

000 001 LOGICONBENCH: BENCHMARKING LOGICAL CON- 002 SISTENCIES OF LLMs 003 004

005 **Anonymous authors**
006 Paper under double-blind review

007 008 ABSTRACT 009

011 Logical consistency, the requirement that statements remain non-contradictory un-
012 der logical rules, is fundamental for trustworthy reasoning, yet current LLMs
013 often fail to maintain it even on simple inference tasks. Existing benchmarks
014 for LLM logical consistency are not scalable, not diverse, and not challeng-
015 ing, with state-of-the-art models already surpassing 95% accuracy. **LogiCon-**
016 **Bench** is the first benchmark that (1) generates unlimited logical rule combina-
017 tions with precise labels, (2) provides controllable-depth graphs with explicit rea-
018 soning paths, and (3) remains challenging for state-of-the-art LLMs. To achieve
019 this, LogiConBench automatically generates **logical graphs** where nodes repre-
020 sent symbolic propositions and edges denote reasoning relations. From these
021 graphs, it samples lists of propositions, extracts **reasoning paths**, determines
022 all **consistent label lists**, and translates them into diverse natural language ex-
023 pressions. While we release a 280K-sample corpus in this work, the frame-
024 work can be scaled to generate unlimited data. To strengthen its evaluative
025 significance, we evaluate 14 frontier LLMs on **three** tasks with varying diffi-
026 culty levels, and find that the **Enumerative task** remains extremely challenging,
027 with the best exact accuracy as only 34%. Our code and data are available at
028 <https://anonymous.4open.science/r/LogiConBench-11D1/>.
029

030 1 INTRODUCTION 031

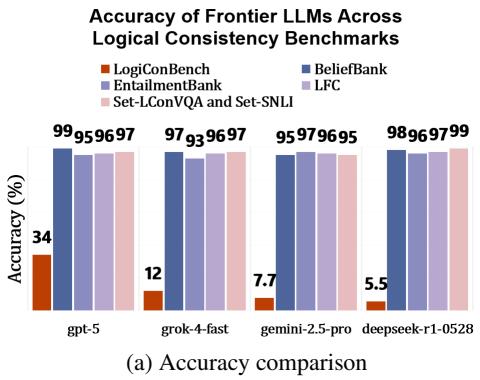
032 Logical **consistency** refers to the property that a set of statements does not contain contradictions
033 under logical rules (Huang & Chang, 2023; Liu et al., 2025). Maintaining consistency is fun-
034 damental for trustworthy reasoning, since inconsistency can result in unreliable conclusions and
035 paradoxes (Cheng et al., 2025). However, recent studies show that LLMs frequently generate self-
036 contradictory reasoning or outputs, even for simple inference tasks (Calanzone et al., 2025; Ghosh
037 et al., 2025; Paleka et al., 2025; Song et al., 2025). For example, suppose sentence P entails H ,
038 and H entails Z ; by transitivity, one should infer that P entails Z . However, models may produce in-
039 consistent judgments which violate logical principles (Li et al., 2019). Such inconsistencies worsen
040 the local inference and can also propagate through reasoning chains, which ultimately disrupt the
041 overall reasoning process.

042 Existing efforts benchmarking the logical consistency of LLMs can be summarized as follows. **Be-**
043 **liefBank** (Kassner et al., 2021) generates constraints over entities based on a commonsense knowl-
044 edge base. **EntailmentBank** (Dalvi et al., 2021) provides multi-step entailment trees, where answers
045 are supported by explicit reasoning steps. **LFC datasets** (Ghosh et al., 2025) are built by transform-
046 ing knowledge graphs into logical fact-checking queries. **Set-LConVQA and Set-SNLI** (Song
047 et al., 2025) extend Visual Question Answering (VQA) dataset and Natural Language Inference
048 (NLI) tasks into a set-level format and check for consistency across multiple sentences.

