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ABSTRACT

Training time-series forecast models requires aligning the conditional distribution
of model forecasts with that of the label sequence. The standard direct forecast
(DF) approach resorts to minimizing the conditional negative log-likelihood of
the label sequence, typically estimated using the mean squared error. However,
this estimation proves to be biased in the presence of label autocorrelation. In
this paper, we propose DistDF, which achieves alignment by alternatively min-
imizing a discrepancy between the conditional forecast and label distributions.
Because conditional discrepancies are difficult to estimate from finite time-series
observations, we introduce a newly proposed joint-distribution Wasserstein dis-
crepancy for time-series forecasting, which provably upper bounds the conditional
discrepancy of interest. This discrepancy admits tractable, differentiable estimation
from empirical samples and integrates seamlessly with gradient-based training.
Extensive experiments show that DistDF improves the performance of diverse
forecast models and achieves the state-of-the-art forecasting performance. Code is
available at https://anonymous.4open.science/r/DistDF-F66B.

1 INTRODUCTION

Time-series forecasting, which entails predicting future values based on historical observations,
plays a critical role in numerous applications, such as stock trend analysis in finance (Li et al.,
2025a), website traffic prediction in e-commerce (Chen et al., 2023), and trajectory forecasting in
robotics (Fan et al., 2023). In the era of deep learning, the development of effective forecast models
hinges on two aspects (Wang et al., 2025f): (1) How to design neural architecture serving as the
forecast models? and (2) How to design learning objective driving model training? Both aspects are
essential for achieving high forecast performance.

The design of neural architectures has been extensively investigated in recent studies. A central
challenge involves effectively capturing the autocorrelation structures inherent in the input sequences.
To this end, a variety of neural architectures have been proposed (Wang et al., 2023b; Lin et al., 2024).
Recent discourse emphasizes the comparison between Transformer-based models—which leverage
self-attention mechanisms to capture autocorrelation and scale effectively (Nie et al., 2023; Liu et al.,
2024; Piao et al., 2024)—and linear models, which use linear projections to model autocorrelation and
often achieve competitive performance with reduced complexity (Yi et al., 2023b; Zeng et al., 2023;
Yue et al., 2025). These developments illustrate a rapidly evolving aspect in time-series forecasting.

In contrast, the design of learning objectives remains comparatively under-explored (Li et al., 2025c;
Qiu et al., 2025a; Kudrat et al., 2025b). Current approaches typically define the learning objective by
estimating the conditional likelihood of the label sequence. In practice, this is often implemented
as the mean squared error (MSE), which has become a standard objective for training forecast
models (Lin et al., 2025). However, MSE neglects the autocorrelation structure of the label sequence,
leading to biased likelihood estimation (Wang et al., 2025g). Some efforts transform the label
sequence into conditionally decorrelated components to eliminate the bias (Wang et al., 2025f;g).
Nevertheless, as demonstrated in this work, such conditional decorrelation cannot be guaranteed in
practice; thus, the bias persists. Therefore, likelihood-based methods are fundamentally limited by
biased likelihood estimation that impedes model training.

To bypass the limitation of previous widely used likelihood-based methods, we propose Distribution-
aware Direct Forecast (DistDF), which trains forecast models by minimizing the discrepancy between
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the conditional distributions of forecast and label sequences. Since directly estimating conditional
discrepancies is intractable given finite time-series observations, we introduce the joint-distribution
Wasserstein discrepancy for unbiased time-series forecasting. It upper-bounds the conditional discrep-
ancy of interest, enables differentiation, and can be estimated from finite time-series observations,
making it well-suited for integration with gradient-based optimization of time-series forecast models.

Our main contributions are summarized as follows:

• We demonstrate a fundamental limitation in prevailing likelihood-based learning objectives for
time-series forecasting: biased likelihood estimation that hampers effective model training.

• We propose DistDF, a training framework that aligns the conditional distributions of forecasts and
labels, with a newly proposed joint-distribution Wasserstein discrepancy, ensuring the alignment of
conditional distributions and admitting tractable estimation from finite time-series observations.

• We perform comprehensive empirical evaluations to demonstrate the effectiveness of DistDF, which
enhances the performance of state-of-the-art forecast models across diverse datasets.

2 PRELIMINARIES

2.1 PROBLEM DEFINITION

In this paper, we focus on the multi-step time-series forecasting problem. We use uppercase letters
(e.g., X) to denote matrices and lowercase letters (e.g., x) to denote scalars. Given a time-series dataset
S with D covariates, the historical sequence at time step n is defined as X = [Sn−H+1, . . . , Sn] ∈
RH×D, and the label sequence is defined as Y = [Sn+1, . . . , Sn+T] ∈ RT×D, where H is the
lookback window size and T is the forecast horizon. Modern models adopt a direct forecasting (DF)
approach, generating all T forecast steps simultaneously (Liu et al., 2024). Thus, the target is to learn
a model g : RH×D → RT×D that maps X to a forecast sequence Ŷ approximating Y 1.

The development of forecast models encompasses two principal aspects: (1) neural network archi-
tectures that effectively encode historical sequences (Zeng et al., 2023; Liu et al., 2024), and (2)
learning objectives for training neural networks (Wang et al., 2025f;g). It is important to emphasize
that this work focuses on the design of learning objectives rather than proposing novel architectures.
Nevertheless, we provide a concise review of both aspects for contextual completeness.

2.2 NEURAL NETWORK ARCHITECTURES IN TIME-SERIES FORECASTING

Architectural developments aim to encode historical sequences to obtain informative representa-
tion (Wu et al., 2025; Qiu et al., 2025b). Representative classic architectures include recurrent neural
networks (Gu et al., 2021), convolutional neural networks (Luo and Wang, 2024), and graph neural
networks (Yi et al., 2023a). A central theme in recent literature is the comparison of Transformer
and non-Transformer architectures. Transformers (e.g., PatchTST (Nie et al., 2023), TQNet (Lin
et al., 2025), TimeBridge (Liu et al., 2025)) demonstrate strong scalability on large datasets but often
entail substantial computational cost. In contrast, non-Transformer models (e.g., TimeMixer (Wang
et al., 2024), FreTS (Yi et al., 2023b)) offer greater computational efficiency but may be less scal-
able. Recent advances include hybrid architectures that combine Transformer and non-Transformer
components for their complementary strengths (Lin et al., 2024), as well as the integration of Fourier
analysis for efficient learning (Piao et al., 2024; Yi et al., 2025).

2.3 LEARNING OBJECTIVES IN TIME-SERIES FORECASTING

Learning objective developments have largely focused on aligning the conditional distributions of
model forecasts P(Ŷ |X) with those of the label sequence P(Y |X). To this end, the most common
objective is the MSE, which measures the point-wise error between the forecast and label sequences

1Hereafter, we consider the univariate case (D = 1) for clarity. In the multivariate case, each variable can be
treated as a separate univariate case when computing the learning objectives.
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(a) Raw labels.
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(b) FreDF components.
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(c) Time-o1 components.

Figure 1: The conditional correlation of label components given X , where the forecast horizon is set
to T = 192. The correlation matrices are computed for the raw labels (a), the frequency components
in FreDF (b) (Wang et al., 2025g) and the principal components in Time-o1 (c) (Wang et al., 2025f).

(Dai et al., 2024; Chen et al., 2025; Lin et al., 2025):

Lmse =
∥∥∥Y|X − Ŷ|X

∥∥∥2
2
=

T∑
t=1

(
Y|X,t − Ŷ|X,t

)2
, (1)

where Y|X is the label sequence given historical sequence X , Ŷ|X is the forecast sequence. However,
the MSE objective is known to be biased since it overlooks the presence of label autocorrelation (Wang
et al., 2025g). To mitigate this issue, several alternative learning objectives have been proposed.
One line of work advocates aligning the overall shape of the forecast and label sequence (e.g.,
Dilate (Le Guen and Thome, 2019) and PS (Kudrat et al., 2025a)). These approaches accommodate
autocorrelation by emphasizing sequence-level differences, but lack theoretical guarantees for achiev-
ing an unbiased objective. Another line of work transforms labels into decorrelated components
before alignment. This strategy reduces bias and improves forecasting performance (Wang et al.,
2025f;g), showcasing the benefits of refining learning objectives for time-series forecasting.

3 METHODOLOGY

3.1 MOTIVATION

The primary objective in training time-series forecast models is to align the conditional distribution
of model-generated forecasts with that of the label sequence. Likelihood-based approaches seek this
by maximizing the conditional likelihood of the label sequence. A common practice is to estimate the
negative log-likelihood through the mean squared error (MSE), which has become the predominant
objective for training time-series forecast models (Lin et al., 2025). However, MSE treats each future
step as an independent prediction task and thus ignores the autocorrelation structure of the label
sequence, where each observation typically depends on its predecessors (Zeng et al., 2023). Such an
oversight renders MSE biased from the true negative log-likelihood of the label sequence. This issue
is termed as autocorrelation bias and formalized in Theorem 3.1.
Theorem 3.1 (Autocorrelation bias). Suppose Y|X ∈ RT is the label sequence given historical
sequence X , Ŷ|X ∈ RT is the forecast sequence, Σ|X ∈ RT×T is the conditional covariance of Y|X .
The bias of MSE from the negative log-likelihood of the label sequence given X is expressed as:

Bias =
∥∥∥Y|X − Ŷ|X

∥∥∥2
Σ−1

|X

−
∥∥∥Y|X − Ŷ|X

∥∥∥2
2
. (2)

where ∥v∥2
Σ−1

|X
= v⊤Σ−1

|X v. It vanishes if the conditional covariance Σ|X is the identity matrix2.

Some might argue that the bias can be eliminated by first transforming the label sequence into
conditionally decorrelated components and then applying MSE component-wise. For example,

2The pioneering work (Wang et al., 2025f) derives the bias from the marginal likelihood of Y assuming it
follows a Gaussian distribution. In contrast, this work clarifies that it is the conditional distribution of Y given
X that is Gaussian. Consequently, we derive the bias from the conditional log-likelihood of Y .

3
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FreDF (Wang et al., 2025g) uses Fourier transform to obtain frequency components; Time-o1 (Wang
et al., 2025f) employs principal component analysis to obtain principal components. This strategy
does eliminate the bias if the resulting components were truly conditionally decorrelated (see Theo-
rem 3.1). However, one key distinction warrants emphasis: both Fourier and principal component
transformations guarantee only marginally decorrelated of the obtained components (i.e., diagonal
Σ), not the required conditional decorrelation (i.e., diagonal Σ|X )3; thus the bias persists. Hence,
likelihood-based methods are limited by biased likelihood estimation which hampers model training.

Case study. We conduct a case study on the Traffic dataset to illustrate the limitations of likelihood-
based methods. As shown in Fig. 1(a), the conditional correlation matrix reveals substantial off-
diagonal values—over 50.3% exceed 0.1—illustrating the presence of autocorrelation effects. In
contrast, Fig. 1(b) presents the conditional correlations of the latent components extracted by FreDF
and Time-o1 (Wang et al., 2025g;f). While the non-diagonal elements are notably reduced, residual
correlations remain, indicating that these methods do not fully eliminate autocorrelation in the
transformed components. Consequently, applying a point-wise loss to these transformed components
continues to ignore autocorrelation and yields bias.

Given the substantial challenges faced by likelihood-based methods, it is worthwhile to explore
alternative strategies to align conditional distributions for model training. One plain strategy is directly
minimizing a distributional discrepancy between the conditional distributions (Courty et al., 2017),
which can effectively achieve alignment while bypassing the complexity of likelihood estimation.
Importantly, there are two questions that warrant investigation. How to devise a discrepancy to align
the two conditional distributions? Does it effectively improve forecast performance?

