Sheng, and Bin Yang. Tf2: Towards comprehensive and fair
 613 benchmarking of time series forecasting methods. In *Proc. VLDB Endow.*, pages 2363–2377, 2024.

614 Xiangfei Qiu, Xingjian Wu, Hanyin Cheng, Xvyuan Liu, Chenjuan Guo, Jilin Hu, and Bin Yang.
 615 Dbloss: Decomposition-based loss function for time series forecasting. *Proc. Adv. Neural Inf.*
 616 *Process. Syst.*, 2025a.

617 Xiangfei Qiu, Xingjian Wu, Yan Lin, Chenjuan Guo, Jilin Hu, and Bin Yang. Duet: Dual clustering
 618 enhanced multivariate time series forecasting. In *Proc. ACM SIGKDD Int. Conf. Knowl. Discovery*
 619 *Data Mining*, pages 1185–1196, 2025b.

621 Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for spoken word
 622 recognition. *IEEE Trans. Signal Process.*, 26(1):43–49, 2003.

623 Hao Wang, Zhichao Chen, Jiajun Fan, Haoxuan Li, Tianqiao Liu, Weiming Liu, Quanyu Dai, Yichao
 624 Wang, Zhenhua Dong, and Ruiming Tang. Optimal transport for treatment effect estimation. In
 625 *Proc. Adv. Neural Inf. Process. Syst.*, volume 36, pages 5404–5418, 2023a.

626 Hao Wang, Zhichao Chen, Zhaoran Liu, Xu Chen, Haoxuan Li, and Zhouchen Lin. Proximity matters:
 627 Local proximity enhanced balancing for treatment effect estimation. *Proc. ACM SIGKDD Int.*
 628 *Conf. Knowl. Discovery Data Mining*, 2025a.

630 Hao Wang, Zhichao Chen, Zhaoran Liu, Haozhe Li, Degui Yang, Xinggao Liu, and Haoxuan Li.
 631 Entire space counterfactual learning for reliable content recommendations. *IEEE Trans. Inf.*
 632 *Forensics Security*, 20:1755–1764, 2025b.

633 Hao Wang, Zhichao Chen, Yuan Shen, Hui Zheng, Degui Yang, Dangjun Zhao, and Buge Liang.
 634 Robust missing value imputation with proximal optimal transport for low-quality iiot data. In *IEEE*
 635 *Trans. Neural Netw. Learn. Syst.*, 2025c.

637 Hao Wang, Zhichao Chen, Honglei Zhang, Zhengnan Li, Licheng Pan, Haoxuan Li, and Mingming
 638 Gong. Debiased recommendation via wasserstein causal balancing. *ACM Trans. Inf. Syst.*, 2025d.

639 Hao Wang, Xinggao Liu, Zhaoran Liu, Haozhe Li, Yilin Liao, Yuxin Huang, and Zhichao Chen.
 640 Lspt-d: Local similarity preserved transport for direct industrial data imputation. *IEEE Trans.*
 641 *Autom. Sci. Eng.*, 22:9438–9448, 2025e.

642 Hao Wang, Licheng Pan, Zhichao Chen, Xu Chen, Qingyang Dai, Lei Wang, Haoxuan Li, and
 643 Zhouchen Lin. Time-o1: Time-series forecasting needs transformed label alignment. *Proc. Adv.*
 644 *Neural Inf. Process. Syst.*, 2025f.

646 Hao Wang, Licheng Pan, Yuan Shen, Zhichao Chen, Degui Yang, Yifei Yang, Sen Zhang, Xinggao
 647 Liu, Haoxuan Li, and Dacheng Tao. Fredf: Learning to forecast in the frequency domain. In *Proc.*
Int. Conf. Learn. Represent., pages 1–9, 2025g.

648 Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. Micn: Multi-
 649 scale local and global context modeling for long-term series forecasting. In *Proc. Int. Conf. Learn.*
 650 *Represent.*, 2023b.

651

652 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang, and
 653 Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. In *Proc. Int.*
 654 *Conf. Learn. Represent.*, 2024.

655 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
 656 with Auto-Correlation for long-term series forecasting. In *Proc. Adv. Neural Inf. Process. Syst.*,
 657 2021.

658 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
 659 Temporal 2d-variation modeling for general time series analysis. In *Proc. Int. Conf. Learn.*
 660 *Represent.*, 2023.

661

662 Xingjian Wu, Xiangfei Qiu, Hanyin Cheng, Zhengyu Li, Jilin Hu, Chenjuan Guo, and Bin Yang.
 663 Enhancing time series forecasting through selective representation spaces: A patch perspective. In
 664 *Proc. Adv. Neural Inf. Process. Syst.*, 2025.

665 Hongteng Xu, Dixin Luo, and Lawrence Carin. Scalable gromov-wasserstein learning for graph
 666 partitioning and matching. *Advances in neural information processing systems*, 32, 2019.

667

668 Jingjing Xu, Hao Zhou, Chun Gan, Zaixiang Zheng, and Lei Li. Vocabulary learning via optimal
 669 transport for neural machine translation. In *ACL/IJCNLP (1)*, pages 7361–7373. Association for
 670 Computational Linguistics, 2021.

671 Kun Yi, Qi Zhang, Wei Fan, Hui He, Liang Hu, Pengyang Wang, Ning An, Longbing Cao, and
 672 Zhendong Niu. Fouriergnn: Rethinking multivariate time series forecasting from a pure graph
 673 perspective. In *Proc. Adv. Neural Inf. Process. Syst.*, 2023a.

674

675 Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Ning An, Defu Lian, Longbing
 676 Cao, and Zhendong Niu. Frequency-domain mlps are more effective learners in time series
 677 forecasting. In *Proc. Adv. Neural Inf. Process. Syst.*, 2023b.

678 Kun Yi, Qi Zhang, Wei Fan, Longbing Cao, Shoujin Wang, Hui He, Guodong Long, Liang Hu,
 679 Qingsong Wen, and Hui Xiong. A survey on deep learning based time series analysis with
 680 frequency transformation. In *Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining*, pages
 681 6206–6215, 2025.

682 Wenzhen Yue, Yong Liu, Haoxuan Li, Hao Wang, Xianghua Ying, Ruohao Guo, Bowei Xing, and
 683 Ji Shi. Olinear: A linear model for time series forecasting in orthogonally transformed domain.
 684 *Proc. Adv. Neural Inf. Process. Syst.*, 2025.

685

686 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 687 forecasting? In *Proc. AAAI Conf. Artif. Intell.*, 2023.

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A THEORETICAL JUSTIFICATION**
 703

704 **Theorem A.1** (Autocorrelation bias, Theorem 3.1 in the main text). *Suppose $Y|X \in \mathbb{R}^T$ is the*
 705 *label sequence given historical sequence X , $\hat{Y}|X \in \mathbb{R}^T$ is the forecast sequence, $\Sigma|X \in \mathbb{R}^{T \times T}$ is*
 706 *the conditional covariance of $Y|X$. The bias of MSE from the negative log-likelihood of the label*
 707 *sequence given X is expressed as:*

$$709 \text{Bias} = \left\| Y|X - \hat{Y}|X \right\|_{\Sigma|X^{-1}}^2 - \left\| Y|X - \hat{Y}|X \right\|_2^2. \quad (7)$$

711 where $\|v\|_{\Sigma|X^{-1}}^2 = v^\top \Sigma|X^{-1} v$. It vanishes if the conditional covariance $\Sigma|X$ is identity matrix⁴.
 712

714 *Proof.* The proof follows the narrative in Wang et al. (2025f) but highlights that it is the conditional
 715 distribution of Y given X that obeys Gaussian distribution, instead of the marginal distribution of Y .
 716 Suppose the label sequence given X follows a multivariate normal distribution with mean vector
 717 $\hat{Y}|X = [\hat{Y}|X, 1, \hat{Y}|X, 2, \dots, \hat{Y}|X, T]$ and covariance matrix $\Sigma|X$. The conditional likelihood of Y is:

$$719 \mathbb{P}_{Y|X} = \frac{1}{(2\pi)^{0.5T} |\Sigma|X|^{0.5}} \exp\left(-\frac{1}{2} \left\| Y|X - \hat{Y}|X \right\|_{\Sigma|X^{-1}}^2\right) \quad (8)$$

722 On the basis, the conditional negative log-likelihood of Y is:

$$724 -\log \mathbb{P}_{Y|X} = \frac{1}{2} \left(T \log(2\pi) + \log |\Sigma|X| + \left\| Y|X - \hat{Y}|X \right\|_{\Sigma|X^{-1}}^2 \right).$$

726 Removing the terms unrelated to $\hat{Y}|X$, the terms used for updating $\hat{Y}|X$, namely practical negative
 727 log-likelihood (PNLL), is expressed as follows:

$$729 \text{PNLL} = \left\| Y|X - \hat{Y}|X \right\|_{\Sigma|X^{-1}}^2. \quad (9)$$

732 On the other hand, the MSE loss can be expressed as:

$$734 \text{MSE} = \left\| Y|X - \hat{Y}|X \right\|_2^2. \quad (10)$$

736 The difference between PNLL and MSE is computed as:

$$738 \text{Bias} = \left\| Y|X - \hat{Y}|X \right\|_{\Sigma|X^{-1}}^2 - \left\| Y|X - \hat{Y}|X \right\|_2^2, \quad (11)$$

740 which diminishes to zero if the label sequence is conditionally decorrelated, i.e., $\Sigma|X$ is identity
 741 matrix. The proof is completed. \square

742 **Lemma A.2** (Lemma 3.3 in the main text). *For any $p \geq 1$, the joint-distribution Wasserstein*
 743 *discrepancy upper bounds the expected conditional-distribution Wasserstein discrepancy:*

$$745 \int \mathcal{W}_p(\mathbb{P}_{Y|X}, \mathbb{P}_{\hat{Y}|X}) d\mathbb{P}(X) \leq \mathcal{W}_p(\mathbb{P}_{X,Y}, \mathbb{P}_{X,\hat{Y}}). \quad (12)$$

747 where the equality holds if $p = 1$ or the conditional Wasserstein term is constant with respect to X .
 748

749 *Proof.* The proof can be found in Theorem 2 of Kim et al. (2022). \square

751 **Theorem A.3** (Alignment property, Theorem 3.4 in the main text). *The conditional distributions are*
 752 *aligned, i.e., $\mathbb{P}_{Y|X} = \mathbb{P}_{\hat{Y}|X}$ if the joint-distribution Wasserstein discrepancy is minimized to zero, i.e.,*
 753 *$\mathcal{W}_p(\mathbb{P}_{X,Y}, \mathbb{P}_{X,\hat{Y}}) = 0$.*

755 ⁴The pioneering work (Wang et al., 2025g) identifies the bias under the first-order Markov assumption on the
 label sequence. This study generalizes this bias without the first-order Markov assumption.