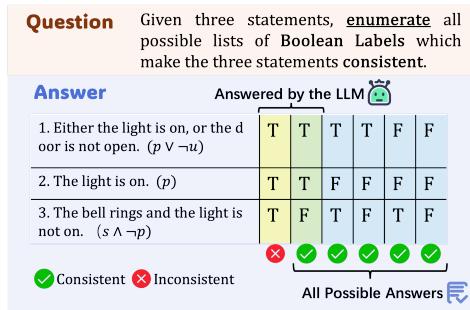
049 Despite their contributions, these datasets have several limitations. As shown in Table 1, **first**, their
050 **sizes and rule counts** remain relatively small, which becomes inadequate for realistic logical reason-
051 ing scenarios. **Secondly**, their **depths are shallow and the reasoning paths are absent**, preventing
052 the models from fully capturing multi-step reasoning chains. **Thirdly**, all of them are either human-
053 written or derived from existing datasets, **highly limiting their scalability**. **Finally**, our empirical
results in Figure 1a show that the most advanced LLMs such as gpt-5 and grok-4-fast already

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
Table 1: Comparison of logical consistency datasets in terms of size, depth, operators, reasoning path availability, scalability, and rule count. The detailed explanations can be found in Appendix B.

Dataset	Size	Depth	Operators	Reasoning Path	Scalability	# of Rule
BeliefBank	12,525	1	$\rightarrow, \neg, \leftrightarrow$	No	No	2
EntailmentBank	1,840	avg. 6	\rightarrow	Yes	No	6
LFC	~2,000	up to 4	$\wedge, \vee, \rightarrow, \neg, \leftrightarrow$	No	No	9
Set-LConVQA & Set-SNLI	13,779	up to 5	$\wedge, \vee, \rightarrow, \neg, \leftrightarrow$	No	No	51
LogiconBench	280K	32	$\wedge, \vee, \rightarrow, \neg, \leftrightarrow$	Yes	Yes	280K



(a) Accuracy comparison



(b) Enumerative task

Figure 1: (a) Accuracy of frontier LLMs on LogiConBench vs. existing benchmarks. Existing benchmarks are saturated, while LogiConBench remains challenging and discriminative. (b) Illustration of the enumerative task. Given three statements, the LLM must list all consistent label assignments, but often outputs incomplete or incorrect lists.

achieve above 95% accuracy on these datasets, which suggests that they are **no longer sufficiently challenging** to be used as logical consistency benchmarks for frontier LLMs.

To address the aforementioned limitations, we propose a framework named **LogiConBench** that automatically constructs complex and large-scale datasets for logical consistency evaluation. **LogiConBench** first **generates logical graphs**, which can expand indefinitely and record reasoning relations, where nodes represent symbolic propositions and edges denote reasoning relations. From the graph, we **randomly sample** lists of propositions, extract their shortest reasoning paths, and propagate Boolean labels along the edges according to logical rules, by which we collect all truth-value assignments that keep the sampled propositions **consistent**. To enhance structural variety, we further apply symbolic rewriting techniques to **produce logically equivalent formulas**. Finally, propositions are translated into **natural language** through templates and lexical substitutions.

Through this construction, LogiConBench directly overcomes the above limitations. First, it can generate **unlimited logical rule combinations** automatically with precise consistency labels, which supports scaling up and covering a wider variety of logical rules. Second, graphs with controllable depths provide **explicit reasoning paths for multi-step inference**. Finally, our benchmark remains **challenging** for state-of-the-art LLMs, as shown in Figure 1, which shows its significance for benchmarking the consistencies of current frontier models.

To systematically evaluate logical consistency reasoning, we design two primary benchmarking tasks: **Discriminative task**, determining whether a given Boolean Label list can lead to contradiction for the given statements, and **Enumerative task**, enumerating all consistent Boolean Label assignments for the given statements. To capture performance across different levels of difficulty, we further introduce variants for the **three** tasks. Our large-scale experiments with 14 frontier closed and open-source models reveal several consistent findings: Results show that frontier models (e.g., gpt-5, grok-4-fast, deepseek-r1-0528, gemini-2.5-pro) achieve 85–95% accuracy in *Discriminative task*, but *Enumerative task* remains extremely difficult, where only gpt-5 reaches averagely 34% exact accuracy on the subset, while most other models stay below 1%, and the best