3.2 ALIGNING CONDITIONAL DISTRIBUTIONS VIA JOINT-DISTRIBUTION BALANCING

In this section, we aim to align the conditional distributions, i.e., PŶ |X and PY |X , by minimizing
a discrepancy metric between them. As with general distribution alignment tasks, the choice of
discrepancy metric is crucial (Xu et al., 2021). We select the Wasserstein discrepancy from optimal
transport theory, which measures the discrepancy between two distributions as the minimum cost
required to transform one into the other. Its ability to remain informative for distributions with
disjoint supports, combined with its robust theoretical properties and proven empirical success, makes
it a principled choice for this work (Courty et al., 2017). An informal definition is provided in
Definition 3.2.

Definition 3.2 (Wasserstein discrepancy). Let α and β be random variables with probability distri-
butions Pα and Pβ; Sα = [α1, ..., αn] and Sβ = [β1, ..., βm] be empirical samples from Pα and Pβ .
The optimization problem seeks a feasible plan P ∈ Rn×m

+ to transport α to β at the minimum cost:

Wp(Pα,Pβ) := min
P∈Π(α,β)

⟨D,P ⟩ ,

Π(Pα,Pβ) :=

{
Pi,1 + ...+ Pi,m = ai, i = 1, ...,n,
P1,j + ...+ Pn,j = bj , j = 1, ...,m,
Pi,j ≥ 0, i = 1, ...,n, j = 1, ...,m,

(3)

where Wp denotes the p-Wasserstein discrepancy; D ∈ Rn×m
+ represents the pairwise distances

calculated as Di,j = ∥αi − βj∥pp; a = [a1, . . . , an] and b = [b1, . . . , bm] are the weights of samples
in α and β, respectively; n and m are the numbers of samples; Π defines the set of constraints.

A natural approach to aligning the conditional distributions is to minimize the Wasserstein discrepancy
Wp(PY |X ,PŶ |X). However, this approach suffers from an estimation difficulty. For any given X ,
a typical dataset often provides only a single associated label sequence Y , and the forecast model
produces only a single output Ŷ . Thus, the empirical sets (SY |X and SŶ |X ) each contain only a
single sample, which is insufficient to represent the underlying conditional distributions and renders
the discrepancy uninformative. Crucially, this limitation is not unique to the Wasserstein discrepancy;
any distributional discrepancy metric becomes degenerate in the absence of multiple samples.

3According to Theorem 3.3 (Wang et al., 2025g) and Lemma 3.2 (Wang et al., 2025f), the components
obtained by Fourier and principal component transformations are marginal decorrelated.

4
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Lemma 3.3 (Kim et al. (2022)). For any p ≥ 1, the joint-distribution Wasserstein discrepancy upper
bounds the expected conditional-distribution Wasserstein discrepancy:∫

Wp(PY |X ,PŶ |X)dP(X) ≤ Wp(PX,Y ,PX,Ŷ ). (4)

where the equality holds if p = 1 or the conditional Wasserstein term is constant with respect to X .

To bypass this estimation difficulty, we advocate the joint-distribution Wasserstein discrepancy,
Wp(PX,Y ,PX,Ŷ ), for training time-series forecast models. This proxy is advantageous for two
reasons. First, it provides a provable upper bound on the expected conditional discrepancy (see
Lemma 3.3), ensuring that minimizing the joint discrepancy effectively aligns the conditional dis-
tributions of interest. Second, it is readily estimable from finite time-series observations, since the
empirical samples SX,Y and SX,Ŷ can be constructed from the entire dataset, yielding sufficient
samples to compute a meaningful and informative discrepancy.
Theorem 3.4 (Alignment property). The conditional distributions are aligned, i.e., PY |X = PŶ |X if
the joint-distribution Wasserstein discrepancy is minimized to zero, i.e., Wp(PX,Y ,PX,Ŷ ) = 0.

Lemma 3.5 (Peyré and Cuturi (2019)). Suppose PX,Y and PX,Ŷ obey Gaussian distributions
N (µX,Y ,ΣX,Y ) and N (µX,Ŷ ,ΣX,Ŷ ), respectively. The squared W2 discrepancy can be calculated
as the Bures-Wasserstein discrepancy:

BW(µX,Y , µX,Ŷ ,ΣX,Y ,ΣX,Ŷ ) =
∥∥∥µX,Y − µX,Ŷ

∥∥∥2
2
+ B(ΣX,Y ,ΣX,Ŷ ), (5)

where B(ΣX,Y ,ΣX,Ŷ ) = Tr

(
ΣX,Y +ΣX,Ŷ − 2

√
Σ

1/2
X,Y ΣX,Ŷ Σ

1/2
X,Y

)
, Tr(·) denotes matrix trace.

Theoretical Justification. Theorem 3.4 shows that minimizing the joint-distribution Wasserstein
discrepancy to zero guarantees the alignment of conditional distributions. This result enables using the
joint discrepancy as a learning objective for training forecast models. Under a Gaussian assumption
(likewise MSE), this discrepancy has an analytical form (Lemma 3.5), obviating the need to solve the
complex transport problem of Definition 3.2. The proof is available in Appendix A.

The use of Wasserstein discrepancy for distribution alignment is highly inspired by domain adaptation
field (Courty et al., 2017). However, one key distinction warrants emphasis. Domain adaptation
dominantly aligns the marginal distributions of inputs to improve generalization; in contrast, we
align the conditional distributions of model outputs and labels to perform supervised training. To our
knowledge, this represents a technically innovative strategy.

3.3 MODEL IMPLEMENTATION

Algorithm 1 The workflow of DistDF.
Input: X: historical sequences, Y : label sequences.
Parameter: α: the relative weight of the discrepancy, g:
the forecast model to generate forecast sequence.
Output: Lα: the obtained learning objective.

1: Ŷ ← g(X)

2: Z ← concate(X,Y ), Ẑ ← concate(X,Y )
3: µZ ← mean(Z), ΣZ ← cov(Z)

4: µẐ ← mean(Ẑ), ΣẐ ← cov(Ẑ)
5: Ldist ← BW(µZ , µẐ ,ΣZ ,ΣẐ)

6: Lmse ← ∥Y − Ŷ ∥22
7: Lα := α · Ldist + (1− α) · Lmse

In this section, we present the implementation
specifics of DistDF, a framework that leverages
the joint-distribution Wasserstein discrepancy
to enhance the training of time-series forecast
models. The principal steps of the algorithm are
formalized in Algorithm 1.

Given historical sequences X and corresponding
label sequences Y ∈ RB×T, where B denotes
batch size and T denotes forecast horizon; the
forecast model g is employed to generate the
forecast sequences, denoted as Ŷ (step 1). Sub-
sequently, we define two joint sequences, which
are constructed by concatenating X with Y and
Ŷ along the time axis, respectively (step 2), expressed as Z = [X,Y ] and Ẑ = [X, Ŷ ].

To quantify the discrepancy term Ldist, we compute the first- and second-order statistics of Z and Ẑ,
i.e., the mean vectors (µZ and µẐ ) and covariance matrices (ΣZ and ΣẐ ) (steps 3-4). The discrepancy
term Ldist is then evaluated using the Bures-Wasserstein metric (step 5), as defined in Lemma 3.5.

5
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Table 1: Long-term forecasting performance.

Models
DistDF TimeBridge Fredformer iTransformer FreTS TimesNet MICN TiDE PatchTST DLinear
(Ours) (2025) (2024) (2024) (2023) (2023) (2023) (2023) (2023) (2023)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.378 0.394 0.387 0.400 0.387 0.398 0.411 0.414 0.414 0.421 0.438 0.430 0.396 0.421 0.413 0.407 0.389 0.400 0.403 0.407

ETTm2 0.277 0.321 0.281 0.326 0.280 0.324 0.295 0.336 0.316 0.365 0.302 0.334 0.308 0.364 0.286 0.328 0.303 0.344 0.342 0.392

ETTh1 0.430 0.429 0.442 0.440 0.447 0.434 0.452 0.448 0.489 0.474 0.472 0.463 0.533 0.519 0.448 0.435 0.459 0.451 0.456 0.453

ETTh2 0.367 0.393 0.377 0.403 0.377 0.402 0.386 0.407 0.524 0.496 0.409 0.420 0.620 0.546 0.378 0.401 0.390 0.413 0.529 0.499

ECL 0.172 0.267 0.176 0.271 0.191 0.284 0.179 0.270 0.199 0.288 0.212 0.306 0.192 0.302 0.215 0.292 0.195 0.286 0.212 0.301

Traffic 0.417 0.279 0.426 0.282 0.486 0.336 0.426 0.285 0.538 0.330 0.631 0.338 0.529 0.312 0.624 0.373 0.468 0.298 0.625 0.384

Weather 0.248 0.275 0.252 0.277 0.261 0.282 0.269 0.289 0.249 0.293 0.271 0.295 0.264 0.321 0.272 0.291 0.267 0.288 0.265 0.317

PEMS03 0.104 0.215 0.112 0.223 0.146 0.260 0.122 0.233 0.149 0.261 0.126 0.230 0.106 0.223 0.316 0.370 0.170 0.282 0.216 0.322

PEMS08 0.123 0.223 0.139 0.239 0.171 0.271 0.149 0.247 0.174 0.275 0.152 0.243 0.153 0.258 0.318 0.378 0.201 0.303 0.249 0.332

Note: We fix the input length as 96 following Liu et al. (2024). Bold and underlined denote best and second-best results, respectively. Avg indicates average
results over horizons: T=96, 192, 336 and 720. DistDF employs the top-performing baseline on each dataset as its underlying forecast model.

Given the complexity of directly optimizing the Bures–Wasserstein discrepancy and its lack of
inherent pairing awareness, we integrate it with the mean squared error to promote training stability
and facilitate convergence (steps 6–7), following the established practices (Wang et al., 2025f;g):

Lα := α · Ldist + (1− α) · Lmse. (6)

where 0 ≤ α ≤ 1 balances the contribution of the distributional discrepancy term.

By minimizing the distributional discrepancy, DistDF effectively aligns the conditional distributions
of the forecast and label sequences, thereby refining the model’s forecast performance. DistDF
preserves the principal benefits of the canonical DF framework (Zeng et al., 2023; Liu et al., 2024),
such as efficient inference and multi-task learning capability. Moreover, DistDF is model-agnostic,
which renders it a plugin-and-play component to improve the training of different forecast models.

4 EXPERIMENTS

To demonstrate the efficacy of DistDF, the following aspects deserve empirical investigation:

1. Performance: Does DistDF perform well? In Section 4.2, we benchmark DistDF against state-of-
the-art baselines, and in Section 4.3, we compare it with alternative learning objectives.

2. Gain: Why does it work? In section 4.4, we perform an ablative study, dissecting the individual
components of DistDF and clarifying their contributions to forecast accuracy.

3. Generality: Does it support other models and discrepancy measures? In Section 4.5, we examine
its compatibility with various models and discrepancies, with further results in Appendix D.4.

4. Sensitivity: Is it sensitive to hyperparameters? In Section 4.6, we analyze the sensitivity of
DistDF to the hyperparameter α, showing stable performance across a broad parameter range.

5. Efficiency: What is the computational cost of it? In Appendix D.7, we evaluate the running cost
of DistDF across different scenarios.

4.1 SETUP

Datasets. We evaluate our methods using several standard public benchmarks for long-term time-
series forecasting, following Wu et al. (2023). Specifically, we use the ETT dataset (four subsets),
ECL, Traffic, Weather, and PEMS (Liu et al., 2024). All datasets are split chronologically into
training, validation, and test sets. Comprehensive dataset statistics are presented in Appendix C.1.

Baselines. We compare DistDF to a range of competitive baselines, categorized as: (1) Transformer-
based models—PatchTST (Nie et al., 2023), iTransformer (Liu et al., 2024), Fredformer (Piao et al.,
2024) and TimeBridge (Liu et al., 2025); (2) Non-Transformer based models— DLinear (Zeng et al.,
2023), TiDE (Das et al., 2023), MICN (Wang et al., 2023b) and FreTS (Yi et al., 2023b).
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(a) ETTm2 snapshot.
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Figure 2: The forecast sequence of DF (in blue) and DistDF (in red), with historical length H = 96.