756 *Proof.* By Lemma 3.3, we have
 757

$$758 \int \mathcal{W}_p(\mathbb{P}_{Y|X}, \mathbb{P}_{\hat{Y}|X}) d\mathbb{P}(X) \leq \mathcal{W}_p(\mathbb{P}_{X,Y}, \mathbb{P}_{X,\hat{Y}}). \\ 759$$

760 Thus, if RHS = 0, we have $\int \mathcal{W}_p(\mathbb{P}_{Y|X}, \mathbb{P}_{\hat{Y}|X}) d\mathbb{P}(X) = 0$. Since \mathcal{W}_p is non-negative (Peyré and
 761 Cuturi, 2019), this implies that $\mathcal{W}_p(\mathbb{P}_{Y|X}, \mathbb{P}_{\hat{Y}|X}) = 0$ for almost every X . Therefore, it suffices to
 762 prove that for two distributions $\mathbb{P}_\alpha = \mathbb{P}_{Y|X}$ and $\mathbb{P}_\beta = \mathbb{P}_{\hat{Y}|X}$, $\mathcal{W}_p(\mathbb{P}_\alpha, \mathbb{P}_\beta) = 0$ implies $\mathbb{P}_\alpha = \mathbb{P}_\beta$.
 763

764 Suppose $\mathcal{S}_\alpha = [\alpha_1, \dots, \alpha_n]$ and $\mathcal{S}_\beta = [\beta_1, \dots, \beta_n]$ are the empirical samples from \mathbb{P}_α and \mathbb{P}_β ,
 765 respectively, with corresponding mass vectors a and b . We are given that $\mathcal{W}_p(\mathbb{P}_\alpha, \mathbb{P}_\beta) = 0$. By
 766 Definition 3.2, this means the minimum value of the cost function is zero. Let P^* be an optimal
 767 transport plan that solves the minimization problem. Then,

$$768 \mathcal{W}_p(\mathbb{P}_\alpha, \mathbb{P}_\beta) = \langle D, P^* \rangle = \sum_{i=1}^n \sum_{j=1}^m P_{i,j}^* \|\alpha_i - \beta_j\|_p^p = 0. \quad (13) \\ 769 \\ 770$$

771 From the constraints, we know the elements of the transport plan are non-negative, $P_{i,j}^* \geq 0$. The
 772 distance term is also non-negative, $\|\alpha_i - \beta_j\|_p^p \geq 0$. Since the total sum of these non-negative terms
 773 is zero, each individual term in the summation must be zero:
 774

$$775 P_{i,j}^* \|\alpha_i - \beta_j\|_p^p = 0, \quad \forall i = 1, \dots, n, j = 1, \dots, m. \quad (14) \\ 776$$

777 This condition implies that if any mass is moved from a point α_i to a point β_j (i.e., $P_{i,j}^* > 0$), then
 778 the distance between these points must be zero (i.e., $\|\alpha_i - \beta_j\|_p^p = 0$), which means $\alpha_i = \beta_j$. In
 779 other words, the optimal plan only transports mass between identical points.

780 Let's consider the total probability mass assigned to an arbitrary value z that exists in the support
 781 of either distribution. The total mass at z , i.e., probability density, for distribution \mathbb{P}_α is $P_\alpha(z) =$
 782 $\sum_{i:\alpha_i=z} a_i$. Using the constraints from $\Pi(\mathbb{P}_\alpha, \mathbb{P}_\beta)$ in Equation 3, we can express this as:
 783

$$784 P_\alpha(z) = \sum_{i:\alpha_i=z} a_i = \sum_{i:\alpha_i=z} \left(\sum_{j=1}^m P_{i,j}^* \right). \quad (15) \\ 785 \\ 786$$

787 As established, $P_{i,j}^*$ can only be non-zero if $\beta_j = \alpha_i$. Therefore, for the outer sum where $\alpha_i = z$, the
 788 inner sum over j is non-zero only for those indices j where $\beta_j = z$. Thus, we can write:
 789

$$790 P_\alpha(z) = \sum_{i:\alpha_i=z} \sum_{j:\beta_j=z} P_{i,j}^*. \quad (16) \\ 791$$

792 Similarly, the mass at z for distribution \mathbb{P}_β is $P_\beta(z) = \sum_{j:\beta_j=z} b_j$. Using the other set of constraints
 793 from $\Pi(\mathbb{P}_\alpha, \mathbb{P}_\beta)$:

$$794 P_\beta(z) = \sum_{j:\beta_j=z} b_j = \sum_{j:\beta_j=z} \left(\sum_{i=1}^n P_{i,j}^* \right). \quad (17) \\ 795 \\ 796$$

797 Again, since $P_{i,j}^*$ is non-zero only if $\alpha_i = \beta_j$, for the terms in the outer sum where $\beta_j = z$, the inner
 798 sum over i is non-zero only for those indices i where $\alpha_i = z$. This gives:
 799

$$800 P_\beta(z) = \sum_{j:\beta_j=z} \sum_{i:\alpha_i=z} P_{i,j}^*. \quad (18) \\ 801$$

802 By comparing the resulting expressions for $P_\alpha(z)$ and $P_\beta(z)$, we find they are identical:
 803

$$804 P_\alpha(z) = P_\beta(z). \quad (19)$$

805 Since this equality holds for any value z , the probability mass functions of \mathbb{P}_α and \mathbb{P}_β are identical,
 806 which implies $\mathbb{P}_\alpha = \mathbb{P}_\beta$ ⁵. Applying this result to our conditional distributions, $\mathcal{W}_p(\mathbb{P}_{Y|X}, \mathbb{P}_{\hat{Y}|X}) = 0$
 807 implies $\mathbb{P}_{Y|X} = \mathbb{P}_{\hat{Y}|X}$ for almost every X . This completes the proof. \square
 808

809 ⁵A discrete probability is completely characterized by two components: its support and its probability mass
 function.

810 **Lemma A.4** (Lemma 3.5 in the main text). *Suppose $\mathbb{P}_{X,Y}$ and $\mathbb{P}_{X,\hat{Y}}$ obey Gaussian distributions
 811 $\mathcal{N}(\mu_{X,Y}, \Sigma_{X,Y})$ and $\mathcal{N}(\mu_{X,\hat{Y}}, \Sigma_{X,\hat{Y}})$, respectively. The squared \mathcal{W}_2 discrepancy can be calculated
 812 as the Bures-Wasserstein discrepancy:*

$$814 \quad \mathcal{BW}(\mu_{X,Y}, \mu_{X,\hat{Y}}, \Sigma_{X,Y}, \Sigma_{X,\hat{Y}}) = \left\| \mu_{X,Y} - \mu_{X,\hat{Y}} \right\|_2^2 + \mathcal{B}(\Sigma_{X,Y}, \Sigma_{X,\hat{Y}}), \quad (20)$$

816 where $\mathcal{B}(\Sigma_{X,Y}, \Sigma_{X,\hat{Y}}) = \text{Tr} \left(\Sigma_{X,Y} + \Sigma_{X,\hat{Y}} - 2\sqrt{\Sigma_{X,Y}^{1/2} \Sigma_{X,\hat{Y}} \Sigma_{X,Y}^{1/2}} \right)$, $\text{Tr}(\cdot)$ denotes matrix trace.

818 *Proof.* The proof can be found in Remark 2.31 of Peyré and Cuturi (2019). \square

820 **Additional notes on the Gaussian assumption.** Lemma 3.5 presents the \mathcal{BW} discrepancy under
 821 the Gaussian assumption, yielding a tractable and efficient form. However, the Bures-Wasserstein
 822 discrepancy measures differences only in the first- and second-order moments—i.e., the mean
 823 and covariance. While these two moments fully characterize Gaussian distributions, real-world
 824 datasets do not necessarily adhere to Gaussianity, additionally requiring higher-order moments for
 825 complete characterization. Nonetheless, the mean and covariance remain essential descriptors for any
 826 distribution. As a result, in cases where data deviate from strict Gaussianity, \mathcal{BW} remains a valuable
 827 tool for distribution alignment by matching these fundamental moments.

829 B OVERVIEW OF DISCRETE OPTIMAL TRANSPORT AND WASSERSTEIN 830 DISCREPANCY

832 This section outlines the foundational concepts of optimal transport (OT) and the Wasserstein
 833 discrepancy. Our analysis is specifically confined to discrete probability measures, as the broader
 834 theory involving general measures is beyond the scope of this work. For a comprehensive treatment
 835 of the continuous case, readers are directed to the seminal works by Peyré and Cuturi (2019).