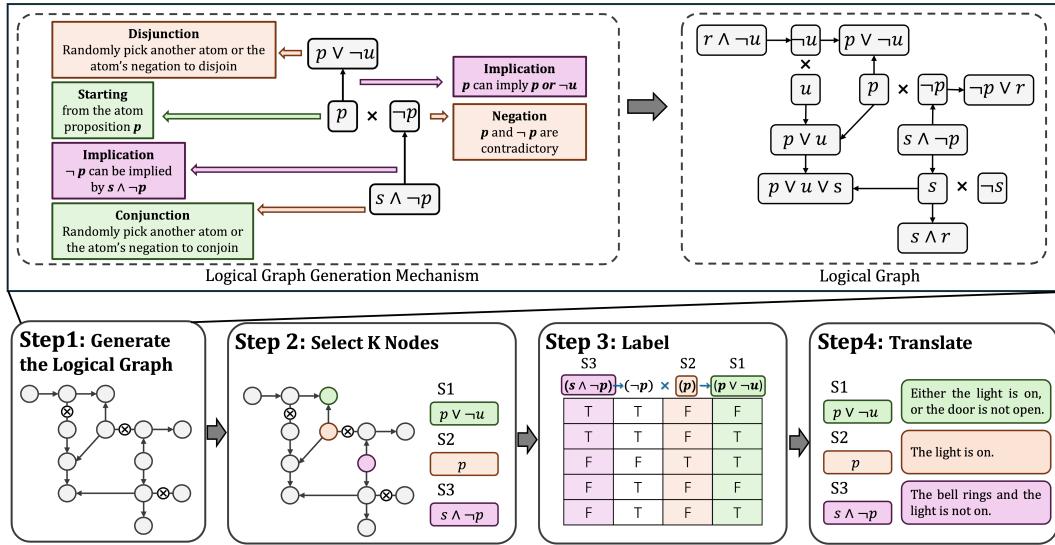


Figure 2: The overall pipeline of LogiconBench, including 4 steps: logical graph generation, node selection, truth labeling, and natural language translation.

model only reaches 42% consistency rate for the *Generative task*. In difficulty-based analysis, we found that the accuracy of Task 1 on hard samples drops to around 80% for frontier models and below 40% for smaller ones, while in Task 2 on Easy samples, the best model (gpt-5) improves average exact accuracy to 58%. Moreover, whether the natural-language statements are common-sense, counterfactual, or human-like has little impact on the results. We summarize the contributions as follows:

- **LogiConBench Framework.** We propose a novel framework that automatically constructs diverse and scalable logical consistency data through newly designed logical graphs, where the nodes represent propositions and logical relations are on the edges.
- **LogiConBench Dataset.** We produce a large-scale corpus of 280K samples with varying difficulty levels, which covers diverse and important logical reasoning rules.
- **Evaluation and Analysis.** We conduct experiments across varying levels of difficulty on 14 state-of-the-art LLMs, which shows that even strong models fail on more than half of the tasks, confirming that logical consistency reasoning remains highly challenging.

2 PRELIMINARIES

Our benchmark is grounded in standard natural deduction rules (Liu & Stokhof, 2024). In particular, we adopt the introduction rules for five logical operators: implication I_{\rightarrow} : $(\varphi \vdash \psi) \Rightarrow (\varphi \rightarrow \psi)$; disjunction I_{\vee} : $\varphi \Rightarrow (\varphi \vee \psi)$ or $\psi \Rightarrow (\varphi \vee \psi)$; conjunction I_{\wedge} : $\varphi, \psi \Rightarrow (\varphi \wedge \psi)$; negation I_{\neg} : $(\varphi \vdash \perp) \Rightarrow (\neg\varphi)$; and biconditional I_{\leftrightarrow} : $(\varphi \rightarrow \psi) \wedge (\psi \rightarrow \varphi) \Rightarrow (\varphi \leftrightarrow \psi)$. These rules serve as the fundamental logical primitives, which allow atomic propositions to be systematically combined and deduced into complex reasoning forms and axiomatic structures (Chiswell & Hodges, 2007; Westerståhl, 2022), hence, they serve as the foundation for our benchmark. A detailed illustration is given in Appendix C.

3 CONSTRUCTION OF LOGICONBENCH CORPUS

LogiConBench is constructed through a pipeline that generates datasets with $k = 2, 3, 4, 5$, where k denotes the number of propositions in a single sample, and, as detailed in Appendix D, the data exhibit diverse distributions of atoms and logical operators.

162 3.1 THE LOGICAL GRAPH
163

164 **Granularity of the logical graph.** Constructing **multi-step reasoning trees or graphs** is an ef-
165 fective way to capture the reasoning process and to enable scaling across diverse corpora. Instead
166 of relying on pre-defined axioms or costly natural language explanations, our approach deliberately
167 starts from the level of **atomic propositions**, the finest granularity of reasoning. By composing
168 these atomic elements through basic logical rules, we construct **Logical Graphs** that naturally re-
169 flect complex reasoning structures.