Table 2: Comparative results with other objectives for time-series forecasting.

Loss DistDF Time-o1 FreDF Koopman Dilate Soft-DTW DF

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Ti
m

eB
ri

dg
e ETTm1 0.383 0.397 0.383 0.397 0.386 0.398 0.460 0.438 0.387 0.400 0.395 0.402 0.387 0.400

ETTh1 0.434 0.436 0.439 0.438 0.439 0.436 0.459 0.449 0.464 0.452 0.452 0.445 0.442 0.440
ECL 0.172 0.267 0.175 0.268 0.175 0.267 0.182 0.277 0.176 0.271 0.173 0.268 0.176 0.271
Weather 0.248 0.275 0.250 0.275 0.254 0.276 0.269 0.293 0.252 0.277 0.260 0.280 0.252 0.277

Fr
ed

fo
rm

er ETTm1 0.378 0.394 0.379 0.393 0.384 0.394 0.389 0.400 0.389 0.400 0.397 0.402 0.387 0.398
ETTh1 0.430 0.429 0.431 0.429 0.438 0.434 0.452 0.443 0.453 0.442 0.460 0.449 0.447 0.434
ECL 0.173 0.266 0.178 0.270 0.179 0.272 0.190 0.282 0.187 0.280 0.206 0.298 0.191 0.284
Weather 0.255 0.277 0.255 0.276 0.256 0.277 0.257 0.279 0.258 0.280 0.261 0.280 0.261 0.282

Note: Bold and underlined denote best and second-best results, respectively. The reported results are averaged over forecast horizons: T=96, 192, 336 and 720.
When metric values coincide up to three decimal places, Bold indicates the numerically superior result based on full precision.

Implementation. Baseline implementations closely follow the official codebase from Piao et al.
(2024). To ensure fair comparison, the drop-last trick is disabled for all models, as recommended
in Qiu et al. (2024). All models are trained with the Adam optimizer (Kingma and Ba, 2015). When
integrating DistDF into a baseline forecast model, we retain all hyperparameters from the public
benchmarks (Liu et al., 2024; Piao et al., 2024), only tuning α and the learning rate. Experiments
are run on Intel(R) Xeon(R) Platinum 8383C CPUs with 32 NVIDIA RTX H100 GPUs. Further
implementation details are provided in Appendix C.

4.2 OVERALL PERFORMANCE

Table 1 reports the long-term forecasting results. DistDF consistently enhances the performance
of base models across all evaluated datasets. For instance, on ETTh1, DistDF reduces the MSE of
TimeBridge by 0.016. Similar improvements observed on other benchmarks confirm its robustness and
generalizability. We attribute these empirical improvements to DistDF’s ability to align conditional
distributions, a property supported by its theoretical guarantees (Theorem 3.4).

Showcases. To further illustrate the practical benefits, we compare the forecast sequences of DF
and DistDF in Fig. 2. While a model trained with the standard DF objective captures the overall
trend, it fails to accurately track fine-grained variations, such as rapid changes between steps 100 and
200. In contrast, DistDF produces forecasts that more precisely reflect these subtle and rapid changes,
highlighting its effectiveness in improving real-world forecasting accuracy.

4.3 LEARNING OBJECTIVE COMPARISON

Table 2 presents a comparison between DistDF and several established time-series learning objec-
tives: Time-o1 (Wang et al., 2025f), FreDF (Wang et al., 2025g), Koopman (Lange et al., 2021),
Dilate (Le Guen and Thome, 2019), Soft-DTW (Cuturi and Blondel, 2017), and DPTA (Sakoe and
Chiba, 2003). In this comparison, all methods are integrated into both TimeBridge and Fredformer
using their official implementations for ensuring fairness.

In general, shape alignment objectives (Dilate, Soft-DTW, DPTA) improve marginally over standard
DF, consistent with findings by Le Guen and Thome (2019). This suggests that heuristic shape-level
alignment does not guarantee alignment of conditional distributions. FreDF and Time-o1 reduce
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Table 3: Ablation study results.

Model Align µ Align Σ Data T=96 T=192 T=336 T=720 Avg

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

DF % %

ETTm1 0.326 0.361 0.365 0.382 0.396 0.404 0.459 0.444 0.387 0.398
ETTh1 0.377 0.396 0.437 0.425 0.486 0.449 0.488 0.467 0.447 0.434
ECL 0.142 0.239 0.161 0.257 0.182 0.278 0.217 0.309 0.176 0.271
Weather 0.168 0.211 0.214 0.254 0.273 0.297 0.353 0.347 0.252 0.277

DistDF† ! %

ETTm1 0.318 0.359 0.361 0.382 0.393 0.404 0.453 0.440 0.381 0.396
ETTh1 0.375 0.394 0.435 0.426 0.471 0.446 0.457 0.455 0.435 0.430
ECL 0.142 0.239 0.160 0.257 0.180 0.273 0.217 0.307 0.175 0.269
Weather 0.168 0.211 0.213 0.253 0.273 0.296 0.349 0.348 0.251 0.277

DistDF‡ % !

ETTm1 0.328 0.365 0.364 0.385 0.395 0.406 0.457 0.441 0.386 0.399
ETTh1 0.374 0.396 0.430 0.430 0.476 0.451 0.476 0.472 0.439 0.437
ECL 0.141 0.239 0.161 0.257 0.179 0.273 0.216 0.307 0.174 0.269
Weather 0.168 0.211 0.214 0.253 0.270 0.296 0.353 0.347 0.251 0.277

DistDF ! !

ETTm1 0.316 0.357 0.359 0.381 0.392 0.404 0.448 0.437 0.379 0.395
ETTh1 0.373 0.393 0.428 0.425 0.466 0.445 0.453 0.453 0.430 0.429
ECL 0.137 0.235 0.159 0.257 0.178 0.272 0.212 0.302 0.172 0.267
Weather 0.164 0.209 0.212 0.252 0.270 0.295 0.348 0.345 0.248 0.275

Note: Bold and underlined denote best and second-best results, respectively. When metric values coincide up to three decimal places, Bold indicates the
numerically superior result based on full precision.
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Figure 3: Improvement of DistDF applied to different forecast models, shown with colored bars for
means over forecast lengths (96, 192, 336, 720) and error bars for 50% confidence intervals.

the bias in likelihood estimation and improve performance. However, as established in Section 3.1,
residual bias remains, preventing unbiased alignment of conditional distributions. DistDF minimizes
the discrepancy between conditional distributions, achieving unbiased alignment with theoretical
guarantees (see Theorem3.4), and consequently delivers superior performance.

4.4 ABLATION STUDIES

Table 3 examines the two components in the joint-distribution Wasserstein discrepancy (5): mean
alignment and covariance alignment. The main findings are as follows:

• DistDF† augments DF by aligning only the means of the joint distributions, omitting the B(·) in (5).
This approach outperforms DF, illustrating that mean alignment of joint distributions can improve
the alignment of the conditional distributions between label and forecast sequence.

• DistDF‡ improves DF by aligning only the variance of joint distributions, exclusively involving
B(·) in (5). This approach also leads to improvements over DF in most cases, illustrating that
variance alignment of joint distributions improves the alignment of the conditional distributions.

• DistDF combines both mean and variance alignment for comprehensive joint distribution matching.
It yields the best results, demonstrating a synergistic effect when both components are integrated.

4.5 GENERALIZATION STUDIES

In this section, we assess the generalizability of DistDF by applying it to different distribution
discrepancy measures and across various forecast models.

Varying discrepancy. We evaluate alternative discrepancy measures to align the joint distribution
and report the results in Table 4. Specifically, we consider Kullback-Leibler (KL) divergence, maxi-
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Table 4: Comparative results with other discrepancies for aligning the joint distributions.

Discrepancy Ours EMD MMD@Linear MMD@RBF KL DF

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Ti

m
eB

ri
dg

e ETTm1 0.383 0.398 0.388 0.400 0.385 0.400 0.387 0.399 0.387 0.400 0.387 0.400
ETTh1 0.433 0.437 0.441 0.439 0.438 0.437 0.441 0.440 0.437 0.438 0.442 0.440
ECL 0.172 0.267 0.177 0.272 0.174 0.269 0.172 0.266 0.176 0.271 0.176 0.271
Weather 0.248 0.275 0.251 0.276 0.253 0.278 0.250 0.276 0.253 0.277 0.252 0.277

Fr
ed

fo
rm

er ETTm1 0.379 0.395 0.386 0.397 0.380 0.395 0.385 0.397 0.385 0.397 0.387 0.398
ETTh1 0.429 0.431 0.445 0.435 0.437 0.432 0.444 0.435 0.444 0.435 0.447 0.434
ECL 0.183 0.275 0.187 0.280 0.188 0.280 0.187 0.280 0.187 0.279 0.191 0.284
Weather 0.257 0.279 0.261 0.282 0.262 0.282 0.262 0.282 0.261 0.282 0.261 0.282

Note: Bold and underlined denote best and second-best results, respectively. The reported results are averaged over forecast horizons: T=96, 192, 336 and 720.
When metric values coincide up to three decimal places, Bold indicates the numerically superior result based on full precision.

Table 5: Varying α results of TimeBridge

α
ETTh2 ECL Weather

MSE MAE MSE MAE MSE MAE

0 0.377 0.403 0.176 0.271 0.252 0.277
0.001 0.378 0.402 0.172 0.267 0.250 0.276
0.002 0.377 0.402 0.173 0.267 0.250 0.276
0.005 0.376 0.401 0.172 0.267 0.250 0.276
0.01 0.376 0.400 0.172 0.267 0.249 0.276
0.02 0.376 0.400 0.174 0.269 0.249 0.276
0.05 0.375 0.399 0.174 0.268 0.252 0.278
0.1 0.375 0.399 0.174 0.269 0.254 0.280
0.2 0.376 0.399 0.177 0.270 0.258 0.282
0.5 0.378 0.400 0.186 0.277 0.261 0.285
1 0.381 0.402 0.197 0.282 0.265 0.286

Note: Bold and underlined denote the best and second-best results.
When metric values coincide up to three decimal places, Bold indicates
the numerically superior result based on full precision.

Table 6: Varying α results of Fredformer.

α
ETTh2 ECL Weather

MSE MAE MSE MAE MSE MAE

0 0.377 0.402 0.191 0.284 0.261 0.282
0.001 0.371 0.397 0.182 0.275 0.257 0.279
0.002 0.372 0.398 0.181 0.274 0.257 0.279
0.005 0.372 0.398 0.182 0.275 0.257 0.280
0.01 0.370 0.397 0.183 0.275 0.257 0.279
0.02 0.369 0.395 0.182 0.275 0.258 0.280
0.05 0.370 0.396 0.187 0.279 0.259 0.281
0.1 0.371 0.397 0.196 0.287 0.261 0.283
0.2 0.372 0.398 0.209 0.298 0.263 0.285
0.5 0.376 0.399 0.230 0.317 0.266 0.287
1 0.386 0.406 0.239 0.326 0.268 0.290

Note: Bold and underlined denote the best and second-best results.
When metric values coincide up to three decimal places, Bold indicates
the numerically superior result based on full precision.

mum mean discrepancy (MMD) with RBF and linear kernels, and earth mover discrepancy (EMD).
All discrepancies show improvements over the standard DF, indicating the benefit of incorporating
distribution alignment for training forecast models. The joint-distribution Wasserstein discrepancy
achieves the best overall results in 14 out of 16 cases, underscoring its effectiveness in reliably
aligning distributions (Peyré and Cuturi, 2019).

Varying forecast models. We further demonstrate the flexibility of DistDF by integrating it into
several representative models: TimeBridge, FredFormer, iTransformer, and FreTS. As shown in
Fig. 3, DistDF consistently enhances forecast performance across all tested models. For example, on
the ECL dataset, iTransformer and FredFormer augmented with DistDF achieve substantial MSE
reductions—up to 2.7% and 4.3%, respectively. These results highlight DistDF’s potential as a
general, plug-and-play enhancement for supporting various forecast models.