837 The classical framing of OT, known as the Monge problem, can be illustrated with a simple scenario:
 838 transporting goods from n warehouses to m factories (Peyré and Cuturi, 2019). Let the i -th warehouse
 839 hold a_i units of material and the j -th factory require b_j units. The objective is to find a transport map
 840 that moves all material from the warehouses to satisfy the factories' demands. This problem is subject
 841 to several constraints: the entire stock from each warehouse must be shipped, all factory demands
 842 must be met, and the mapping must be deterministic (i.e., each warehouse ships its entire stock to a
 843 single factory). The optimal map is the one that minimizes the total cost, which is aggregated from
 844 the cost of moving a unit of material from a given warehouse to a factory.

845 **Definition B.1** (Monge Problem for Discrete Measures). *Let $\alpha = \sum_{i=1}^n a_i \delta_{\mathbf{x}_i}$ and $\beta = \sum_{j=1}^m b_j \delta_{\mathbf{y}_j}$
 846 be two discrete probability measures. The Monge problem seeks a transport map $\mathbb{T} : \{\mathbf{x}_i\}_{i=1}^n \rightarrow$*
 847 $\{\mathbf{y}_j\}_{j=1}^m$ that pushes the mass of α forward to match β , denoted by $\mathbb{T}_\sharp \alpha = \beta$. This condition implies
 848 that for each j , the total mass received, b_j , must equal the sum of the masses sent from all locations
 849 mapped to it: $b_j = \sum_{i: \mathbb{T}(\mathbf{x}_i) = \mathbf{y}_j} a_i$. The objective is to find the map \mathbb{T} that minimizes the total
 850 transportation cost:

$$851 \quad \min_{\mathbb{T}: \mathbb{T}_\sharp \alpha = \beta} \left\{ \sum_{i=1}^n c(\mathbf{x}_i, \mathbb{T}(\mathbf{x}_i)) a_i \right\}. \quad (21)$$

853 While intuitive, the Monge formulation is restrictive; a solution is not guaranteed to exist, particularly
 854 when mass splitting is required (e.g., one warehouse supplying multiple factories). To address this
 855 limitation, Kantorovich (2006) introduced a relaxed formulation. Instead of a deterministic map,
 856 Kantorovich's approach seeks a probabilistic coupling or "transport plan" that allows mass from a
 857 single source to be distributed among multiple destinations. This reframes the problem within the
 858 versatile framework of linear programming. When the measures are probability distributions (i.e.,
 859 $\sum a_i = \sum b_j = 1$), the resulting optimal cost defines a distance metric.

860 **Definition B.2** (Kantorovich Problem). *Let $\alpha = \sum_{i=1}^n a_i \delta_{\mathbf{x}_i}$ and $\beta = \sum_{j=1}^m b_j \delta_{\mathbf{y}_j}$ be two discrete
 861 probability distributions supported on samples $\{\mathbf{x}_i\}_{i=1}^n$ and $\{\mathbf{y}_j\}_{j=1}^m$, respectively. The optimal
 862 transport problem is to find a transport plan $\pi \in \mathbb{R}_+^{n \times m}$ that minimizes the total cost:*

$$863 \quad \mathcal{W}_c(\alpha, \beta) := \min_{\pi \in \Pi(a, b)} \langle \mathbf{C}, \pi \rangle_F, \quad (22)$$

864
865
866 Table 7: Dataset description.
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918

Dataset	D	Forecast length	Train / validation / test	Frequency	Domain
ETTh1	7	96, 192, 336, 720	8545/2881/2881	Hourly	Health
ETTh2	7	96, 192, 336, 720	8545/2881/2881	Hourly	Health
ETTm1	7	96, 192, 336, 720	34465/11521/11521	15min	Health
ETTm2	7	96, 192, 336, 720	34465/11521/11521	15min	Health
Weather	21	96, 192, 336, 720	36792/5271/10540	10min	Weather
ECL	321	96, 192, 336, 720	18317/2633/5261	Hourly	Electricity
Traffic	862	96, 192, 336, 720	12185/1757/3509	Hourly	Transportation
PEMS03	358	12, 24, 36, 48	15617/5135/5135	5min	Transportation
PEMS08	170	12, 24, 36, 48	10690/3548/265	5min	Transportation

Note: D denotes the number of variates. *Frequency* denotes the sampling interval of time points. *Train*, *Validation*, *Test* denotes the number of samples employed in each split. The taxonomy aligns with (Wu et al., 2023).

where $\langle \cdot, \cdot \rangle_F$ is the Frobenius dot product. The cost matrix $\mathbf{C} \in \mathbb{R}_+^{n \times m}$ contains the pairwise costs, e.g., $\mathbf{C}_{ij} = c(\mathbf{x}_i, \mathbf{y}_j)$. The set of feasible transport plans, $\Pi(a, b)$, is defined by the constraints that preserve the total mass of the source and target measures:

$$\Pi(a, b) := \{ \boldsymbol{\pi} \in \mathbb{R}_+^{n \times m} \mid \boldsymbol{\pi} \mathbf{1}_m = a, \boldsymbol{\pi}^\top \mathbf{1}_n = b \}. \quad (23)$$

Here, a and b are the weight vectors for the measures α and β . If the cost is a metric distance raised to a power p , $c(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|^p$, the p -th root of the optimal cost defines the p -Wasserstein discrepancy, $\mathcal{W}_p(\alpha, \beta)$.

Contemporary research in discrete optimal transport primarily progresses along two paths. The first focuses on computational efficiency. Exact solutions via linear programming are often infeasible for large-scale problems due to their high computational complexity, typically $\mathcal{O}(n^3 \log n)$ where n is the number of support points (Bonneel et al., 2011). This has motivated the development of faster, approximate methods, such as entropic regularization (leading to the Sinkhorn algorithm) with nearly quadratic complexity (Altschuler et al., 2017) and sliced OT, which reduces the problem to one-dimensional computations and achieves near-linear complexity. The second path involves adapting the OT framework to address specific challenges across various domains, such as domain adaptation (Chizat et al., 2018), causal inference (Wang et al., 2025a; 2023a), generative modeling (Marino and Gerolin, 2020; Chen et al., 2024), missing data imputation (Wang et al., 2025e;c), graph comparison (Xu et al., 2019) and recommendation system (Wang et al., 2025d).

C REPRODUCTION DETAILS

C.1 DATASET DESCRIPTIONS

Our empirical evaluation is conducted on a diverse collection of widely-used time series forecasting benchmarks. Each dataset presents distinct characteristics in terms of dimensionality and temporal resolution. A summary is provided in Table 7.

- **ETT** (Li et al., 2021): Contains seven metrics related to electricity transformers, recorded from July 2016 to July 2018. It is divided into four subsets based on sampling frequency: ETTh1 and ETTh2 (hourly), and ETTm1 and ETTm2 (every 15 minutes).
- **Weather** (Wu et al., 2021): Comprises 21 meteorological variables from the Max Planck Biogeochemistry Institute’s weather station, captured every 10 minutes throughout 2020.
- **ECL** (Wu et al., 2021): Features the hourly electricity consumption of 321 clients.
- **Traffic** (Wu et al., 2021): Documents the hourly occupancy rates of 862 sensors on San Francisco Bay Area freeways, spanning from 2015 to 2016.
- **PEMS** (Liu et al., 2022): Consists of public traffic data from the California highway system, aggregated in 5-minute intervals. We utilize two common subsets, PEMS03 and PEMS08.

Following established protocols (Qu et al., 2024; Liu et al., 2024), all datasets are chronologically partitioned into training, validation, and test sets. For the ETT, Weather, ECL, and Traffic datasets, we use a fixed historical sequence length of 96 and evaluate performance across four prediction horizons with lengths of 96, 192, 336, and 720. For the PEMS datasets, we also use an historical length of 96 but evaluate on shorter prediction horizons of 12, 24, 36, and 48 steps. During the final evaluation on the test set, we ensure that no data is discarded from the last batch: a technique referred to as the *dropping-last trick* is disabled throughout our experiments.

C.2 IMPLEMENTATION DETAILS OF MODEL TRAINING

To establish a fair comparison, we reproduced all baseline models using their official, publicly available implementations, primarily sourcing from the iTransformer (Liu et al., 2024) and Fredformer (Piao et al., 2024) repositories. The reproducibility of these baseline results was verified prior to our experiments. All models were trained to minimize the MSE loss function using the Adam optimizer (Kingma and Ba, 2015). The learning rate for each baseline was selected from the set $\{10^{-3}, 5 \times 10^{-4}, 10^{-4}, 5 \times 10^{-5}\}$ based on the best performance on the validation set. To prevent overfitting, we employed an early stopping mechanism that terminates training if the validation loss fails to improve for three consecutive epochs.

When integrating our proposed distributional discrepancy component, DistDF, with an existing forecasting model, we maintain the original model’s optimized hyperparameters as reported in their respective benchmarks (Liu et al., 2024; Piao et al., 2024). Our tuning is therefore focused and conservative, limited to two key parameters: the learning rate and the weight of the discrepancy term, $\alpha \in (0, 1]$. Adjusting the learning rate is necessary as the distributional discrepancy term has varying overall magnitude and gradient dynamics on different datasets. The tuning is driven by selecting the combination that yields the lowest MSE on the validation set.

C.3 IMPLEMENTATION DETAILS OF CONDITIONAL CORRELATION COMPUTATION

A key challenge in analyzing time series is to accurately quantify the autocorrelation structure within the label sequence without the confounding influence of the historical sequence Wang et al. (2025b); Li et al. (2024b). Standard metrics like the Pearson correlation are insufficient for this task, as they cannot disentangle the dependencies among future time steps from their shared dependence on the past Li et al. (2024a;c).