170 **Logical Graph Construction from Basic Rules.** Section 2 introduces five fundamental classes
171 of logical reasoning rules, which can be composed into infinitely many deductive forms, including
172 axioms. Specifically, **Implication** (\rightarrow) and **Biconditional** (\leftrightarrow) are expressed only on graph edges,
173 while **Disjunction** (\vee) and **Conjunction** (\wedge) are expressed only on nodes. **Negation** (\neg) can present
174 both on nodes and edges, where an edge with contradiction is represented as “ \times ”. For example, we
175 begin from a fixed atomic proposition p , and generate its negation $\neg p$, the conjunctive expansion
176 $p \wedge q$ (where q is a randomly sampled atom from a pre-defined atom list with length 8), and the
177 disjunctive expansion $p \vee q$ that implies p . These yield the initial structure:
178

$$p \vee q \rightarrow p \rightarrow p \wedge q, \quad p \times \neg p.$$

179 Subsequently, each newly added node can be further expanded in the same manner, which allows
180 the **Logical Graph** to grow indefinitely through iterative application of these basic rules.
181

182 3.2 RANDOM SAMPLING AND LABELING ALONG REASONING PATHS
183

184 **Random sampling.** To stratify difficulty, we sample, for each $k \in \{2, 3, 4, 5\}$, exactly 10,000 exam-
185 ples where the target set contains k distinct nodes. Since we require every example to admit **at least**
186 **one inconsistent** label list, we avoid picking nodes that are too distant in the global graph, which
187 are weakly constrained and satisfy all the truth labels. So we ensure they remain within a bounded
188 graph distance set to 6, so that every example preserves sufficient local constraints. We also
189 expect the formulas within an example to have diverse complexity, so we randomly sample k distinct
190 nodes $S = \{v_1, \dots, v_k\}$ with a uniformly distributed number of atoms in their formulas.

191 **Path extraction.** After sampling from the logical graph, we obtain the target set S . We then extract
192 a small subgraph that connects all targets by solving the Steiner tree problem (Hwang & Richards,
193 1992) with a permutation-based shortest-walk search, which results in an ordered edge list $\mathcal{E} =$
194 $[(u_1, t_1, v_1), \dots, (u_m, t_m, v_m)]$ that we use for labeling. The details can be found in Appendix E.

195 **Constraint semantics.** Edges encode pairwise truth-compatibility of their endpoints via the rule set
196

$$\text{LOGIC_RULES} = \left\{ \begin{array}{l} \rightarrow : \{(T, T), (F, T), (F, F)\}, \\ \leftarrow : \{(T, T), (T, F), (F, F)\}, \\ \leftrightarrow : \{(T, T), (F, F)\}, \\ \times : \{(T, F), (F, T)\} \end{array} \right\}.$$

202 **Labeling via DFS propagation.** We perform a depth-first search (DFS) over \mathcal{E} that incre-
203 mentally assigns Boolean values to nodes according to `LOGIC_RULES`. The projections of all
204 rule-consistent assignments onto the target nodes are collected as `consistent_lists`. Since
205 each target list of k nodes has 2^k possible Boolean assignments in total, the remaining assign-
206 ments form the `inconsistent_lists`. We ensure that every sample contains both nonempty
207 `consistent_lists` and `inconsistent_lists` for downstream evaluation. An example of
208 labeling is shown in Appendix F.

209 3.3 REWRITING
210

211 After sampling $k = 2/3/4/5$ target nodes (10,000 examples for each k), we apply the set of rewrite
212 rules as shown in Appendix G to every node in the sampled subgraphs (Liu & Stokhof, 2024). For
213 each node, if a rewrite rule produces a valid transformed formula, the rewritten form is retained as
214 an additional node. Several rewrite rules (e.g., *equivalence elimination*, conversion to conjunctive
215 normal form (*CNF*) or disjunctive normal form (*DNF*)) are applied at the formula level, since nodes
may contain multiple atoms, thereby producing multi-atom rewrites.