4.6 HYPERPARAMETER SENSITIVITY

In this section, we analyze how varying the weight of the distributional discrepancy influences
DistDF’s performance, as summarized in Table 5 and Table 6. On the one hand, increasing α from 0
generally leads to improved performance; for example, FredFormer achieves a 0.01 reduction in MSE
on ECL, showcasing the utility of incorporating the discrepancy term into the learning objective of
training forecast models. On the other hand, the optimal performance is typically observed for α < 1.
This underscores the complementary role of MSE, which is both easy to optimize and straightforward
for ensuring point-wise accuracy between the forecast and label sequences.

CONCLUSION

In this study, we demonstrate that existing likelihood-based approaches suffer from biased likelihood
estimation. Instead, we propose DistDF, which trains forecast models by minimizing the discrepancy
between the conditional distributions of forecasts and labels. Recognizing the intractability of directly
estimating conditional discrepancies, we propose the use of a joint-distribution Wasserstein discrep-
ancy, which serves as a tractable upper bound and can be efficiently estimated from observed data.
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By minimizing this quantity, DistDF provably aligns the conditional distributions with theoretical
guarantees for training forecast models. Extensive experiments corroborate that DistDF consistently
yields improvements in forecast accuracy.

Limitations. According to Lemma 3.5, DistDF quantifies the divergence between the mean and
covariance of the joint distributions, thereby capturing global distributional properties. However, it
discards elementwise correspondences between forecast and label sequences—information critical
for forecasting tasks. Therefore, DistDF is most effective when employed as a regularization term
alongside the standard MSE loss, where MSE recovers elementwise correspondences and fully
unleashes the potential of the proposed DistDF.

REPRODUCIBILITY STATEMENT

The anonymous downloadable source code is available at https://anonymous.4open.
science/r/DistDF-F66B. For theoretical results, a complete proof of the claims is included in
the Appendix A; For datasets used in the experiments, a complete description of the dataset statistics
and processing workflow is provided in the Appendix C.
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A THEORETICAL JUSTIFICATION

Theorem A.1 (Autocorrelation bias, Theorem 3.1 in the main text). Suppose Y|X ∈ RT is the
label sequence given historical sequence X , Ŷ|X ∈ RT is the forecast sequence, Σ|X ∈ RT×T is
the conditional covariance of Y|X . The bias of MSE from the negative log-likelihood of the label
sequence given X is expressed as:

Bias =
∥∥∥Y|X − Ŷ|X

∥∥∥2
Σ−1

|X

−
∥∥∥Y|X − Ŷ|X

∥∥∥2 . (7)

where ∥v∥2
Σ−1

|X
= v⊤Σ−1

|X v. It vanishes if the conditional covariance Σ|X is identity matrix4.

Proof. The proof follows the narrative in Wang et al. (2025f) but highlights that it is the conditional
distribution of Y given X that obeys Gaussian distribution, instead of the marginal distribution of Y .

Suppose the label sequence given X follows a multivariate normal distribution with mean vector
Ŷ|X = [Ŷ|X,1, Ŷ|X,2, . . . , Ŷ|X,T] and covariance matrix Σ|X . The conditional likelihood of Y is:

PY |X =
1

(2π)0.5T|Σ|X |0.5
exp(−1

2

∥∥∥Y|X − Ŷ|X

∥∥∥2
Σ−1

|X

) (8)

On the basis, the conditional negative log-likelihood of Y is:

− logPY |X =
1

2

(
T log(2π) + log |Σ|X |+

∥∥∥Y|X − Ŷ|X

∥∥∥2
Σ−1

|X

)
.

Removing the terms unrelated to Ŷ|X , the terms used for updating Ŷ|X , namely practical negative
log-likelihood (PNLL), is expressed as follows:

PNLL =
∥∥∥Y|X − Ŷ|X

∥∥∥2
Σ−1

|X

. (9)

On the other hand, the MSE loss can be expressed as:

MSE =
∥∥∥Y|X − Ŷ|X

∥∥∥2
2
. (10)

The difference between PNLL and MSE is computed as:

Bias =
∥∥∥Y|X − Ŷ|X

∥∥∥2
Σ−1

|X

−
∥∥∥Y|X − Ŷ|X

∥∥∥2 , (11)

which diminishes to zero if the label sequence is conditionally decorrelated, i.e., Σ|X is identity
matrix. The proof is completed.

Lemma A.2 (Lemma 3.3 in the main text). For any p ≥ 1, the joint-distribution Wasserstein
discrepancy upper bounds the expected conditional-distribution Wasserstein discrepancy:∫

Wp(PY |X ,PŶ |X)dP(X) ≤ Wp(PX,Y ,PX,Ŷ ). (12)

where the equality holds if p = 1 or the conditional Wasserstein term is constant with respect to X .

Proof. The proof can be found in Theorem 2 of Kim et al. (2022).

Theorem A.3 (Alignment property, Theorem 3.4 in the main text). The conditional distributions are
aligned, i.e., PY |X = PŶ |X if the joint-distribution Wasserstein discrepancy is minimized to zero, i.e.,
Wp(PX,Y ,PX,Ŷ ) = 0.

4The pioneering work (Wang et al., 2025g) identifies the bias under the first-order Markov assumption on the
label sequence. This study generalizes this bias without the first-order Markov assumption.
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Proof. By Lemma 3.3, we have∫
Wp(PY |X ,PŶ |X) dP(X) ≤ Wp(PX,Y ,PX,Ŷ ).

Thus, if RHS = 0, we have
∫
Wp(PY |X ,PŶ |X) dP(X) = 0. Since Wp is non-negative (Peyré and

Cuturi, 2019), this implies that Wp(PY |X ,PŶ |X) = 0 for almost every X . Therefore, it suffices to
prove that for two distributions Pα = PY |X and Pβ = PŶ |X , Wp(Pα,Pβ) = 0 implies Pα = Pβ .

Suppose Sα = [α1, ..., αn] and Sβ = [β1, ..., βn] are the empirical samples from Pα and Pβ ,
respectively, with corresponding mass vectors a and b We are given that Wp(Pα,Pβ) = 0. By
Definition 3.2, this means the minimum value of the cost function is zero. Let P ∗ be an optimal
transport plan that solves the minimization problem. Then,

Wp(Pα,Pβ) = ⟨D,P ∗⟩ =
n∑

i=1

m∑
j=1

P ∗
i,j ∥αi − βj∥pp = 0. (13)

From the constraints, we know the elements of the transport plan are non-negative, P ∗
i,j ≥ 0. The

distance term is also non-negative, ∥αi − βj∥pp ≥ 0. Since the total sum of these non-negative terms
is zero, each individual term in the summation must be zero:

P ∗
i,j ∥αi − βj∥pp = 0, ∀i = 1, ...,n, j = 1, ...,m. (14)

This condition implies that if any mass is moved from a point αi to a point βj (i.e., P ∗
i,j > 0), then

the distance between these points must be zero (i.e., ∥αi − βj∥pp = 0), which means αi = βj . In
other words, the optimal plan only transports mass between identical points.

Let’s consider the total probability mass assigned to an arbitrary value z that exists in the support
of either distribution. The total mass at z, i.e., probability density, for distribution Pα is Pα(z) =∑

i:αi=z ai. Using the constraints from Π(Pα,Pβ) in Equation 3, we can express this as:

Pα(z) =
∑

i:αi=z

ai =
∑

i:αi=z

 m∑
j=1

P ∗
i,j

 . (15)

As established, P ∗
i,j can only be non-zero if βj = αi. Therefore, for the outer sum where αi = z, the

inner sum over j is non-zero only for those indices j where βj = z. Thus, we can write:

Pα(z) =
∑

i:αi=z

∑
j:βj=z

P ∗
i,j . (16)

Similarly, the mass at z for distribution Pβ is Pβ(z) =
∑

j:βj=z bj . Using the other set of constraints
from Π(Pα,Pβ):

Pβ(z) =
∑

j:βj=z

bj =
∑

j:βj=z

(
n∑

i=1

P ∗
i,j

)
. (17)

Again, since P ∗
i,j is non-zero only if αi = βj , for the terms in the outer sum where βj = z, the inner

sum over i is non-zero only for those indices i where αi = z. This gives:

Pβ(z) =
∑

j:βj=z

∑
i:αi=z

P ∗
i,j . (18)

By comparing the resulting expressions for Pα(z) and Pβ(z), we find they are identical:

Pα(z) = Pβ(z). (19)

Since this equality holds for any value z, the probability mass functions of Pα and Pβ are identical,
which implies Pα = Pβ

5. Applying this result to our conditional distributions, Wp(PY |X ,PŶ |X) = 0

implies PY |X = PŶ |X for almost every X . This completes the proof.
5A discrete probability is completely characterized by two components: its support and its probability mass

function.
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Lemma A.4 (Lemma 3.5 in the main text). Suppose PX,Y and PX,Ŷ obey Gaussian distributions
N (µX,Y ,ΣX,Y ) and N (µX,Ŷ ,ΣX,Ŷ ), respectively. The squared W2 discrepancy can be calculated
as the Bures-Wasserstein discrepancy:

BW(µX,Y , µX,Ŷ ,ΣX,Y ,ΣX,Ŷ ) =
∥∥∥µX,Y − µX,Ŷ

∥∥∥2
2
+ B(ΣX,Y ,ΣX,Ŷ ), (20)

where B(ΣX,Y ,ΣX,Ŷ ) = Tr

(
ΣX,Y +ΣX,Ŷ − 2

√
Σ

1/2
X,Y ΣX,Ŷ Σ

1/2
X,Y

)
, Tr(·) denotes matrix trace.

Proof. The proof can be found in Remark 2.31 of Peyré and Cuturi (2019).

Additional notes on the Gaussian assumption. Lemma 3.5 presents the BW discrepancy under
the Gaussian assumption, yielding a tractable and efficient form. However, the Bures-Wasserstein
discrepancy measures differences only in the first- and second-order moments—i.e., the mean
and covariance. While these two moments fully characterize Gaussian distributions, real-world
datasets do not necessarily adhere to Gaussianity, additionally requiring higher-order moments for
complete characterization. Nonetheless, the mean and covariance remain essential descriptors for any
distribution. As a result, in cases where data deviate from strict Gaussianity, BW remains a valuable
tool for distribution alignment by matching these fundamental moments.

B OVERVIEW OF DISCRETE OPTIMAL TRANSPORT AND WASSERSTEIN
DISCREPANCY

This section outlines the foundational concepts of optimal transport (OT) and the Wasserstein
discrepancy. Our analysis is specifically confined to discrete probability measures, as the broader
theory involving general measures is beyond the scope of this work. For a comprehensive treatment
of the continuous case, readers are directed to the seminal works by Peyré and Cuturi (2019).