To address this, we employ the partial correlation coefficient to measure the conditional autocorrelation. This allows us to assess the relationship between any two time steps in the label sequence while controlling for the linear effects of the entire historical sequence. Our implementation is based on the standard procedure for computing partial correlation, which is also implemented in statistical software like MATLAB’s ‘partialcorr’ function.⁶

The procedure can be described as follows. Let X be the historical sequence (the control variables) and Y be the label sequence. To compute the partial correlation between two time steps, Y_t and $Y_{t'}$, conditioned on X , we follow a two-stage regression process. We first isolate the variance in Y_t and $Y_{t'}$ that cannot be explained by X . This is achieved by training two separate linear regression models using ordinary least squares (OLS). The residuals from these models, ϵ_t and $\epsilon_{t'}$, represent the parts of Y_t and $Y_{t'}$ that are linearly independent of X . The partial correlation between Y_t and $Y_{t'}$, conditioned on X , is then calculated as the standard Pearson correlation between their respective residuals. This process effectively measures the linear relationship between Y_t and $Y_{t'}$ after accounting for the influence of the historical context X .

D MORE EXPERIMENTAL RESULTS

D.1 OVERALL PERFORMANCE

Additional experimental results of overall performance are available in Table 8, where the performance given different T is reported.

⁶Implementation is available at <https://www.mathworks.com/help/stats/partialcorr.html>

972 Table 8: Full results on the multi-step forecasting task. The length of history window is set to 96 for
 973 all baselines. Avg indicates the results averaged over forecasting lengths: T=96, 192, 336 and 720.
 974

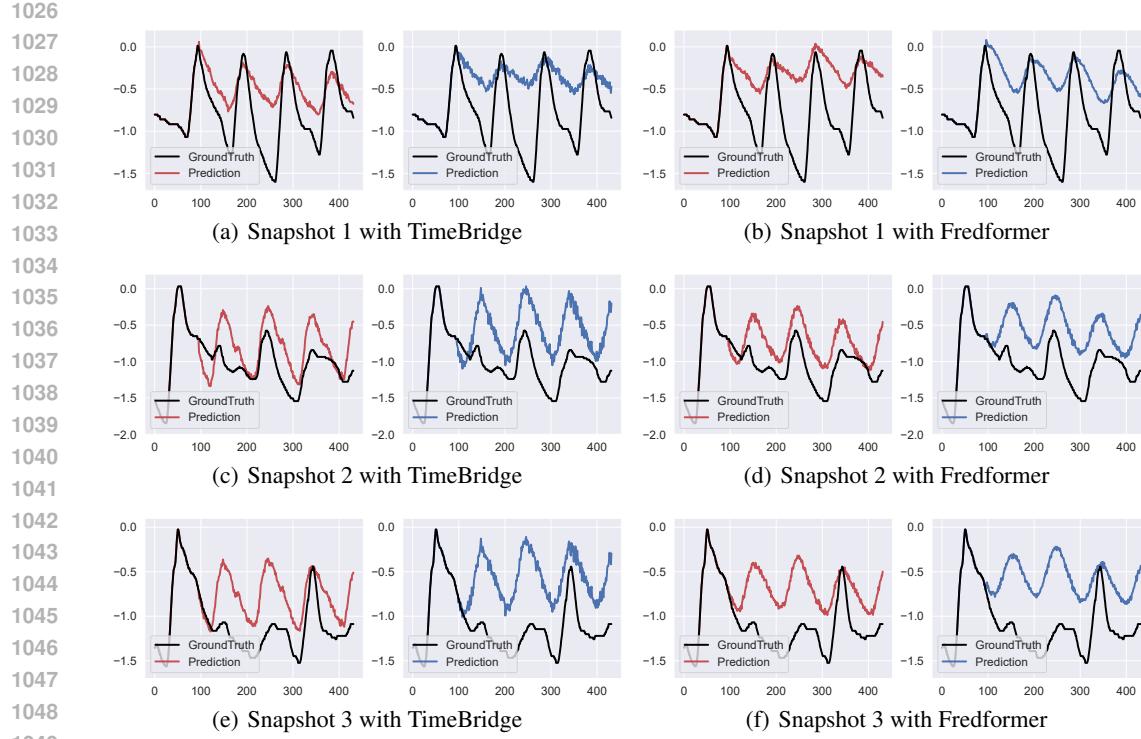
975 Models	976 DistDF (Ours)		977 TimeBridge (2025)		978 Fredformer (2024)		979 iTransformer (2024)		980 FrTS (2023)		981 TimesNet (2023)		982 MICN (2023)		983 TiDE (2023)		984 PatchTST (2023)		985 DLInear (2023)			
	986 Metrics	987 MSE	988 MAE	989 MSE	990 MAE	991 MSE	992 MAE	993 MSE	994 MAE	995 MSE	996 MAE	997 MSE	998 MAE	999 MSE	999 MAE	999 MSE	999 MAE	999 MSE	999 MAE			
976 ETTh1	977 96	0.316	0.357	0.323	0.361	0.326	0.361	0.338	0.372	0.342	0.375	0.368	0.394	0.319	0.366	0.353	0.374	0.325	0.364	0.346	0.373	
	192	0.358	0.380	0.366	0.385	0.365	0.382	0.382	0.396	0.385	0.400	0.406	0.409	0.364	0.395	0.391	0.393	0.363	0.383	0.380	0.390	
	336	0.392	0.404	0.398	0.408	0.396	0.404	0.427	0.424	0.416	0.421	0.454	0.444	0.395	0.425	0.423	0.414	0.404	0.413	0.413	0.414	
	720	0.448	0.437	0.461	0.445	0.449	0.459	0.444	0.496	0.463	0.513	0.489	0.527	0.474	0.505	0.499	0.486	0.448	0.463	0.442	0.472	0.450
	Avg	0.378	0.394	0.387	0.400	0.387	0.398	0.411	0.414	0.414	0.421	0.438	0.430	0.396	0.421	0.413	0.407	0.389	0.400	0.403	0.407	
976 ETTh2	977 96	0.174	0.256	0.177	0.259	0.177	0.260	0.182	0.265	0.188	0.279	0.184	0.262	0.178	0.277	0.182	0.265	0.180	0.266	0.188	0.283	
	192	0.239	0.298	0.243	0.303	0.242	0.300	0.257	0.315	0.264	0.329	0.257	0.308	0.266	0.343	0.247	0.304	0.285	0.339	0.280	0.356	
	336	0.300	0.338	0.303	0.343	0.302	0.340	0.320	0.354	0.322	0.369	0.315	0.345	0.299	0.354	0.307	0.343	0.309	0.347	0.375	0.420	
	720	0.397	0.394	0.401	0.399	0.399	0.397	0.423	0.411	0.489	0.482	0.452	0.421	0.489	0.482	0.408	0.398	0.437	0.422	0.526	0.508	
	Avg	0.277	0.321	0.281	0.326	0.280	0.324	0.295	0.336	0.316	0.365	0.302	0.334	0.308	0.364	0.286	0.328	0.303	0.344	0.342	0.392	
976 ECL	977 96	0.373	0.393	0.373	0.395	0.377	0.396	0.385	0.405	0.398	0.409	0.399	0.418	0.381	0.416	0.387	0.395	0.381	0.400	0.389	0.404	
	192	0.428	0.425	0.428	0.426	0.437	0.425	0.440	0.437	0.451	0.442	0.452	0.451	0.497	0.489	0.439	0.425	0.450	0.443	0.442	0.440	
	336	0.466	0.445	0.471	0.451	0.486	0.449	0.480	0.457	0.501	0.472	0.488	0.469	0.589	0.555	0.482	0.447	0.501	0.470	0.488	0.467	
	720	0.453	0.453	0.495	0.487	0.488	0.467	0.504	0.492	0.608	0.571	0.549	0.515	0.665	0.617	0.484	0.471	0.504	0.492	0.505	0.502	
	Avg	0.430	0.429	0.442	0.440	0.447	0.434	0.452	0.448	0.489	0.474	0.472	0.463	0.533	0.519	0.448	0.435	0.459	0.451	0.456	0.453	
976 Traffic	977 96	0.287	0.336	0.294	0.344	0.293	0.344	0.301	0.349	0.315	0.374	0.321	0.358	0.351	0.398	0.291	0.340	0.299	0.349	0.330	0.383	
	192	0.358	0.381	0.371	0.394	0.372	0.391	0.383	0.397	0.466	0.467	0.418	0.417	0.492	0.489	0.376	0.392	0.383	0.404	0.439	0.450	
	336	0.408	0.421	0.421	0.429	0.420	0.433	0.425	0.432	0.522	0.502	0.464	0.454	0.656	0.582	0.417	0.427	0.439	0.444	0.589	0.538	
	720	0.416	0.435	0.423	0.443	0.421	0.439	0.436	0.448	0.792	0.643	0.434	0.450	0.981	0.718	0.429	0.446	0.438	0.455	0.757	0.626	
	Avg	0.367	0.393	0.377	0.403	0.377	0.402	0.386	0.407	0.524	0.496	0.409	0.420	0.620	0.546	0.378	0.401	0.390	0.413	0.529	0.499	
976 Weather	977 96	0.137	0.235	0.142	0.239	0.161	0.258	0.150	0.242	0.180	0.266	0.170	0.272	0.170	0.281	0.197	0.274	0.170	0.264	0.197	0.282	
	192	0.159	0.257	0.161	0.257	0.174	0.269	0.168	0.259	0.184	0.272	0.183	0.282	0.185	0.297	0.197	0.277	0.179	0.273	0.197	0.286	
	336	0.178	0.272	0.182	0.278	0.194	0.290	0.182	0.274	0.199	0.290	0.203	0.302	0.190	0.298	0.212	0.292	0.195	0.288	0.209	0.301	
	720	0.212	0.302	0.217	0.309	0.235	0.319	0.214	0.304	0.234	0.322	0.294	0.366	0.221	0.329	0.254	0.325	0.234	0.320	0.245	0.334	
	Avg	0.172	0.267	0.176	0.271	0.191	0.284	0.179	0.270	0.199	0.288	0.212	0.306	0.192	0.302	0.215	0.292	0.195	0.286	0.212	0.301	
976 PEMSO3	977 96	0.380	0.262	0.391	0.268	0.461	0.327	0.397	0.271	0.531	0.323	0.590	0.316	0.498	0.298	0.646	0.386	0.444	0.284	0.649	0.397	
	192	0.407	0.275	0.418	0.276	0.470	0.326	0.416	0.279	0.519	0.321	0.624	0.336	0.521	0.309	0.599	0.362	0.454	0.291	0.598	0.371	
	336	0.429	0.284	0.432	0.284	0.492	0.338	0.429	0.286	0.529	0.327	0.641	0.345	0.529	0.314	0.606	0.363	0.469	0.298	0.605	0.373	
	720	0.452	0.297	0.464	0.301	0.521	0.353	0.462	0.303	0.573	0.346	0.670	0.356	0.567	0.326	0.643	0.383	0.506	0.319	0.646	0.395	
	Avg	0.417	0.279	0.426	0.282	0.486	0.336	0.426	0.285	0.538	0.330	0.631	0.338	0.529	0.312	0.624	0.373	0.468	0.298	0.625	0.384	
976 PEMSO8	977 96	0.164	0.209	0.168	0.211	0.180	0.220	0.171	0.210	0.174	0.228	0.183	0.229	0.179	0.244	0.192	0.232	0.189	0.230	0.194	0.253	
	192	0.212	0.252	0.214	0.254	0.222	0.258	0.246	0.278	0.213	0.266	0.242	0.276	0.242	0.310	0.240	0.270	0.228	0.262	0.238	0.296	
	336	0.270	0.295	0.273	0.297	0.283	0.301	0.296	0.313	0.270	0.316	0.293	0.312	0.273	0.330	0.292	0.307	0.288	0.305	0.282	0.332	
	48	0.348	0.345	0.353	0.347	0.358	0.348	0.362	0.353	0.337	0.362	0.366	0.361	0.360	0.399	0.364	0.353	0.362	0.354	0.347	0.385	
	Avg	0.248	0.275	0.252	0.277	0.261	0.282	0.269	0.289	0.249	0.293	0.271	0.295	0.264	0.321	0.272	0.291	0.267	0.288	0.265	0.317	
976 1 st Count	977 12	0.068	0.174	0.070	0.176	0.081	0.191	0.072	0.179	0.085	0.198	0.094	0.201	0.096	0.217	0.117	0.226	0.092	0.210	0.105	0.220	
	24	0.094	0.205	0.099	0.211	0.121	0.240	0.104	0.217	0.129	0.244	0.116	0.221	0.095	0.210	0.233	0.322	0.144	0.263	0.183	0.297	
	36	0.116	0.229	0.126	0.240	0.180	0.292	0.137	0.251	0.173	0.286	0.134	0.237	0.107	0.223	0.379	0.418	0.200	0.309	0.258	0.361	
	48	0.138	0.252	0.153	0.267	0.201	0.316	0.174	0.285	0.207	0.315	0.161	0.262	0.125	0.242	0.535	0.516	0.245	0.344	0.319	0.410	
	Avg	0.104	0.215	0.112	0.223	0.146	0.260	0.122	0.233	0.149	0.261	0.126	0.230	0.106	0.223	0.316	0.370	0.170	0.282	0.216	0.322	