216	Setting 1: Determination	Setting 2: Enumeration	Setting 3: Generation
217	<p>Instruction Given three statements, determine whether a list of Boolean Labels leads to a contradiction. Each label corresponds to one statement in order.</p> <p>Few-shot Example Statements 1. Either the light is on, or the door is not open. ($p \vee \neg u$) 2. The light is on. (p) 3. The bell rings and the light is not on. ($s \wedge \neg p$) Given a set of Boolean Labels: [T, T, F] Reasoning Path $(s \wedge \neg p) \rightarrow (\neg p) \times (p) \rightarrow (p \vee \neg u)$ Answer: Yes, the given Boolean Labels are valid.</p>	<p>Instruction Given three statements, enumerate all possible lists of Boolean Labels which make the three statements consistent.</p> <p>Few-shot Example Statements 1. Either the light is on, or the door is not open. ($p \vee \neg u$) 2. The light is on. (p) 3. The bell rings and the light is not on. ($s \wedge \neg p$) Reasoning Path $(s \wedge \neg p) \rightarrow (\neg p) \times (p) \rightarrow (p \vee \neg u)$ Answer: [T, T, F], [T, E, T], [T, F, F], [E, E, T], [F, E, F]</p>	<p>Statements Generation 1. Split the global premises set into n groups. 2. Generate 10 natural-language statements on the basis of the premises per group with diverse connectives. 3. Convert each generated statements into a computable logical form.</p> <p>Consistency Checking 1. Enumerate all cross-group statements combinations with one statement per group. 2. Evaluate each combination using the logical graph.</p>
221			

Figure 3: Illustration of the three task tasks in **LogiConBench**.

230 3.4 SYMBOLIC-TO-NATURAL LANGUAGE TRANSLATION

232 Following Morishita et al. (2023), we convert symbolic formulas into natural language sentences.
233 For each atomic proposition, we randomly select NOUNs, ADJs, and VERBs drawn from Word-
234 Net (Fellbaum, 2005), where we obtain a large variety of words to prevent models from overfitting
235 to fixed wordings and better approximate real-world language diversity. We apply **negation rules**
236 to cover both affirmative and negative variants of atomic statements. For composite formulas, we
237 use **structural templates** that map logical connectives (e.g., \wedge , \vee , \neg) into corresponding natural
238 language operators. The full set of rules and templates is provided in Appendix H.

240 4 BENCHMARKING LOGICAL CONSISTENCY

242 **Structure.** As shown in Figure 3, in this chapter, we introduce **three** primary benchmark tasks:
243 **Task 1 (Discriminative task)**, **Task 2 (Enumerative task)**, and **Task 3 (Generative task)**. To capture
244 more diverse performance patterns, we further refine them in Chapter 5. For Task 1, we evaluate on
245 **hard samples**, where consistent and inconsistent label lists differ by only one element, and we also
246 include a **label completion variant**. For Task 2, we evaluate on samples with **short reasoning paths**
247 and **short statement length**, which enable a more fine-grained assessment of model reasoning. **We**
248 **also evaluated task 2 on natural-language statements in common-sense, counterfactual, and**
249 **human-like types, which shows little impact on the model performance.**

250 **Testing Models.** We evaluate a diverse collection of 14 models on the LogiCon-
251 Bench, covering state-of-the-art proprietary systems as well as large and small size
252 open-source models: `grok-4-fast` (xAI, 2025), `qwen3-235b-a22b` (Yang et al.,
253 2025), `qwen2.5-7b-instruct` (Yang et al., 2024), `gpt-5` (OpenAI, 2025a),
254 `o3-mini` (OpenAI, 2025b), `mixtral-8x7b-instruct` (Jiang et al., 2024),
255 `phi-4-reasoning-plus` (Abdin et al., 2025), `llama-3.1-8b-instruct` (Grattafiori
256 et al., 2024), `llama-3.1-405b-instruct` (Grattafiori et al., 2024), `gpt-4o` (Hurst et al.,
257 2024), `gemini-2.5-pro` (Comanici et al., 2025), `deepseek-r1-0528` (Guo et al., 2025),
258 `claude-sonnet-4` (Anthropic, 2025), and `claude-3.5-haiku` (Anthropic, 2024).

259 For each experiment, we consider three evaluation settings: zero-shot (without examples in a
260 prompt), few-shot (with three examples in a prompt), and few-shot with reasoning paths (with three
261 examples plus corresponding ground-truth reasoning paths, as shown in Figure 3). Each setting is
262 applied across datasets of statement size $k = 2, 3, 4, 5$. All evaluations are conducted in a single-
263 round format with the temperature fixed at 0, unless otherwise specified in the model card. For every
264 configuration, we randomly sample 1,000 instances from the dataset for evaluation. The evaluation
265 metrics details can be found in Appendix I.

266 4.1 TASK 1: DISCRIMINATIVE TASK

267 **Formulation of Task 1.** Task 1 focuses on determining whether a given list of **Boolean labels**
268 assigned to k logical statements leads to a contradiction, for statements size $k = 2, 3, 4, 5$.