The classical framing of OT, known as the Monge problem, can be illustrated with a simple scenario:
transporting goods from n warehouses to m factories (Peyré and Cuturi, 2019). Let the i-th warehouse
hold ai units of material and the j-th factory require bj units. The objective is to find a transport map
that moves all material from the warehouses to satisfy the factories’ demands. This problem is subject
to several constraints: the entire stock from each warehouse must be shipped, all factory demands
must be met, and the mapping must be deterministic (i.e., each warehouse ships its entire stock to a
single factory). The optimal map is the one that minimizes the total cost, which is aggregated from
the cost of moving a unit of material from a given warehouse to a factory.
Definition B.1 (Monge Problem for Discrete Measures). Let α =

∑n
i=1 aiδxi and β =

∑m
j=1 bjδyj

be two discrete probability measures. The Monge problem seeks a transport map T : {xi}ni=1 →
{yj}mj=1 that pushes the mass of α forward to match β, denoted by T♯α = β. This condition implies
that for each j, the total mass received, bj , must equal the sum of the masses sent from all locations
mapped to it: bj =

∑
i:T(xi)=yj

ai. The objective is to find the map T that minimizes the total
transportation cost:

min
T:T♯α=β

{
n∑

i=1

c(xi,T(xi))ai

}
. (21)

While intuitive, the Monge formulation is restrictive; a solution is not guaranteed to exist, particularly
when mass splitting is required (e.g., one warehouse supplying multiple factories). To address this
limitation, Kantorovich (2006) introduced a relaxed formulation. Instead of a deterministic map,
Kantorovich’s approach seeks a probabilistic coupling or ”transport plan” that allows mass from a
single source to be distributed among multiple destinations. This reframes the problem within the
versatile framework of linear programming. When the measures are probability distributions (i.e.,∑

ai =
∑

bj = 1), the resulting optimal cost defines a distance metric.
Definition B.2 (Kantorovich Problem). Let α =

∑n
i=1 aiδxi

and β =
∑m

j=1 bjδyj
be two discrete

probability distributions supported on samples {xi}ni=1 and {yj}mj=1, respectively. The optimal
transport problem is to find a transport plan π ∈ Rn×m

+ that minimizes the total cost:

Wc(α, β) := min
π∈Π(a,b)

⟨C,π⟩F , (22)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Dataset description.

Dataset D Forecast length Train / validation / test Frequency Domain

ETTh1 7 96, 192, 336, 720 8545/2881/2881 Hourly Health

ETTh2 7 96, 192, 336, 720 8545/2881/2881 Hourly Health

ETTm1 7 96, 192, 336, 720 34465/11521/11521 15min Health

ETTm2 7 96, 192, 336, 720 34465/11521/11521 15min Health

Weather 21 96, 192, 336, 720 36792/5271/10540 10min Weather

ECL 321 96, 192, 336, 720 18317/2633/5261 Hourly Electricity

Traffic 862 96, 192, 336, 720 12185/1757/3509 Hourly Transportation

PEMS03 358 12, 24, 36, 48 15617/5135/5135 5min Transportation

PEMS08 170 12, 24, 36, 48 10690/3548/265 5min Transportation
Note: D denotes the number of variates. Frequency denotes the sampling interval of time points. Train, Validation, Test denotes the number
of samples employed in each split. The taxonomy aligns with (Wu et al., 2023).

where ⟨·, ·⟩F is the Frobenius dot product. The cost matrix C ∈ Rn×m
+ contains the pairwise costs,

e.g., Cij = c(xi,yj). The set of feasible transport plans, Π(a, b), is defined by the constraints that
preserve the total mass of the source and target measures:

Π(a, b) :=
{
π ∈ Rn×m

+ | π1m = a,π⊤1n = b
}
. (23)

Here, a and b are the weight vectors for the measures α and β. If the cost is a metric distance
raised to a power p, c(x,y) = ∥x− y∥p, the p-th root of the optimal cost defines the p-Wasserstein
discrepancy, Wp(α, β).

Contemporary research in discrete optimal transport primarily progresses along two paths. The first
focuses on computational efficiency. Exact solutions via linear programming are often infeasible
for large-scale problems due to their high computational complexity, typically O(n3 log n) where
n is the number of support points (Bonneel et al., 2011). This has motivated the development of
faster, approximate methods, such as entropic regularization (leading to the Sinkhorn algorithm)
with nearly quadratic complexity (Altschuler et al., 2017) and sliced OT, which reduces the problem
to one-dimensional computations and achieves near-linear complexity. The second path involves
adapting the OT framework to address specific challenges across various domains, such as domain
adaptation (Chizat et al., 2018), causal inference (Wang et al., 2025a; 2023a), generative modeling
(Marino and Gerolin, 2020; Chen et al., 2024), missing data imputation (Wang et al., 2025e;c), graph
comparison (Xu et al., 2019) and recommendation system (Wang et al., 2025d).

C REPRODUCTION DETAILS

C.1 DATASET DESCRIPTIONS

Our empirical evaluation is conducted on a diverse collection of widely-used time series forecasting
benchmarks. Each dataset presents distinct characteristics in terms of dimensionality and temporal
resolution. A summary is provided in Table 7.

• ETT (Li et al., 2021): Contains seven metrics related to electricity transformers, recorded from
July 2016 to July 2018. It is divided into four subsets based on sampling frequency: ETTh1 and
ETTh2 (hourly), and ETTm1 and ETTm2 (every 15 minutes).

• Weather (Wu et al., 2021): Comprises 21 meteorological variables from the Max Planck Biogeo-
chemistry Institute’s weather station, captured every 10 minutes throughout 2020.

• ECL (Wu et al., 2021): Features the hourly electricity consumption of 321 clients.
• Traffic (Wu et al., 2021): Documents the hourly occupancy rates of 862 sensors on San Francisco

Bay Area freeways, spanning from 2015 to 2016.
• PEMS (Liu et al., 2022): Consists of public traffic data from the California highway system,

aggregated in 5-minute intervals. We utilize two common subsets, PEMS03 and PEMS08.
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Following established protocols (Qiu et al., 2024; Liu et al., 2024), all datasets are chronologically
partitioned into training, validation, and test sets. For the ETT, Weather, ECL, and Traffic datasets, we
use a fixed historical sequence length of 96 and evaluate performance across four prediction horizons
with lengths of 96, 192, 336, and 720. For the PEMS datasets, we also use an historical length of 96
but evaluate on shorter prediction horizons of 12, 24, 36, and 48 steps. During the final evaluation
on the test set, we ensure that no data is discarded from the last batch: a technique referred to as the
dropping-last trick is disabled throughout our experiments.

C.2 IMPLEMENTATION DETAILS OF MODEL TRAINING

To establish a fair comparison, we reproduced all baseline models using their official, publicly
available implementations, primarily sourcing from the iTransformer (Liu et al., 2024) and Fred-
former (Piao et al., 2024) repositories. The reproducibility of these baseline results was verified prior
to our experiments. All models were trained to minimize the MSE loss function using the Adam
optimizer (Kingma and Ba, 2015). The learning rate for each baseline was selected from the set
{10−3, 5× 10−4, 10−4, 5× 10−5} based on the best performance on the validation set. To prevent
overfitting, we employed an early stopping mechanism that terminates training if the validation loss
fails to improve for three consecutive epochs.

When integrating our proposed distributional discrepancy component, DistDF, with an existing
forecasting model, we maintain the original model’s optimized hyperparameters as reported in their
respective benchmarks (Liu et al., 2024; Piao et al., 2024). Our tuning is therefore focused and
conservative, limited to two key parameters: the learning rate and the weight of the discrepancy term,
α ∈ (0, 1]. Adjusting the learning rate is necessary as the distributional discrepancy term has varying
overall magnitude and gradient dynamics on different datasets. The tuning is driven by selecting the
combination that yields the lowest MSE on the validation set.

C.3 IMPLEMENTATION DETAILS OF CONDITIONAL CORRELATION COMPUTATION

A key challenge in analyzing time series is to accurately quantify the autocorrelation structure within
the label sequence without the confounding influence of the historical sequence Wang et al. (2025b);
Li et al. (2024b). Standard metrics like the Pearson correlation are insufficient for this task, as they
cannot disentangle the dependencies among future time steps from their shared dependence on the
past Li et al. (2024a;c).

To address this, we employ the partial correlation coefficient to measure the conditional autocorre-
lation. This allows us to assess the relationship between any two time steps in the label sequence
while controlling for the linear effects of the entire historical sequence. Our implementation is based
on the standard procedure for computing partial correlation, which is also implemented in statistical
software like MATLAB’s ‘partialcorr‘ function.6

The procedure can be described as follows. Let X be the historical sequence (the control variables)
and Y be the label sequence. To compute the partial correlation between two time steps, Yt and Yt′ ,
conditioned on X , we follow a two-stage regression process. We first isolate the variance in Yt and
Yt′ that cannot be explained by X . This is achieved by training two separate linear regression models
using ordinary least squares (OLS). The residuals from these models, ϵt and ϵt′ , represent the parts of
Yt and Yt′ that are linearly independent of X . The partial correlation between Yt and Yt′ , conditioned
on X , is then calculated as the standard Pearson correlation between their respective residuals. This
process effectively measures the linear relationship between Yt and Yt′ after accounting for the
influence of the historical context X .

D MORE EXPERIMENTAL RESULTS

D.1 OVERALL PERFORMANCE

Additional experimental results of overall performance are available in Table 8, where the performance
given different T is reported.

6Implementation is available at https://www.mathworks.com/help/stats/partialcorr.
html
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Table 8: Full results on the multi-step forecasting task. The length of history window is set to 96 for
all baselines. Avg indicates the results averaged over forecasting lengths: T=96, 192, 336 and 720.

Models
DistDF TimeBridge Fredformer iTransformer FreTS TimesNet MICN TiDE PatchTST DLinear
(Ours) (2025) (2024) (2024) (2023) (2023) (2023) (2023) (2023) (2023)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.316 0.357 0.323 0.361 0.326 0.361 0.338 0.372 0.342 0.375 0.368 0.394 0.319 0.366 0.353 0.374 0.325 0.364 0.346 0.373
192 0.358 0.380 0.366 0.385 0.365 0.382 0.382 0.396 0.385 0.400 0.406 0.409 0.364 0.395 0.391 0.393 0.363 0.383 0.380 0.390
336 0.392 0.404 0.398 0.408 0.396 0.404 0.427 0.424 0.416 0.421 0.454 0.444 0.395 0.425 0.423 0.414 0.404 0.413 0.413 0.414
720 0.448 0.437 0.461 0.445 0.459 0.444 0.496 0.463 0.513 0.489 0.527 0.474 0.505 0.499 0.486 0.448 0.463 0.442 0.472 0.450

Avg 0.378 0.394 0.387 0.400 0.387 0.398 0.411 0.414 0.414 0.421 0.438 0.430 0.396 0.421 0.413 0.407 0.389 0.400 0.403 0.407

E
T

T
m

2

96 0.174 0.256 0.177 0.259 0.177 0.260 0.182 0.265 0.188 0.279 0.184 0.262 0.178 0.277 0.182 0.265 0.180 0.266 0.188 0.283
192 0.239 0.298 0.243 0.303 0.242 0.300 0.257 0.315 0.264 0.329 0.257 0.308 0.266 0.343 0.247 0.304 0.285 0.339 0.280 0.356
336 0.300 0.338 0.303 0.343 0.302 0.340 0.320 0.354 0.322 0.369 0.315 0.345 0.299 0.354 0.307 0.343 0.309 0.347 0.375 0.420
720 0.397 0.394 0.401 0.399 0.399 0.397 0.423 0.411 0.489 0.482 0.452 0.421 0.489 0.482 0.408 0.398 0.437 0.422 0.526 0.508

Avg 0.277 0.321 0.281 0.326 0.280 0.324 0.295 0.336 0.316 0.365 0.302 0.334 0.308 0.364 0.286 0.328 0.303 0.344 0.342 0.392

E
T

T
h1

96 0.373 0.393 0.373 0.395 0.377 0.396 0.385 0.405 0.398 0.409 0.399 0.418 0.381 0.416 0.387 0.395 0.381 0.400 0.389 0.404
192 0.428 0.425 0.428 0.426 0.437 0.425 0.440 0.437 0.451 0.442 0.452 0.451 0.497 0.489 0.439 0.425 0.450 0.443 0.442 0.440
336 0.466 0.445 0.471 0.451 0.486 0.449 0.480 0.457 0.501 0.472 0.488 0.469 0.589 0.555 0.482 0.447 0.501 0.470 0.488 0.467
720 0.453 0.453 0.495 0.487 0.488 0.467 0.504 0.492 0.608 0.571 0.549 0.515 0.665 0.617 0.484 0.471 0.504 0.492 0.505 0.502

Avg 0.430 0.429 0.442 0.440 0.447 0.434 0.452 0.448 0.489 0.474 0.472 0.463 0.533 0.519 0.448 0.435 0.459 0.451 0.456 0.453