1018 D.2 SHOWCASE

1019 Additional experimental results of showcases are available in Fig. 4 and Fig. 5, where two datasets
 1020 and two forecast models are involved.

1021 D.3 COMPARISON WITH DIFFERENT LEARNING OBJECTIVES

1022 Additional experimental results of learning objective comparison are available in Table 9, where two
 1023 forecast models are evaluated across different T values.



1050 Figure 4: The forecast sequences generated with DF and DistDF. The forecast length is set to 336
1051 and the experiment is conducted on ETTm2.
1052
1053
1054
1055
1056
1057
1058
1059
1060 (a) Snapshot 1 with TimeBridge (b) Snapshot 1 with Fredformer
1061
1062
1063
1064
1065
1066
1067 (c) Snapshot 2 with TimeBridge (d) Snapshot 2 with Fredformer
1068
1069
1070
1071
1072
1073
1074 (e) Snapshot 3 with TimeBridge (f) Snapshot 3 with Fredformer
1075
1076
1077
1078
1079

Figure 5: The forecast sequences generated with DF and DistDF. The forecast length is set to 192 and the experiment is conducted on ECL.

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

Table 9: Comparative results with different learning objectives.

Metrics	Loss		DistDF		Time-o1		FreDF		Koopman		Dilate		Soft-DTW		DF	
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
Forecast model: TimeBridge																
ETTh1	96	0.319	0.358	0.318	0.356	0.325	0.361	0.572	0.493	0.321	0.360	0.321	0.359	0.323	0.361	
	192	0.363	0.383	0.363	0.382	0.373	0.385	0.410	0.407	0.366	0.386	0.368	0.385	0.366	0.385	
	336	0.394	0.405	0.396	0.407	0.398	0.406	0.397	0.408	0.397	0.409	0.405	0.410	0.398	0.408	
	720	0.455	0.442	0.456	0.443	0.450	0.438	0.460	0.445	0.462	0.447	0.486	0.453	0.461	0.445	
	Avg	0.383	0.397	0.383	0.397	0.386	0.398	0.460	0.438	0.387	0.400	0.395	0.402	0.387	0.400	
ETTh2	96	0.372	0.392	0.372	0.391	0.373	0.391	0.376	0.397	0.376	0.396	0.376	0.395	0.373	0.395	
	192	0.424	0.429	0.422	0.423	0.425	0.421	0.426	0.430	0.430	0.433	0.425	0.427	0.428	0.426	
	336	0.467	0.450	0.468	0.450	0.467	0.442	0.483	0.461	0.498	0.469	0.481	0.458	0.471	0.451	
	720	0.472	0.471	0.495	0.488	0.493	0.490	0.551	0.509	0.552	0.509	0.529	0.499	0.495	0.487	
	Avg	0.434	0.436	0.439	0.438	0.439	0.436	0.459	0.449	0.464	0.452	0.452	0.445	0.442	0.440	
ECL	96	0.137	0.235	0.148	0.240	0.137	0.232	0.170	0.266	0.142	0.240	0.139	0.235	0.142	0.239	
	192	0.159	0.257	0.156	0.251	0.159	0.254	0.161	0.258	0.160	0.257	0.160	0.257	0.161	0.257	
	336	0.178	0.272	0.177	0.273	0.179	0.273	0.182	0.277	0.182	0.277	0.178	0.274	0.182	0.278	
	720	0.212	0.302	0.220	0.308	0.224	0.310	0.217	0.308	0.218	0.309	0.215	0.305	0.217	0.309	
	Avg	0.172	0.267	0.175	0.268	0.175	0.267	0.182	0.277	0.176	0.271	0.173	0.268	0.176	0.271	
Weather	96	0.164	0.209	0.166	0.209	0.174	0.213	0.215	0.261	0.168	0.211	0.169	0.209	0.168	0.211	
	192	0.212	0.252	0.212	0.252	0.223	0.255	0.239	0.271	0.214	0.254	0.215	0.251	0.214	0.254	
	336	0.270	0.295	0.270	0.294	0.271	0.292	0.271	0.295	0.273	0.297	0.275	0.296	0.273	0.297	
	720	0.348	0.345	0.352	0.347	0.350	0.346	0.350	0.345	0.353	0.347	0.379	0.364	0.353	0.347	
	Avg	0.248	0.275	0.250	0.275	0.254	0.276	0.269	0.293	0.252	0.277	0.260	0.280	0.252	0.277	
Forecast model: FredFormer																
ETTh1	96	0.316	0.357	0.321	0.357	0.326	0.355	0.335	0.368	0.337	0.367	0.332	0.363	0.326	0.361	
	192	0.358	0.380	0.360	0.378	0.363	0.380	0.366	0.384	0.364	0.384	0.370	0.386	0.365	0.382	
	336	0.392	0.404	0.389	0.400	0.392	0.400	0.399	0.408	0.397	0.406	0.406	0.409	0.396	0.404	
	720	0.448	0.437	0.447	0.435	0.455	0.440	0.456	0.441	0.457	0.443	0.478	0.450	0.459	0.444	
	Avg	0.378	0.394	0.379	0.393	0.384	0.394	0.389	0.400	0.389	0.400	0.397	0.402	0.387	0.398	
ETTh2	96	0.373	0.393	0.368	0.391	0.370	0.392	0.375	0.397	0.378	0.399	0.376	0.398	0.377	0.396	
	192	0.428	0.425	0.424	0.422	0.436	0.437	0.438	0.434	0.439	0.435	0.439	0.435	0.437	0.425	
	336	0.466	0.445	0.467	0.441	0.473	0.443	0.473	0.455	0.481	0.453	0.484	0.455	0.486	0.449	
	720	0.453	0.453	0.465	0.463	0.474	0.466	0.523	0.487	0.516	0.482	0.542	0.510	0.488	0.467	
	Avg	0.430	0.429	0.431	0.429	0.438	0.434	0.452	0.443	0.453	0.442	0.460	0.449	0.447	0.434	
ECL	96	0.145	0.238	0.151	0.245	0.152	0.247	0.166	0.263	0.158	0.253	0.168	0.266	0.161	0.258	
	192	0.162	0.255	0.166	0.256	0.166	0.257	0.174	0.267	0.170	0.263	0.218	0.313	0.174	0.269	
	336	0.176	0.270	0.181	0.274	0.183	0.278	0.188	0.280	0.190	0.286	0.197	0.291	0.194	0.290	
	720	0.211	0.300	0.213	0.304	0.216	0.304	0.232	0.318	0.229	0.316	0.240	0.322	0.235	0.319	
	Avg	0.173	0.266	0.178	0.270	0.179	0.272	0.190	0.282	0.187	0.280	0.206	0.298	0.191	0.284	
Weather	96	0.172	0.212	0.171	0.208	0.174	0.213	0.174	0.214	0.173	0.214	0.173	0.213	0.180	0.220	
	192	0.218	0.255	0.219	0.253	0.219	0.254	0.220	0.256	0.225	0.260	0.220	0.255	0.222	0.258	
	336	0.277	0.297	0.277	0.295	0.278	0.296	0.280	0.298	0.280	0.299	0.281	0.296	0.283	0.301	
	720	0.352	0.347	0.353	0.346	0.354	0.347	0.354	0.347	0.355	0.348	0.369	0.355	0.358	0.348	
	Avg	0.255	0.277	0.255	0.276	0.256	0.277	0.257	0.279	0.258	0.280	0.261	0.280	0.261	0.282	