270 Table 2: Performance on **Task 1 (Discriminative Task)** across different numbers of statements
 271 (2–5). Results are shown for *consistent samples*, *inconsistent samples*, and their *overall average*
 272 *accuracy* under three evaluation setups: zero-shot, 3-shot, and 3-shot with reasoning path. Back-
 273 ground cell colors range from light to dark, indicating increasing values within each column.

275	Model	Accuracy on 2 Statements			Accuracy on 3 Statements			Accuracy on 4 Statements			Accuracy on 5 Statements		
		Con.	Incon.	Overall	Con.	Incon.	Overall	Con.	Incon.	Overall	Con.	Incon.	Overall
277	grok-4-fast	95.30%	93.40%	94.35%	90.70%	97.30%	94.00%	80.00%	97.20%	88.60%	74.90%	96.90%	85.90%
	gpt-5	88.40%	91.70%	90.05%	87.30%	92.50%	89.90%	87.30%	92.80%	90.05%	78.40%	96.60%	87.50%
	deepseek-r1-0528	84.50%	94.70%	89.60%	91.60%	95.70%	93.65%	74.40%	94.90%	84.65%	63.70%	95.30%	79.50%
	claude-sonnet-4	61.70%	86.10%	73.90%	53.80%	85.00%	69.40%	39.20%	91.40%	65.30%	34.10%	93.80%	63.95%
	qwen3-235b-a22b	49.00%	87.90%	68.45%	60.00%	84.30%	72.15%	84.20%	54.70%	69.45%	54.30%	58.80%	56.55%
	gemini-2.5-pro	58.00%	59.30%	58.65%	58.90%	67.10%	63.00%	51.60%	67.30%	59.45%	47.60%	66.50%	57.05%
	llama-3.1-405b-instruct	64.20%	43.90%	54.05%	68.20%	36.40%	52.30%	72.60%	37.90%	59.25%	65.30%	36.80%	51.05%
	qwen2.5-7b-instruct	17.50%	91.80%	54.65%	41.70%	66.80%	54.25%	49.60%	55.60%	52.60%	43.60%	42.80%	43.20%
	phi-4-reasoning-plus	11.10%	94.60%	52.85%	27.90%	86.50%	57.20%	33.60%	73.00%	53.30%	25.30%	65.40%	45.35%
	mixtral-8x7b-instruct	64.60%	39.20%	51.90%	89.30%	25.80%	57.55%	81.50%	22.20%	51.85%	79.20%	14.30%	46.75%
281	o3-mini	58.10%	41.50%	49.80%	56.60%	35.40%	46.00%	61.30%	27.10%	44.20%	64.00%	16.40%	40.20%
	claude-3.5-haiku	40.50%	44.60%	42.55%	82.80%	15.80%	49.30%	93.40%	8.80%	51.10%	95.10%	2.40%	48.75%
	llama-3.1-8b-instruct	36.00%	32.00%	34.00%	52.70%	18.40%	35.55%	54.70%	10.10%	32.40%	56.90%	6.70%	31.80%
	gpt-4o	36.90%	29.00%	32.95%	44.00%	19.40%	31.70%	58.50%	11.80%	35.15%	47.40%	14.90%	31.15%
	grok-4-fast	93.70%	91.30%	92.50%	91.30%	96.30%	93.80%	80.40%	95.30%	87.85%	76.30%	96.20%	86.25%
	gpt-5	87.10%	92.70%	89.90%	86.40%	87.50%	86.95%	86.40%	96.10%	91.25%	73.90%	95.10%	84.50%
	deepseek-r1-0528	89.00%	94.90%	91.95%	94.00%	95.90%	94.95%	89.90%	96.70%	93.30%	64.10%	95.80%	79.95%
	claude-sonnet-4	61.80%	84.40%	73.10%	52.40%	89.80%	71.10%	37.10%	90.80%	63.95%	38.70%	93.70%	66.20%