E
T

T
h2

96 0.287 0.336 0.294 0.344 0.293 0.344 0.301 0.349 0.315 0.374 0.321 0.358 0.351 0.398 0.291 0.340 0.299 0.349 0.330 0.383
192 0.358 0.381 0.371 0.394 0.372 0.391 0.383 0.397 0.466 0.467 0.418 0.417 0.492 0.489 0.376 0.392 0.383 0.404 0.439 0.450
336 0.408 0.421 0.421 0.429 0.420 0.433 0.425 0.432 0.522 0.502 0.464 0.454 0.656 0.582 0.417 0.427 0.439 0.444 0.589 0.538
720 0.416 0.435 0.423 0.443 0.421 0.439 0.436 0.448 0.792 0.643 0.434 0.450 0.981 0.718 0.429 0.446 0.438 0.455 0.757 0.626

Avg 0.367 0.393 0.377 0.403 0.377 0.402 0.386 0.407 0.524 0.496 0.409 0.420 0.620 0.546 0.378 0.401 0.390 0.413 0.529 0.499

E
C

L

96 0.137 0.235 0.142 0.239 0.161 0.258 0.150 0.242 0.180 0.266 0.170 0.272 0.170 0.281 0.197 0.274 0.170 0.264 0.197 0.282
192 0.159 0.257 0.161 0.257 0.174 0.269 0.168 0.259 0.184 0.272 0.183 0.282 0.185 0.297 0.197 0.277 0.179 0.273 0.197 0.286
336 0.178 0.272 0.182 0.278 0.194 0.290 0.182 0.274 0.199 0.290 0.203 0.302 0.190 0.298 0.212 0.292 0.195 0.288 0.209 0.301
720 0.212 0.302 0.217 0.309 0.235 0.319 0.214 0.304 0.234 0.322 0.294 0.366 0.221 0.329 0.254 0.325 0.234 0.320 0.245 0.334

Avg 0.172 0.267 0.176 0.271 0.191 0.284 0.179 0.270 0.199 0.288 0.212 0.306 0.192 0.302 0.215 0.292 0.195 0.286 0.212 0.301

Tr
af

fic

96 0.380 0.262 0.391 0.268 0.461 0.327 0.397 0.271 0.531 0.323 0.590 0.316 0.498 0.298 0.646 0.386 0.444 0.284 0.649 0.397
192 0.407 0.275 0.418 0.276 0.470 0.326 0.416 0.279 0.519 0.321 0.624 0.336 0.521 0.309 0.599 0.362 0.454 0.291 0.598 0.371
336 0.429 0.284 0.432 0.284 0.492 0.338 0.429 0.286 0.529 0.327 0.641 0.345 0.529 0.314 0.606 0.363 0.469 0.298 0.605 0.373
720 0.452 0.297 0.464 0.301 0.521 0.353 0.462 0.303 0.573 0.346 0.670 0.356 0.567 0.326 0.643 0.383 0.506 0.319 0.646 0.395

Avg 0.417 0.279 0.426 0.282 0.486 0.336 0.426 0.285 0.538 0.330 0.631 0.338 0.529 0.312 0.624 0.373 0.468 0.298 0.625 0.384

W
ea

th
er

96 0.164 0.209 0.168 0.211 0.180 0.220 0.171 0.210 0.174 0.228 0.183 0.229 0.179 0.244 0.192 0.232 0.189 0.230 0.194 0.253
192 0.212 0.252 0.214 0.254 0.222 0.258 0.246 0.278 0.213 0.266 0.242 0.276 0.242 0.310 0.240 0.270 0.228 0.262 0.238 0.296
336 0.270 0.295 0.273 0.297 0.283 0.301 0.296 0.313 0.270 0.316 0.293 0.312 0.273 0.330 0.292 0.307 0.288 0.305 0.282 0.332
720 0.348 0.345 0.353 0.347 0.358 0.348 0.362 0.353 0.337 0.362 0.366 0.361 0.360 0.399 0.364 0.353 0.362 0.354 0.347 0.385

Avg 0.248 0.275 0.252 0.277 0.261 0.282 0.269 0.289 0.249 0.293 0.271 0.295 0.264 0.321 0.272 0.291 0.267 0.288 0.265 0.317

PE
M

S0
3

12 0.068 0.174 0.070 0.176 0.081 0.191 0.072 0.179 0.085 0.198 0.094 0.201 0.096 0.217 0.117 0.226 0.092 0.210 0.105 0.220
24 0.094 0.205 0.099 0.211 0.121 0.240 0.104 0.217 0.129 0.244 0.116 0.221 0.095 0.210 0.233 0.322 0.144 0.263 0.183 0.297
36 0.116 0.229 0.126 0.240 0.180 0.292 0.137 0.251 0.173 0.286 0.134 0.237 0.107 0.223 0.379 0.418 0.200 0.309 0.258 0.361
48 0.138 0.252 0.153 0.267 0.201 0.316 0.174 0.285 0.207 0.315 0.161 0.262 0.125 0.242 0.535 0.516 0.245 0.344 0.319 0.410

Avg 0.104 0.215 0.112 0.223 0.146 0.260 0.122 0.233 0.149 0.261 0.126 0.230 0.106 0.223 0.316 0.370 0.170 0.282 0.216 0.322

PE
M

S0
8

12 0.076 0.177 0.080 0.184 0.091 0.199 0.084 0.187 0.096 0.205 0.111 0.208 0.161 0.274 0.121 0.233 0.106 0.223 0.113 0.225
24 0.107 0.210 0.119 0.224 0.138 0.245 0.123 0.227 0.151 0.258 0.139 0.232 0.127 0.237 0.232 0.325 0.162 0.275 0.199 0.302
36 0.139 0.240 0.159 0.259 0.199 0.303 0.170 0.268 0.203 0.303 0.168 0.260 0.148 0.252 0.376 0.427 0.234 0.331 0.295 0.371
48 0.171 0.265 0.198 0.289 0.255 0.338 0.218 0.306 0.247 0.334 0.189 0.272 0.175 0.270 0.543 0.527 0.301 0.382 0.389 0.429

Avg 0.123 0.223 0.139 0.239 0.171 0.271 0.149 0.247 0.174 0.275 0.152 0.243 0.153 0.258 0.318 0.378 0.201 0.303 0.249 0.332

1st Count 40 41 1 1 0 0 0 0 1 0 0 0 3 2 0 1 0 0 0 0

D.2 SHOWCASE

Additional experimental results of showcases are available in Fig. 4 and Fig. 5, where two datasets
and two forecast models are involved.

D.3 COMPARISON WITH DIFFERENT LEARNING OBJECTIVES

Additional experimental results of learning objective comparison are available in Table 9, where two
forecast models are evaluated across different T values.
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(f) Snapshot 3 with Fredformer

Figure 4: The forecast sequences generated with DF and DistDF. The forecast length is set to 336
and the experiment is conducted on ETTm2.
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Figure 5: The forecast sequences generated with DF and DistDF. The forecast length is set to 192
and the experiment is conducted on ECL.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 9: Comparative results with different learning objectives.

Loss DistDF Time-o1 FreDF Koopman Dilate Soft-DTW DF

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Forecast model: TimeBridge

E
T

T
m

1

96 0.319 0.358 0.318 0.356 0.325 0.361 0.572 0.493 0.321 0.360 0.321 0.359 0.323 0.361
192 0.363 0.383 0.363 0.382 0.373 0.385 0.410 0.407 0.366 0.386 0.368 0.385 0.366 0.385
336 0.394 0.405 0.396 0.407 0.398 0.406 0.397 0.408 0.397 0.409 0.405 0.410 0.398 0.408
720 0.455 0.442 0.456 0.443 0.450 0.438 0.460 0.445 0.462 0.447 0.486 0.453 0.461 0.445

Avg 0.383 0.397 0.383 0.397 0.386 0.398 0.460 0.438 0.387 0.400 0.395 0.402 0.387 0.400

E
T

T
h1

96 0.372 0.392 0.372 0.391 0.373 0.391 0.376 0.397 0.376 0.396 0.376 0.395 0.373 0.395
192 0.424 0.429 0.422 0.423 0.425 0.421 0.426 0.430 0.430 0.433 0.425 0.427 0.428 0.426
336 0.467 0.450 0.468 0.450 0.467 0.442 0.483 0.461 0.498 0.469 0.481 0.458 0.471 0.451
720 0.472 0.471 0.495 0.488 0.493 0.490 0.551 0.509 0.552 0.509 0.529 0.499 0.495 0.487

Avg 0.434 0.436 0.439 0.438 0.439 0.436 0.459 0.449 0.464 0.452 0.452 0.445 0.442 0.440

E
C

L

96 0.137 0.235 0.148 0.240 0.137 0.232 0.170 0.266 0.142 0.240 0.139 0.235 0.142 0.239
192 0.159 0.257 0.156 0.251 0.159 0.254 0.161 0.258 0.160 0.257 0.160 0.257 0.161 0.257
336 0.178 0.272 0.177 0.273 0.179 0.273 0.182 0.277 0.182 0.277 0.178 0.274 0.182 0.278
720 0.212 0.302 0.220 0.308 0.224 0.310 0.217 0.308 0.218 0.309 0.215 0.305 0.217 0.309

Avg 0.172 0.267 0.175 0.268 0.175 0.267 0.182 0.277 0.176 0.271 0.173 0.268 0.176 0.271

W
ea

th
er

96 0.164 0.209 0.166 0.209 0.174 0.213 0.215 0.261 0.168 0.211 0.169 0.209 0.168 0.211
192 0.212 0.252 0.212 0.252 0.223 0.255 0.239 0.271 0.214 0.254 0.215 0.251 0.214 0.254
336 0.270 0.295 0.270 0.294 0.271 0.292 0.271 0.295 0.273 0.297 0.275 0.296 0.273 0.297
720 0.348 0.345 0.352 0.347 0.350 0.346 0.350 0.345 0.353 0.347 0.379 0.364 0.353 0.347

Avg 0.248 0.275 0.250 0.275 0.254 0.276 0.269 0.293 0.252 0.277 0.260 0.280 0.252 0.277
Forecast model: FredFormer

E
T

T
m

1

96 0.316 0.357 0.321 0.357 0.326 0.355 0.335 0.368 0.337 0.367 0.332 0.363 0.326 0.361
192 0.358 0.380 0.360 0.378 0.363 0.380 0.366 0.384 0.364 0.384 0.370 0.386 0.365 0.382
336 0.392 0.404 0.389 0.400 0.392 0.400 0.399 0.408 0.397 0.406 0.406 0.409 0.396 0.404
720 0.448 0.437 0.447 0.435 0.455 0.440 0.456 0.441 0.457 0.443 0.478 0.450 0.459 0.444

Avg 0.378 0.394 0.379 0.393 0.384 0.394 0.389 0.400 0.389 0.400 0.397 0.402 0.387 0.398

E
T

T
h1

96 0.373 0.393 0.368 0.391 0.370 0.392 0.375 0.397 0.378 0.399 0.376 0.398 0.377 0.396
192 0.428 0.425 0.424 0.422 0.436 0.437 0.438 0.434 0.439 0.435 0.439 0.435 0.437 0.425
336 0.466 0.445 0.467 0.441 0.473 0.443 0.473 0.455 0.481 0.453 0.484 0.455 0.486 0.449
720 0.453 0.453 0.465 0.463 0.474 0.466 0.523 0.487 0.516 0.482 0.542 0.510 0.488 0.467

Avg 0.430 0.429 0.431 0.429 0.438 0.434 0.452 0.443 0.453 0.442 0.460 0.449 0.447 0.434

E
C

L

96 0.145 0.238 0.151 0.245 0.152 0.247 0.166 0.263 0.158 0.253 0.168 0.266 0.161 0.258
192 0.162 0.255 0.166 0.256 0.166 0.257 0.174 0.267 0.170 0.263 0.218 0.313 0.174 0.269
336 0.176 0.270 0.181 0.274 0.183 0.278 0.188 0.280 0.190 0.286 0.197 0.291 0.194 0.290
720 0.211 0.300 0.213 0.304 0.216 0.304 0.232 0.318 0.229 0.316 0.240 0.322 0.235 0.319

Avg 0.173 0.266 0.178 0.270 0.179 0.272 0.190 0.282 0.187 0.280 0.206 0.298 0.191 0.284

W
ea

th
er

96 0.172 0.212 0.171 0.208 0.174 0.213 0.174 0.214 0.173 0.214 0.173 0.213 0.180 0.220
192 0.218 0.255 0.219 0.253 0.219 0.254 0.220 0.256 0.225 0.260 0.220 0.255 0.222 0.258
336 0.277 0.297 0.277 0.295 0.278 0.296 0.280 0.298 0.280 0.299 0.281 0.296 0.283 0.301
720 0.352 0.347 0.353 0.346 0.354 0.347 0.354 0.347 0.355 0.348 0.369 0.355 0.358 0.348

Avg 0.255 0.277 0.255 0.276 0.256 0.277 0.257 0.279 0.258 0.280 0.261 0.280 0.261 0.282
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Figure 6: Performance of different forecast models with and without DistDF. The forecast errors are
averaged over forecast lengths and the error bars represent 50% confidence intervals.