1126

1127

1128

1129

1130

1131

1132

1133

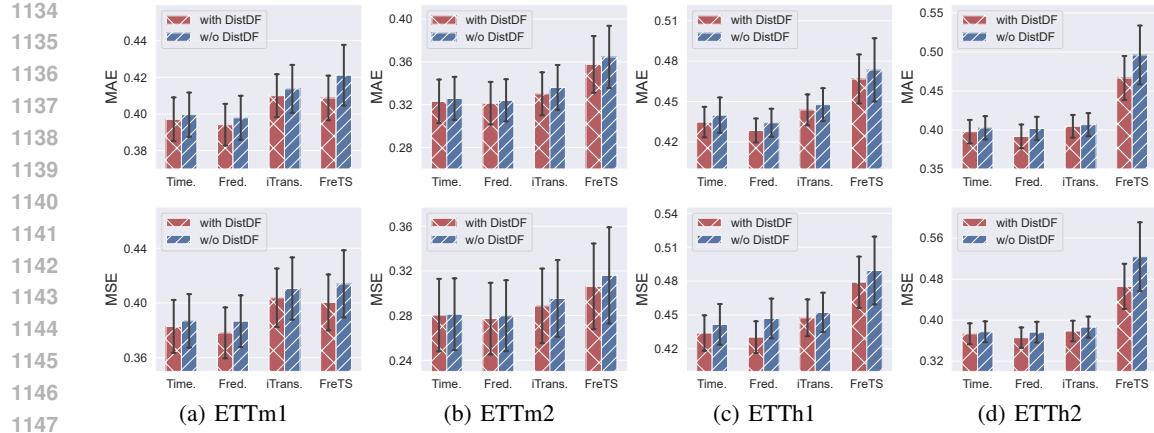


Figure 6: Performance of different forecast models with and without DistDF. The forecast errors are averaged over forecast lengths and the error bars represent 50% confidence intervals.

Table 10: Varying input sequence length results on the Weather dataset.

Metrics	DistDF		TimeBridge		DistDF		PatchTST		
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
Historical sequence length	96	0.164	0.209	0.168	0.211	0.179	0.220	0.189	0.230
	192	0.212	0.252	0.214	0.254	0.222	0.257	0.228	0.262
	336	0.270	0.295	0.273	0.297	0.278	0.298	0.288	0.305
	720	0.348	0.345	0.353	0.347	0.354	0.348	0.362	0.354
	Avg	0.248	0.275	0.252	0.277	0.258	0.281	0.267	0.288
	96	0.160	0.207	0.163	0.210	0.157	0.203	0.163	0.209
	192	0.202	0.244	0.205	0.248	0.202	0.244	0.207	0.249
	336	0.260	0.290	0.259	0.288	0.258	0.285	0.268	0.293
	720	0.335	0.342	0.338	0.344	0.335	0.338	0.511	0.451
	Avg	0.239	0.271	0.241	0.273	0.238	0.267	0.287	0.301
Historical sequence length	96	0.155	0.206	0.156	0.206	0.153	0.204	0.158	0.208
	192	0.198	0.244	0.199	0.245	0.200	0.249	0.235	0.291
	336	0.245	0.283	0.259	0.294	0.250	0.285	0.252	0.287
	720	0.325	0.337	0.323	0.335	0.323	0.337	0.326	0.336
	Avg	0.231	0.267	0.234	0.270	0.232	0.269	0.243	0.280
	96	0.147	0.198	0.148	0.201	0.149	0.204	0.153	0.205
	192	0.197	0.247	0.203	0.253	0.196	0.247	0.205	0.254
	336	0.240	0.279	0.239	0.278	0.247	0.291	0.248	0.288
	720	0.319	0.339	0.329	0.346	0.313	0.333	0.317	0.339
	Avg	0.226	0.266	0.230	0.269	0.226	0.269	0.231	0.272

D.4 GENERALIZATION STUDIES

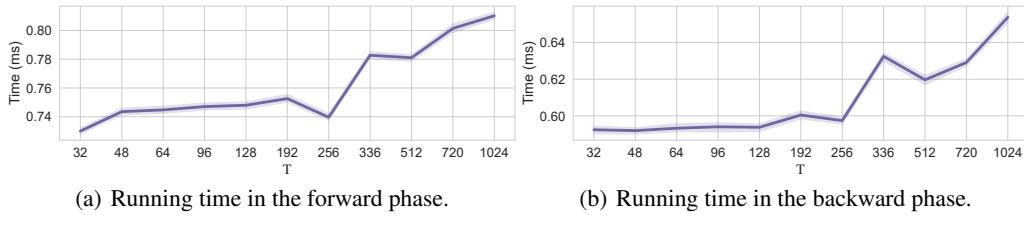
Additional experimental results of varying forecast models are available in Fig. 6, where four forecast models are involved on four datasets.

D.5 CASE STUDY WITH PATCHTST OF VARYING HISTORICAL LENGTHS

Additional experimental results of varying historical lengths are available in Table 10, complementing the fixed length of 96 used in the main text. The forecast models selected include TimeBridge (Liu et al., 2025) which is the recent state-of-the-art forecast model, and PatchTST (Nie et al., 2023) which is known to require large historical lengths. The results demonstrate that DistDF consistently improves both forecast models across different historical sequence lengths.

Table 11: Experimental results (mean \pm std) with varying seeds (2021-2025).

Dataset	ECL				Weather			
Models	DistDF		DF		DistDF		DF	
Metrics	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
96	0.138 \pm 0.001	0.236 \pm 0.001	0.141 \pm 0.001	0.239 \pm 0.001	0.167 \pm 0.003	0.209 \pm 0.001	0.169 \pm 0.001	0.212 \pm 0.001
192	0.159 \pm 0.001	0.257 \pm 0.001	0.161 \pm 0.000	0.258 \pm 0.001	0.213 \pm 0.001	0.253 \pm 0.001	0.215 \pm 0.001	0.254 \pm 0.001
336	0.179 \pm 0.001	0.272 \pm 0.001	0.183 \pm 0.002	0.279 \pm 0.002	0.271 \pm 0.002	0.296 \pm 0.002	0.272 \pm 0.001	0.296 \pm 0.001
720	0.210 \pm 0.001	0.301 \pm 0.001	0.221 \pm 0.005	0.311 \pm 0.004	0.349 \pm 0.002	0.347 \pm 0.002	0.352 \pm 0.002	0.348 \pm 0.001
Avg	0.172 \pm 0.000	0.266 \pm 0.001	0.177 \pm 0.002	0.272 \pm 0.001	0.250 \pm 0.001	0.276 \pm 0.001	0.252 \pm 0.001	0.277 \pm 0.000



(a) Running time in the forward phase. (b) Running time in the backward phase.

Figure 7: Running time (ms) with varying forecast horizons.

D.6 RANDOM SEED SENSITIVITY

Additional experimental results of random seed sensitivity are available in Table 11, where we report the mean and standard deviation of results obtained from experiments conducted with five different random seeds (2021, 2022, 2023, 2024, and 2025). The results indicate minimal sensitivity of the proposed method to random initialization, as most averaged standard deviations remain below 0.005.

D.7 COMPLEXITY

Additional experimental results of the running time of DistDF are available in Fig. 7. The batch size and dimension are set to 128 and 21, respectively. As the forecast horizon T increases, the running time for both forward and backward passes generally rises, with some fluctuations. This trend is expected, since T affects the size of the matrices involved in computing the joint-distribution Wasserstein discrepancy in (5). Nevertheless, the running time remains below 1 ms even when T increased to 1024. Furthermore, DistDF’s additional computations occur exclusively during training and are completely isolated from the inference stage.

As a result, *DistDF introduces no additional complexity to model inference, and the extra computational cost during training is negligible.*

D.8 JOINT-DISTRIBUTION DISCREPANCY IN VARYING SETTINGS

Additional experimental results of joint distribution discrepancy are available for different learning objectives in Table 12 and α values in Table 13 and Table 14, as a supplement to Table 2, Table 5 and Table 6. The joint distribution discrepancy, denoted as Disc, is evaluated on the test set to compare the discrepancy between (X, Y) and (X, \hat{Y}) .

D.9 UTILITY TO IMPROVE RECENT FORECASTING MODELS

Additional experimental results demonstrating utility for improving recent forecast architectures are available in Table 15. We select TQNet (Lin et al., 2025), TimeBridge (Liu et al., 2025), and FredFormer (Piao et al., 2024) as testbeds due to their recency and competitive performance.