	qwen3-235b-a22b	58.70%	86.00%	72.35%	95.90%	86.50%	91.20%	99.20%	64.90%	82.05%	98.90%	57.70%	78.30%
	gemini-2.5-pro	80.80%	89.50%	85.15%	87.50%	86.10%	86.80%	85.90%	97.40%	91.15%	76.20%	97.30%	86.75%
285	llama-3.1-405b-instruct	66.80%	47.80%	57.30%	72.00%	38.00%	55.00%	72.50%	37.90%	55.20%	62.50%	38.50%	50.50%
	qwen2.5-7b-instruct	16.80%	91.70%	54.25%	45.00%	62.80%	53.90%	54.10%	50.90%	52.50%	48.70%	46.60%	47.65%
	phi-4-reasoning-plus	14.20%	96.90%	55.55%	19.90%	84.50%	52.20%	34.10%	70.20%	52.15%	32.70%	63.60%	48.15%
	mixtral-8x7b-instruct	65.40%	44.00%	54.70%	90.40%	23.70%	57.05%	88.60%	29.30%	58.95%	87.00%	14.50%	50.75%
	o3-mini	95.60%	56.10%	75.85%	95.00%	46.30%	70.65%	94.50%	19.90%	57.20%	94.20%	16.70%	55.45%
	claude-3.5-haiku	41.00%	52.80%	46.90%	88.40%	20.40%	54.40%	93.60%	6.70%	50.15%	94.20%	3.10%	48.65%
	llama-3.1-8b-instruct	40.10%	34.20%	37.15%	55.90%	16.10%	36.00%	53.90%	10.10%	32.00%	58.00%	6.70%	32.35%
	gpt-4o	60.60%	54.60%	57.60%	77.40%	26.00%	51.70%	74.30%	34.70%	54.50%	62.70%	20.50%	41.60%
	grok-4-fast	96.10%	95.20%	95.65%	93.00%	98.30%	95.65%	83.50%	99.50%	91.50%	79.30%	100.00%	89.65%
	gpt-5	92.90%	93.50%	93.20%	88.20%	96.50%	92.35%	88.30%	97.70%	93.00%	79.60%	99.80%	89.70%
293	deepseek-r1-0528	90.60%	94.50%	92.55%	93.70%	96.60%	95.15%	87.90%	95.40%	91.65%	69.60%	98.80%	84.20%
	claude-sonnet-4	67.80%	92.30%	80.05%	54.10%	91.00%	72.55%	46.10%	93.00%	69.55%	40.20%	95.00%	67.60%
	qwen3-235b-a22b	73.80%	99.70%	86.75%	98.70%	89.90%	94.30%	100.00%	76.30%	88.15%	99.40%	59.30%	79.35%
	gemini-2.5-pro	84.00%	80.90%	82.45%	88.10%	99.40%	93.75%	82.80%	99.70%	91.25%	50.90%	98.50%	74.70%
	llama-3.1-405b-instruct	71.90%	51.80%	61.85%	86.80%	37.80%	62.30%	77.60%	41.30%	59.45%	70.80%	45.50%	58.15%
	qwen2.5-7b-instruct	25.20%	95.90%	60.55%	46.70%	72.20%	59.45%	61.60%	57.40%	59.50%	52.30%	52.40%	52.35%
	phi-4-reasoning-plus	14.90%	96.30%	55.60%	34.60%	88.80%	61.70%	34.10%	75.00%	54.55%	36.20%	75.60%	55.90%
	mixtral-8x7b-instruct	69.80%	50.20%	60.00%	91.20%	31.90%	61.55%	86.40%	22.00%	54.20%	81.00%	16.50%	48.75%
	o3-mini	58.70%	44.70%	51.70%	60.80%	36.20%	48.50%	61.40%	32.30%	46.85%	62.10%	12.90%	37.50%
	claude-3.5-haiku	49.40%	62.40%	55.90%	89.20%	21.40%	55.30%	93.30%	9.50%	51.40%	96.70%	3.70%	50.20%
299	llama-3.1-8b-instruct	55.70%	45.30%	50.50%	84.00%	27.60%	55.80%	89.70%	12.20%	50.95%	85.90%	13.90%	49.90%
	gpt-4o	34.30%	59.30%	46.80%	46.90%	30.20%	38.55%	54.80%	35.00%	44.90%	45.50%	32.30%	38.90%