Table 10: Varying input sequence length results on the Weather dataset.

Models DistDF TimeBridge DistDF PatchTST

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

H
is

to
ri

ca
ls

eq
ue

nc
e

le
ng

th

96

96 0.164 0.209 0.168 0.211 0.179 0.220 0.189 0.230
192 0.212 0.252 0.214 0.254 0.222 0.257 0.228 0.262
336 0.270 0.295 0.273 0.297 0.278 0.298 0.288 0.305
720 0.348 0.345 0.353 0.347 0.354 0.348 0.362 0.354

Avg 0.248 0.275 0.252 0.277 0.258 0.281 0.267 0.288

192

96 0.160 0.207 0.163 0.210 0.157 0.203 0.163 0.209
192 0.202 0.244 0.205 0.248 0.202 0.244 0.207 0.249
336 0.260 0.290 0.259 0.288 0.258 0.285 0.268 0.293
720 0.335 0.342 0.338 0.344 0.335 0.338 0.511 0.451

Avg 0.239 0.271 0.241 0.273 0.238 0.267 0.287 0.301

336

96 0.155 0.206 0.156 0.206 0.153 0.204 0.158 0.208
192 0.198 0.244 0.199 0.245 0.200 0.249 0.235 0.291
336 0.245 0.283 0.259 0.294 0.250 0.285 0.252 0.287
720 0.325 0.337 0.323 0.335 0.323 0.337 0.326 0.336

Avg 0.231 0.267 0.234 0.270 0.232 0.269 0.243 0.280

720

96 0.147 0.198 0.148 0.201 0.149 0.204 0.153 0.205
192 0.197 0.247 0.203 0.253 0.196 0.247 0.205 0.254
336 0.240 0.279 0.239 0.278 0.247 0.291 0.248 0.288
720 0.319 0.339 0.329 0.346 0.313 0.333 0.317 0.339

Avg 0.226 0.266 0.230 0.269 0.226 0.269 0.231 0.272

D.4 GENERALIZATION STUDIES

Additional experimental results of varying forecast models are available in Fig. 6, where four forecast
models are involved on four datasets.

D.5 CASE STUDY WITH PATCHTST OF VARYING HISTORICAL LENGTHS

Additional experimental results of varying historical lengths are available in Table 10, complementing
the fixed length of 96 used in the main text. The forecast models selected include TimeBridge (Liu
et al., 2025) which is the recent state-of-the-art forecast model, and PatchTST (Nie et al., 2023)
which is known to require large historical lengths. The results demonstrate that DistDF consistently
improves both forecast models across different historical sequence lengths.
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Table 11: Experimental results (mean±std) with varying seeds (2021-2025).

Dataset ECL Weather

Models DistDF DF DistDF DF

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

96 0.138±0.001 0.236±0.001 0.141±0.001 0.239±0.001 0.167±0.003 0.209±0.001 0.169±0.001 0.212±0.001

192 0.159±0.001 0.257±0.001 0.161±0.000 0.258±0.001 0.213±0.001 0.253±0.001 0.215±0.001 0.254±0.001

336 0.179±0.001 0.272±0.001 0.183±0.002 0.279±0.002 0.271±0.002 0.296±0.002 0.272±0.001 0.296±0.001

720 0.210±0.001 0.301±0.001 0.221±0.005 0.311±0.004 0.349±0.002 0.347±0.002 0.352±0.002 0.348±0.001

Avg 0.172±0.000 0.266±0.001 0.177±0.002 0.272±0.001 0.250±0.001 0.276±0.001 0.252±0.001 0.277±0.000
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(a) Running time in the forward phase.
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(b) Running time in the backward phase.

Figure 7: Running time (ms) with varying forecast horizons.

D.6 RANDOM SEED SENSITIVITY

Additional experimental results of random seed sensitivity are available in Table 11, where we report
the mean and standard deviation of results obtained from experiments conducted with five different
random seeds (2021, 2022, 2023, 2024, and 2025). The results indicate minimal sensitivity of the
proposed method to random initialization, as most averaged standard deviations remain below 0.005.

D.7 COMPLEXITY

Additional experimental results of the running time of DistDF are available in Fig. 7. The batch
size and dimension are set to 128 and 21, respectively. As the forecast horizon T increases, the
running time for both forward and backward passes generally rises, with some fluctuations. This
trend is expected, since T affects the size of the matrices involved in computing the joint-distribution
Wasserstein discrepancy in (5). Nevertheless, the running time remains below 1 ms even when T
increased to 1024. Furthermore, DistDF’s additional computations occur exclusively during training
and are completely isolated from the inference stage.

As a result, DistDF introduces no additional complexity to model inference, and the extra computa-
tional cost during training is negligible.

D.8 JOINT-DISTRIBUTION DISCREPANCY IN VARYING SETTINGS

Additional experimental results of joint distribution discrepancy are available for different learning
objectives in Table 12 and α values in Table 13 and Table 14, as a supplement to Table 2, Table 5 and
Table 6. The joint distribution discrepancy, denoted as Disc, is evaluated on the test set to compare
the discrepancy between (X,Y ) and (X, Ŷ ).

D.9 UTILITY TO IMPROVE RECENT FORECASTING MODELS

Additional experimental results demonstrating utility for improving recent forecast architectures
are available in Table 15. We select TQNet (Lin et al., 2025), TimeBridge (Liu et al., 2025), and
FredFormer (Piao et al., 2024) as testbeds due to their recency and competitive performance.
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Table 12: Joint-distribution discrepancy of different objectives for time-series forecasting.

Loss DistDF Time-o1 FreDF Koopman Dilate LDTW Soft-DTW DTW DF

Ti
m

eB
ri

dg
e ETTm1 0.230 0.231 0.231 0.271 0.231 0.231 0.238 0.237 0.232

ETTh1 0.326 0.331 0.330 0.350 0.352 0.352 0.340 0.344 0.332
ECL 0.129 0.135 0.137 0.139 0.136 0.139 0.133 0.140 0.136
Weather 0.147 0.148 0.149 0.157 0.148 0.148 0.153 0.150 0.148

Fr
ed

fo
rm

er ETTm1 0.227 0.228 0.231 0.232 0.233 0.233 0.240 0.239 0.232
ETTh1 0.324 0.325 0.333 0.349 0.349 0.350 0.356 0.355 0.342
ECL 0.130 0.133 0.134 0.142 0.140 0.144 0.153 0.151 0.143
Weather 0.148 0.148 0.149 0.150 0.150 0.152 0.152 0.152 0.152

Note: Bold and underlined denote best and second-best Disc results, respectively. The reported results are averaged over forecast horizons: T=96, 192, 336,
and 720. When metric values coincide up to three decimal places, Bold indicates the numerically superior result based on full precision.

Table 13: Varying α results where Timebridge acts as the forecasting model.

α
ETTh2 ECL Weather

MSE MAE Disc MSE MAE Disc MSE MAE Disc

0 0.377 0.403 0.292 0.176 0.271 0.136 0.252 0.277 0.148
0.001 0.378 0.402 0.292 0.172 0.267 0.130 0.250 0.276 0.148
0.002 0.377 0.402 0.291 0.173 0.267 0.130 0.250 0.276 0.148
0.005 0.376 0.401 0.291 0.172 0.267 0.130 0.250 0.276 0.148
0.01 0.376 0.400 0.291 0.172 0.267 0.130 0.249 0.276 0.146
0.02 0.376 0.400 0.291 0.174 0.269 0.133 0.249 0.276 0.147
0.05 0.375 0.399 0.290 0.174 0.268 0.132 0.251 0.278 0.147
0.1 0.375 0.399 0.291 0.174 0.269 0.132 0.254 0.280 0.148
0.2 0.376 0.399 0.291 0.177 0.270 0.134 0.254 0.280 0.148
0.5 0.378 0.400 0.294 0.186 0.277 0.140 0.256 0.281 0.149
1 0.381 0.402 0.296 0.197 0.282 0.147 0.260 0.283 0.150

Note: Bold and underlined denote the best and second-best results. When metric values coincide up to three decimal places, Bold indicates the numerically
superior result based on full precision.

D.10 CONVERGENCE ANALYSIS

Additional experimental results on the convergence of the BW discrepancy are available in Fig. 8. The
BW objective consistently exhibits a monotonic decrease throughout the training process and reaches
a plateau after several epochs, thereby empirically validating the convergence of its optimization. In
addition, we examine the evolution of MAE and MSE on the validation set. A significant positive
correlation is observed between the dynamics of the BW loss and both forecasting metrics (MAE and
MSE). It implies that minimizing the BW discrepancy effectively improves these forecasting metrics.

D.11 AUTOREGRESSION-BASED FORECASTING PERFORMANCE

Additional experimental results under the autoregression-based forecasting are available in Table 16.

D.12 PROBABILISTIC FORECASTING PERFORMANCE

Additional experimental results under the probabilistic forecasting setting are available in Table 17,
where we select D3U (Li et al., 2025b), the state-of-the-art probabilistic forecasting framework as the
testbed.

D.13 MULTI-SCALE FORECASTING PERFORMANCE

Additional experimental results under the multi-scale forecasting setting are available in Table 18,
where we select TimeMixer (Wang et al., 2024) and SCINet (Liu et al., 2022) as the testbeds.

E STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the conference guidelines, we disclose our use of Large Language Models (LLMs)
in the preparation of this paper as follows:
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Table 14: Varying α results where Fredformer acts as the forecasting model.

α
ETTh2 ECL Weather

MSE MAE Disc MSE MAE Disc MSE MAE Disc

0 0.377 0.402 0.293 0.191 0.284 0.143 0.261 0.282 0.152
0.001 0.371 0.397 0.287 0.175 0.268 0.132 0.255 0.278 0.148
0.002 0.372 0.398 0.289 0.175 0.267 0.131 0.256 0.278 0.149
0.005 0.372 0.398 0.288 0.182 0.275 0.137 0.256 0.279 0.149
0.01 0.370 0.397 0.285 0.183 0.275 0.137 0.257 0.279 0.150
0.02 0.369 0.395 0.286 0.182 0.275 0.136 0.258 0.280 0.149
0.05 0.370 0.396 0.285 0.187 0.279 0.141 0.259 0.281 0.150
0.1 0.371 0.397 0.288 0.196 0.287 0.148 0.261 0.283 0.151
0.2 0.372 0.398 0.290 0.209 0.298 0.158 0.263 0.285 0.152
0.5 0.376 0.399 0.292 0.230 0.317 0.171 0.266 0.287 0.153
1 0.386 0.406 0.299 0.239 0.326 0.177 0.268 0.290 0.154

Note: Bold and underlined denote the best and second-best results. When metric values coincide up to three decimal places, Bold indicates the numerically
superior result based on full precision.