1242 Table 12: Joint-distribution discrepancy of different objectives for time-series forecasting.
1243

Loss	DistDF	Time-o1	FreDF	Koopman	Dilate	LDTW	Soft-DTW	DTW	DF
TimeBridge	ETTm1	0.230	<u>0.231</u>	0.231	0.271	0.231	0.238	0.237	0.232
	ETTh1	0.326	<u>0.331</u>	<u>0.330</u>	0.350	0.352	0.352	0.340	0.332
	ECL	0.129	0.135	0.137	0.139	0.136	0.139	<u>0.133</u>	0.140
	Weather	0.147	0.148	0.149	0.157	0.148	0.148	0.153	0.148
Freformer	ETTm1	0.227	<u>0.228</u>	0.231	0.232	0.233	0.240	0.239	0.232
	ETTh1	0.324	<u>0.325</u>	0.333	0.349	0.349	0.350	0.356	0.342
	ECL	0.130	<u>0.133</u>	0.134	0.142	0.140	0.144	0.153	0.151
	Weather	0.148	0.148	0.149	0.150	0.150	0.152	0.152	0.152

1244 Note: **Bold** and underlined denote best and second-best Disc results, respectively. The reported results are averaged over forecast horizons: T=96, 192, 336, 1245 and 720. When metric values coincide up to three decimal places, **Bold** indicates the numerically superior result based on full precision.

1246 Table 13: Varying α results where Timebridge acts as the forecasting model.
1247

α	ETTh2			ECL			Weather		
	MSE	MAE	Disc	MSE	MAE	Disc	MSE	MAE	Disc
0	0.377	0.403	0.292	0.176	0.271	0.136	0.252	0.277	0.148
0.001	0.378	0.402	0.292	0.172	0.267	0.130	0.250	<u>0.276</u>	0.148
0.002	0.377	0.402	0.291	0.173	0.267	0.130	0.250	0.276	0.148
0.005	0.376	0.401	0.291	0.172	0.267	0.130	0.250	0.276	0.148
0.01	0.376	0.400	<u>0.291</u>	0.172	<u>0.267</u>	0.130	0.249	0.276	0.146
0.02	0.376	0.400	0.291	0.174	0.269	0.133	<u>0.249</u>	0.276	<u>0.147</u>
0.05	0.375	<u>0.399</u>	0.290	0.174	0.268	0.132	0.251	0.278	0.147
0.1	<u>0.375</u>	0.399	0.291	0.174	0.269	0.132	0.254	0.280	0.148
0.2	0.376	0.399	0.291	0.177	0.270	0.134	0.254	0.280	0.148
0.5	0.378	0.400	0.294	0.186	0.277	0.140	0.256	0.281	0.149
1	0.381	0.402	0.296	0.197	0.282	0.147	0.260	0.283	0.150

1248 Note: **Bold** and underlined denote the best and second-best results. When metric values coincide up to three decimal places, **Bold** indicates the numerically 1249 superior result based on full precision.

1250 D.10 CONVERGENCE ANALYSIS

1251 Additional experimental results on the convergence of the BW discrepancy are available in Fig. 8. The
1252 BW objective consistently exhibits a monotonic decrease throughout the training process and reaches
1253 a plateau after several epochs, thereby empirically validating the convergence of its optimization. In
1254 addition, we examine the evolution of MAE and MSE on the validation set. A significant positive
1255 correlation is observed between the dynamics of the BW loss and both forecasting metrics (MAE and
1256 MSE). It implies that minimizing the BW discrepancy effectively improves these forecasting metrics.

1257 D.11 AUTOREGRESSION-BASED FORECASTING PERFORMANCE

1258 Additional experimental results under the autoregression-based forecasting are available in Table 16.

1259 D.12 PROBABILISTIC FORECASTING PERFORMANCE

1260 Additional experimental results under the probabilistic forecasting setting are available in Table 17,
1261 where we select D3U (Li et al., 2025b), the state-of-the-art probabilistic forecasting framework as the
1262 testbed.

1263 D.13 MULTI-SCALE FORECASTING PERFORMANCE

1264 Additional experimental results under the multi-scale forecasting setting are available in Table 18,
1265 where we select TimeMixer (Wang et al., 2024) and SCINet (Liu et al., 2022) as the testbeds.

1266 E STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMs)

1267 In accordance with the conference guidelines, we disclose our use of Large Language Models (LLMs)
1268 in the preparation of this paper as follows:

1296

1297

1298

1299

Table 14: Varying α results where Fredformer acts as the forecasting model.

α	ETTh2			ECL			Weather		
	MSE	MAE	Disc	MSE	MAE	Disc	MSE	MAE	Disc
0	0.377	0.402	0.293	0.191	0.284	0.143	0.261	0.282	0.152
0.001	0.371	0.397	0.287	<u>0.175</u>	<u>0.268</u>	<u>0.132</u>	0.255	0.278	0.148
0.002	0.372	0.398	0.289	0.175	0.267	0.131	<u>0.256</u>	<u>0.278</u>	0.149
0.005	0.372	0.398	0.288	0.182	0.275	0.137	<u>0.256</u>	<u>0.279</u>	<u>0.149</u>
0.01	0.370	0.397	<u>0.285</u>	0.183	0.275	0.137	0.257	0.279	0.150
0.02	0.369	0.395	0.286	0.182	0.275	0.136	0.258	0.280	0.149
0.05	0.370	<u>0.396</u>	0.285	0.187	0.279	0.141	0.259	0.281	0.150
0.1	0.371	0.397	0.288	0.196	0.287	0.148	0.261	0.283	0.151
0.2	0.372	0.398	0.290	0.209	0.298	0.158	0.263	0.285	0.152
0.5	0.376	0.399	0.292	0.230	0.317	0.171	0.266	0.287	0.153
1	0.386	0.406	0.299	0.239	0.326	0.177	0.268	0.290	0.154

Note: **Bold** and underlined denote the best and second-best results. When metric values coincide up to three decimal places, **Bold** indicates the numerically superior result based on full precision.

1311

1312

1313

1314

1315

1316

1317

Table 15: The performance comparison of DF and DistDF on different forecast models.

Models	TQNet	TQNet [†]	TimeBridge	TimeBridge [†]	Fredformer	Fredformer [†]	iTransformer	iTransformer [†]	FreTS	FreTS [†]	
Metrics	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
ETTh1	96	0.372	0.391	0.372	0.391	0.373	0.395	0.377	0.396	0.385	0.405
	192	0.430	0.424	0.430	0.422	0.428	0.426	0.424	0.429	0.428	0.425
	336	0.486	0.454	0.472	0.444	0.471	0.451	0.467	0.450	0.486	0.449
	720	0.507	0.486	0.477	0.468	0.495	0.487	0.472	0.471	0.488	0.467
	Avg	0.449	0.439	0.438	0.431	0.442	0.440	0.443	0.434	0.430	0.429
									0.452	0.448	0.447
									0.447	0.444	0.489
									0.479	0.467	
ETTh2	96	0.293	0.343	0.289	0.339	0.294	0.344	0.289	0.338	0.293	0.344
	192	0.364	0.390	0.362	0.388	0.371	0.394	0.369	0.390	0.372	0.391
	336	0.411	0.424	0.410	0.424	0.421	0.429	0.415	0.426	0.420	0.433
	720	0.430	0.444	0.426	0.443	0.423	0.443	0.420	0.438	0.421	0.439
	Avg	0.375	0.400	0.371	0.399	0.377	0.403	0.373	0.398	0.367	0.393
									0.386	0.407	0.379
									0.405	0.405	0.524
									0.496	0.467	0.466
ETTm1	96	0.310	0.352	0.311	0.351	0.323	0.361	0.319	0.358	0.326	0.361
	192	0.356	0.377	0.353	0.377	0.366	0.385	0.363	0.383	0.365	0.382
	336	0.388	0.400	0.387	0.400	0.398	0.408	0.394	0.405	0.396	0.404
	720	0.450	0.437	0.449	0.436	0.461	0.445	0.455	0.442	0.459	0.444
	Avg	0.376	0.391	0.375	0.391	0.387	0.400	0.383	0.397	0.386	0.407
									0.379	0.405	0.524
									0.496	0.467	0.466
ETTm2	96	0.175	0.256	0.171	0.254	0.177	0.259	0.176	0.256	0.177	0.260
	192	0.243	0.300	0.234	0.295	0.243	0.303	0.241	0.300	0.242	0.300
	336	0.297	0.336	0.292	0.333	0.303	0.343	0.302	0.340	0.302	0.340
	720	0.394	0.393	0.390	0.390	0.401	0.399	0.403	0.397	0.399	0.403
	Avg	0.277	0.321	0.272	0.318	0.281	0.326	0.280	0.323	0.280	0.324
									0.295	0.336	0.316
									0.365	0.358	
ECL	96	0.143	0.237	0.139	0.233	0.142	0.239	0.137	0.235	0.161	0.258
	192	0.161	0.252	0.157	0.249	0.161	0.257	0.159	0.257	0.174	0.269
	336	0.178	0.270	0.174	0.267	0.182	0.278	0.178	0.272	0.194	0.290
	720	0.218	0.303	0.212	0.298	0.217	0.309	0.212	0.302	0.235	0.319
	Avg	0.175	0.265	0.171	0.262	0.176	0.271	0.172	0.267	0.191	0.284
									0.173	0.266	0.179
									0.266	0.266	
Weather	96	0.160	0.203	0.160	0.202	0.168	0.211	0.164	0.209	0.180	0.220
	192	0.210	0.247	0.208	0.246	0.214	0.254	0.212	0.252	0.222	0.258
	336	0.267	0.289	0.264	0.287	0.273	0.297	0.270	0.295	0.283	0.301
	720	0.346	0.342	0.344	0.342	0.353	0.347	0.348	0.345	0.358	0.348
	Avg	0.246	0.270	0.244	0.269	0.252	0.277	0.248	0.275	0.261	0.282
									0.255	0.277	0.269
									0.289	0.289	0.258
									0.280	0.280	0.249
									0.293	0.293	0.245
									0.288	0.288	0.248

Note: The length of history window is set to 96 for all baselines. Avg indicates the results averaged over forecasting lengths: T=96, 192, 336 and 720. [†] marks the forecasting model trained via DistDF.