Table 15: The performance comparison of DF and DistDF on different forecast models.

Models TQNet TQNet† TimeBridge TimeBridge† Fredformer Fredformer† iTransformer iTransformer† FreTS FreTS†

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.372 0.391 0.372 0.391 0.373 0.395 0.372 0.392 0.377 0.396 0.373 0.393 0.385 0.405 0.383 0.403 0.398 0.409 0.399 0.409
192 0.430 0.424 0.430 0.422 0.428 0.426 0.424 0.429 0.437 0.425 0.428 0.425 0.440 0.437 0.438 0.434 0.451 0.442 0.457 0.447
336 0.486 0.454 0.472 0.444 0.471 0.451 0.467 0.450 0.486 0.449 0.466 0.445 0.480 0.457 0.476 0.455 0.501 0.472 0.504 0.474
720 0.507 0.486 0.477 0.468 0.495 0.487 0.472 0.471 0.488 0.467 0.453 0.453 0.504 0.492 0.492 0.483 0.608 0.571 0.557 0.537

Avg 0.449 0.439 0.438 0.431 0.442 0.440 0.434 0.436 0.447 0.434 0.430 0.429 0.452 0.448 0.447 0.444 0.489 0.474 0.479 0.467

E
T

T
h2

96 0.293 0.343 0.289 0.339 0.294 0.344 0.289 0.338 0.293 0.344 0.287 0.336 0.301 0.349 0.296 0.347 0.315 0.374 0.311 0.369
192 0.364 0.390 0.362 0.388 0.371 0.394 0.369 0.390 0.372 0.391 0.358 0.381 0.383 0.397 0.375 0.397 0.466 0.467 0.418 0.433
336 0.411 0.424 0.410 0.424 0.421 0.429 0.415 0.426 0.420 0.433 0.408 0.421 0.425 0.432 0.421 0.434 0.522 0.502 0.521 0.505
720 0.430 0.444 0.426 0.443 0.423 0.443 0.420 0.438 0.421 0.439 0.416 0.435 0.436 0.448 0.423 0.441 0.792 0.643 0.613 0.560

Avg 0.375 0.400 0.371 0.399 0.377 0.403 0.373 0.398 0.377 0.402 0.367 0.393 0.386 0.407 0.379 0.405 0.524 0.496 0.466 0.467

E
T

T
m

1

96 0.310 0.352 0.311 0.351 0.323 0.361 0.319 0.358 0.326 0.361 0.316 0.357 0.338 0.372 0.334 0.372 0.342 0.375 0.335 0.371
192 0.356 0.377 0.353 0.377 0.366 0.385 0.363 0.383 0.365 0.382 0.358 0.380 0.382 0.396 0.381 0.397 0.385 0.400 0.379 0.393
336 0.388 0.400 0.387 0.400 0.398 0.408 0.394 0.405 0.396 0.404 0.392 0.404 0.427 0.424 0.415 0.418 0.416 0.421 0.408 0.415
720 0.450 0.437 0.449 0.436 0.461 0.445 0.455 0.442 0.459 0.444 0.448 0.437 0.496 0.463 0.485 0.454 0.513 0.489 0.479 0.456

Avg 0.376 0.391 0.375 0.391 0.387 0.400 0.383 0.397 0.387 0.398 0.378 0.394 0.411 0.414 0.404 0.410 0.414 0.421 0.400 0.409

E
T

T
m

2

96 0.175 0.256 0.171 0.254 0.177 0.259 0.176 0.256 0.177 0.260 0.174 0.256 0.182 0.265 0.181 0.263 0.188 0.279 0.185 0.275
192 0.243 0.300 0.234 0.295 0.243 0.303 0.241 0.300 0.242 0.300 0.239 0.298 0.257 0.315 0.249 0.307 0.264 0.329 0.253 0.318
336 0.297 0.336 0.292 0.333 0.303 0.343 0.302 0.340 0.302 0.340 0.300 0.338 0.320 0.354 0.311 0.347 0.322 0.369 0.338 0.386
720 0.394 0.393 0.390 0.390 0.401 0.399 0.403 0.397 0.399 0.397 0.397 0.394 0.423 0.411 0.414 0.404 0.489 0.482 0.449 0.453

Avg 0.277 0.321 0.272 0.318 0.281 0.326 0.280 0.323 0.280 0.324 0.277 0.321 0.295 0.336 0.289 0.330 0.316 0.365 0.306 0.358

E
C

L

96 0.143 0.237 0.139 0.233 0.142 0.239 0.137 0.235 0.161 0.258 0.145 0.238 0.150 0.242 0.148 0.239 0.180 0.266 0.179 0.266
192 0.161 0.252 0.157 0.249 0.161 0.257 0.159 0.257 0.174 0.269 0.162 0.255 0.168 0.259 0.163 0.253 0.184 0.272 0.183 0.271
336 0.178 0.270 0.174 0.267 0.182 0.278 0.178 0.272 0.194 0.290 0.176 0.270 0.182 0.274 0.176 0.270 0.199 0.290 0.199 0.288
720 0.218 0.303 0.212 0.298 0.217 0.309 0.212 0.302 0.235 0.319 0.211 0.300 0.214 0.304 0.209 0.298 0.234 0.322 0.235 0.322

Avg 0.175 0.265 0.171 0.262 0.176 0.271 0.172 0.267 0.191 0.284 0.173 0.266 0.179 0.270 0.174 0.265 0.199 0.288 0.199 0.287

W
ea

th
er

96 0.160 0.203 0.160 0.202 0.168 0.211 0.164 0.209 0.180 0.220 0.172 0.212 0.171 0.210 0.174 0.214 0.174 0.228 0.173 0.229
192 0.210 0.247 0.208 0.246 0.214 0.254 0.212 0.252 0.222 0.258 0.218 0.255 0.246 0.278 0.223 0.256 0.213 0.266 0.212 0.264
336 0.267 0.289 0.264 0.287 0.273 0.297 0.270 0.295 0.283 0.301 0.277 0.297 0.296 0.313 0.280 0.299 0.270 0.316 0.263 0.305
720 0.346 0.342 0.344 0.342 0.353 0.347 0.348 0.345 0.358 0.348 0.352 0.347 0.362 0.353 0.357 0.350 0.337 0.362 0.331 0.355

Avg 0.246 0.270 0.244 0.269 0.252 0.277 0.248 0.275 0.261 0.282 0.255 0.277 0.269 0.289 0.258 0.280 0.249 0.293 0.245 0.288

Note: The length of history window is set to 96 for all baselines. Avg indicates the results averaged over forecasting lengths: T=96, 192,
336 and 720. † marks the forecasting model trained via DistDF.
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(b) Disc on the validation set.
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Figure 8: Evolution of training objectives and validation metrics across four datasets: ETTm1, ETTh1,
and ECL (from left to right).

Table 16: The performance comparison of DF and DistDF on the autoregressive forecasting setting.

Models TimeBridge TimeBridge† Fredformer Fredformer†

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.405 0.402 0.395 0.391 0.391 0.396 0.386 0.390
192 0.467 0.438 0.419 0.408 0.494 0.449 0.493 0.446
336 0.518 0.467 0.460 0.437 0.572 0.500 0.579 0.486
720 0.725 0.514 0.527 0.478 1.821 0.837 0.833 0.563

Avg 0.528 0.455 0.450 0.428 0.820 0.546 0.573 0.471

W
ea

th
er

96 0.527 0.343 0.241 0.275 0.241 0.267 0.211 0.245
192 1.165 0.494 0.303 0.320 0.306 0.318 0.274 0.292
336 4.826 0.749 0.371 0.365 0.330 0.331 0.312 0.322
720 9.363 1.374 0.461 0.421 0.433 0.406 0.407 0.380

Avg 3.970 0.740 0.344 0.345 0.327 0.330 0.301 0.310

Note: The length of history window is set to 96 for all baselines. Avg indicates the results averaged over forecasting lengths:
T=96, 192, 336 and 720. † marks the forecasting model trained via DistDF.
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Table 17: The performance comparison of DF and DistDF on the probabilistic forecasting task.

Models D3U D3U†

Metrics MSE MAE CRPS CRPSsum MSE MAE CRPS CRPSsum

E
T

T
m

1

96 0.317 0.357 0.263 0.723 0.316 0.357 0.265 0.720
192 0.361 0.383 0.285 0.749 0.360 0.383 0.282 0.747
336 0.394 0.404 0.299 0.742 0.390 0.402 0.298 0.731
720 0.460 0.437 0.325 0.892 0.453 0.435 0.328 0.849

Avg 0.383 0.395 0.293 0.776 0.380 0.394 0.293 0.762

W
ea

th
er

96 0.176 0.240 0.174 0.179 0.173 0.225 0.171 0.173
192 0.223 0.271 0.205 0.234 0.217 0.265 0.198 0.210
336 0.279 0.309 0.233 0.269 0.278 0.310 0.233 0.260
720 0.359 0.361 0.273 0.419 0.353 0.360 0.269 0.378

Avg 0.259 0.295 0.221 0.275 0.255 0.290 0.218 0.255

Note: The length of history window is set to 96 for all baselines. Avg indicates the results averaged over forecasting lengths: T=96, 192, 336 and 720.
† marks the forecasting model trained via DistDF.

Table 18: The performance comparison of DF and DistDF on the multi-scale architectures.

Models TimeMixer TimeMixer† SCINet SCINet†

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.329 0.369 0.326 0.369 0.325 0.365 0.319 0.359
192 0.371 0.391 0.373 0.392 0.383 0.397 0.367 0.385
336 0.427 0.425 0.412 0.423 0.436 0.424 0.403 0.406
720 0.564 0.506 0.491 0.459 0.528 0.476 0.469 0.444

Avg 0.422 0.423 0.401 0.411 0.418 0.416 0.389 0.399

E
T

T
h1

96 0.419 0.426 0.400 0.410 0.409 0.415 0.397 0.405
192 0.464 0.451 0.439 0.436 0.457 0.441 0.448 0.434
336 0.509 0.472 0.485 0.450 0.499 0.461 0.491 0.455
720 0.614 0.553 0.501 0.486 0.505 0.482 0.501 0.479

Avg 0.501 0.476 0.456 0.446 0.467 0.450 0.459 0.443

E
C

L

96 0.159 0.260 0.145 0.242 0.146 0.248 0.141 0.242
192 0.161 0.258 0.159 0.256 0.167 0.266 0.159 0.257
336 0.173 0.272 0.176 0.272 0.179 0.280 0.177 0.277
720 0.212 0.302 0.207 0.298 0.202 0.298 0.197 0.294

Avg 0.176 0.273 0.172 0.267 0.173 0.273 0.169 0.268

W
ea

th
er

96 0.173 0.220 0.168 0.217 0.160 0.208 0.158 0.207
192 0.213 0.254 0.212 0.253 0.214 0.257 0.211 0.254
336 0.286 0.306 0.273 0.298 0.276 0.300 0.271 0.298
720 0.377 0.362 0.354 0.352 0.362 0.356 0.359 0.351

Avg 0.262 0.285 0.252 0.280 0.253 0.280 0.250 0.278

Note: The length of history window is set to 96 for all baselines. Avg indicates the results averaged over forecasting lengths: T=96, 192, 336
and 720. † marks the forecasting model trained via DistDF.
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We used LLMs (specifically, OpenAI GPT-4.1, GPT-5 and Google Gemini 2.5) solely for checking
grammar errors and improving the readability of the manuscript. The LLMs were not involved in
research ideation, the development of research contributions, experiment design, data analysis, or
interpretation of results. All substantive content and scientific claims were created entirely by the
authors. The authors have reviewed all LLM-assisted text to ensure accuracy and originality, and take
full responsibility for the contents of the paper. The LLMs are not listed as an author.
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