1347

1348

1349

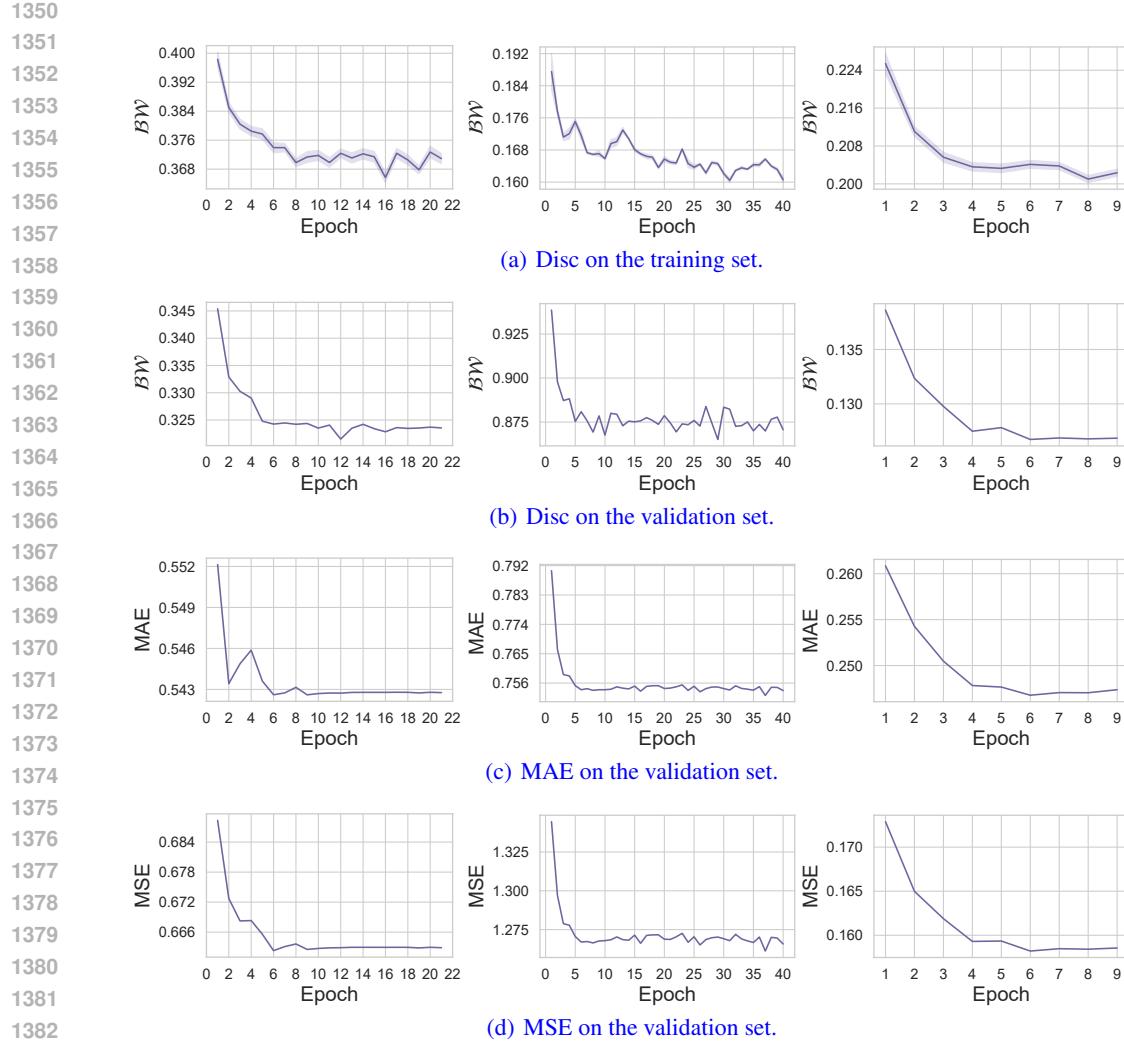


Figure 8: Evolution of training objectives and validation metrics across four datasets: ETTm1, ETTh1, and ECL (from left to right).

Table 16: The performance comparison of DF and DistDF on the autoregressive forecasting setting.

Metrics	TimeBridge		TimeBridge [†]		Fredformer		Fredformer [†]		
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
ETTm1	96	0.405	0.402	0.395	0.391	0.391	0.396	0.386	0.390
	192	0.467	0.438	0.419	0.408	0.494	0.449	0.493	0.446
	336	0.518	0.467	0.460	0.437	0.572	0.500	0.579	0.486
	720	0.725	0.514	0.527	0.478	1.821	0.837	0.833	0.563
Weather	Avg	0.528	0.455	0.450	0.428	0.820	0.546	0.573	0.471
	96	0.527	0.343	0.241	0.275	0.241	0.267	0.211	0.245
	192	1.165	0.494	0.303	0.320	0.306	0.318	0.274	0.292
	336	4.826	0.749	0.371	0.365	0.330	0.331	0.312	0.322
ECL	720	9.363	1.374	0.461	0.421	0.433	0.406	0.407	0.380
	Avg	3.970	0.740	0.344	0.345	0.327	0.330	0.301	0.310

Note: The length of history window is set to 96 for all baselines. Avg indicates the results averaged over forecasting lengths: T=96, 192, 336 and 720. [†] marks the forecasting model trained via DistDF.

1404

1405

1406

1407

1408

1409

Table 17: The performance comparison of DF and DistDF on the probabilistic forecasting task.

Models		D3U				D3U [†]			
		Metrics	MSE	MAE	CRPS	CRPS _{sum}	MSE	MAE	CRPS _{sum}
ETTm1	96	0.317	0.357	0.263	0.723		0.316	0.357	0.265
	192	0.361	0.383	0.285	0.749		0.360	0.383	0.282
	336	0.394	0.404	0.299	0.742		0.390	0.402	0.298
	720	0.460	0.437	0.325	0.892		0.453	0.435	0.328
	Avg	0.383	0.395	0.293	0.776		0.380	0.394	0.293
Weather	96	0.176	0.240	0.174	0.179		0.173	0.225	0.171
	192	0.223	0.271	0.205	0.234		0.217	0.265	0.198
	336	0.279	0.309	0.233	0.269		0.278	0.310	0.233
	720	0.359	0.361	0.273	0.419		0.353	0.360	0.269
	Avg	0.259	0.295	0.221	0.275		0.255	0.290	0.218

Note: The length of history window is set to 96 for all baselines. Avg indicates the results averaged over forecasting lengths: T=96, 192, 336 and 720.

† marks the forecasting model trained via DistDF.

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

Table 18: The performance comparison of DF and DistDF on the multi-scale architectures.

Models		TimeMixer		TimeMixer [†]		SCINet		SCINet [†]	
		Metrics	MSE	MAE	MSE	MAE	MSE	MAE	MSE
ETTm1	96	0.329	0.369	0.326	0.369	0.325	0.365	0.319	0.359
	192	0.371	0.391	0.373	0.392	0.383	0.397	0.367	0.385
	336	0.427	0.425	0.412	0.423	0.436	0.424	0.403	0.406
	720	0.564	0.506	0.491	0.459	0.528	0.476	0.469	0.444
	Avg	0.422	0.423	0.401	0.411	0.418	0.416	0.389	0.399
ETTh1	96	0.419	0.426	0.400	0.410	0.409	0.415	0.397	0.405
	192	0.464	0.451	0.439	0.436	0.457	0.441	0.448	0.434
	336	0.509	0.472	0.485	0.450	0.499	0.461	0.491	0.455
	720	0.614	0.553	0.501	0.486	0.505	0.482	0.501	0.479
	Avg	0.501	0.476	0.456	0.446	0.467	0.450	0.459	0.443
ECL	96	0.159	0.260	0.145	0.242	0.146	0.248	0.141	0.242
	192	0.161	0.258	0.159	0.256	0.167	0.266	0.159	0.257
	336	0.173	0.272	0.176	0.272	0.179	0.280	0.177	0.277
	720	0.212	0.302	0.207	0.298	0.202	0.298	0.197	0.294
	Avg	0.176	0.273	0.172	0.267	0.173	0.273	0.169	0.268
Weather	96	0.173	0.220	0.168	0.217	0.160	0.208	0.158	0.207
	192	0.213	0.254	0.212	0.253	0.214	0.257	0.211	0.254
	336	0.286	0.306	0.273	0.298	0.276	0.300	0.271	0.298
	720	0.377	0.362	0.354	0.352	0.362	0.356	0.359	0.351
	Avg	0.262	0.285	0.252	0.280	0.253	0.280	0.250	0.278

Note: The length of history window is set to 96 for all baselines. Avg indicates the results averaged over forecasting lengths: T=96, 192, 336 and 720.

1453

1454

1455

1456

1457

1458 We used LLMs (specifically, OpenAI GPT-4.1, GPT-5 and Google Gemini 2.5) *solely for checking*
1459 *grammar errors and improving the readability of the manuscript*. The LLMs *were not involved in*
1460 *research ideation, the development of research contributions, experiment design, data analysis, or*
1461 *interpretation of results*. All substantive content and scientific claims were created entirely by the
1462 authors. The authors have reviewed all LLM-assisted text to ensure accuracy and originality, and take
1463 full responsibility for the contents of the paper. The LLMs are not listed as an author.

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511