301 **Findings of Task 1.** The experimental results for Task 1 is presented in Table 2. (1)
 302 The most advanced LLMs, including gpt-5, grok-4-fast, deepseek-r1-0528, and
 303 gemini-2.5-pro, consistently achieve accuracies in the 85–95% range. (2) Models show stable
 304 bias patterns across settings and number of statements k : some (e.g., claude-3.5-haiku) per-
 305 form better on consistent than inconsistent statements, others (e.g., phi-4-reasoning-plus)
 306 show the opposite trend, while a third group (e.g., gpt-5) consistently favors inconsistent cases,
 307 with the gap widening as task size grows. (3) Prompting improves performance: average accuracy
 308 rises from 59.21% (zero-shot) to 65.70% (few-shot) and 67.58% (few-path), confirming the value
 309 of reasoning-path supervision. (4) Increasing k substantially raises difficulty: accuracy drops from
 310 66.87% at $k = 2$ to only 59.59% at $k = 5$.

312 4.2 TASK 2: ENEMERATIVE TASK

313 **Formulation of Task 2.** Task 2 focuses on the task of enumeration. Given a set of logical state-
 314 ments, the model is required to enumerate all possible lists of Boolean label assignments that remain
 315 logically consistent. Unlike Task 1, which only verifies whether a specific label set leads to a con-
 316 tradiction, Task 2 demands a complete search over the label space. Therefore, LLMs must account
 317 for all logical consistency constraints, thereby eliminating the potential for shortcuts in consistency
 318 evaluation. As a result, Task 2 poses more challenges to the logical consistency reasoning of LLMs.
 319

320 **Findings Task 2.** As shown in Table 3, Task 2 is considerably more challenging than Task 1, with
 321 exact accuracy for most models below 1%. Only the same top models identified in Task 1 perform
 322 competitively: gpt-5 under the 3-shot learning setting with reasoning paths achieves the best re-
 323 sults ($F1 \approx 0.83$, Exact accuracy ≈ 0.51), followed by grok-4-fast ($F1 \approx 0.29$, Exact accuracy

324
 325 Table 3: Performance in **Task 2 (Enumerative Task)** across models and prompting settings. We
 326 report *Format* (Executable rate), *Exact* (Exact accuracy of all consistent lists), and *F1* (partial cor-
 327 rectness) under three evaluation setups: zero-shot, 3-shot, and 3-shot with reasoning path. The best
 328 model for each metric and setup is shown in **bold**, and the second-best is underlined.

329	330	Model (mode)	Accuracy on 2 Statements			Accuracy on 3 Statements			Accuracy on 4 Statements			Accuracy on 5 Statements		
			Format	Exact	F1									
331	zero-shot learning	grok-4-fast	0.000	0.072	0.000	0.433	<u>0.167</u>	0.301	0.517	<u>0.034</u>	0.230	0.517	0.000	0.194
		gpt-5	0.982	0.383	0.751	0.972	0.439	0.775	0.962	0.250	0.736	0.971	<u>0.073</u>	0.664
		deepseek-r1-0528	0.892	<u>0.077</u>	0.099	0.724	0.000	0.068	0.565	0.032	0.041	0.528	0.009	<u>0.400</u>
		claude-sonnet-4	0.880	0.043	0.494	0.843	0.000	0.317	0.813	0.000	0.193	0.754	0.000	0.123
		qwen3-235b-a22b	0.959	0.021	0.523	0.875	0.031	0.437	1.000	0.000	0.207	1.000	0.000	0.135
		gemini-2.5-pro	0.977	0.055	<u>0.527</u>	0.950	0.020	0.409	0.914	0.000	0.099	0.840	0.080	0.040
		llama-3.1-405b-instruct	0.530	0.017	0.267	0.604	0.002	<u>0.487</u>	0.706	0.005	0.489	0.612	0.003	0.218
		qwen-2.5-7b-instruct	1.000	0.009	0.455	1.000	0.006	0.452	1.000	0.000	0.367	1.000	0.000	0.240
		phi-4-reasoning-plus	0.947	0.017	0.196	0.937	0.000	0.093	0.918	0.000	0.055	0.937	0.000	0.069
		mixtral-8x7b-instruct	1.000	0.003	0.109	0.972	0.000	0.097	0.964	0.000	0.062	1.000	0.000	0.019
340	3-shot learning	o3-mini	1.000	0.000	0.082	1.000	0.000	0.014	0.968	0.000	0.067	1.000	0.000	0.010
		claude-3.5-haiku	1.000	0.027	0.406	0.940	0.000	0.263	0.957	0.000	0.141	0.890	0.000	0.059
		llama-3.1-8b-instruct	0.351	0.002	0.287	0.430	0.000	0.326	0.333	0.000	0.074	0.433	0.000	0.058
		gpt-4o	1.000	0.018	0.111	0.980	0.000	0.065	1.000	0.000	0.025	1.000	0.000	0.024
		grok-4-fast	0.233	<u>0.087</u>	0.147	0.448	0.034	0.255	0.533	<u>0.100</u>	0.298	0.300	0.000	0.174
		gpt-5	0.997	0.392	0.768	0.990	0.443	0.759	0.971	0.267	0.776	0.985	0.124	0.678
		deepseek-r1-0528	0.833	0.069	0.108	0.681	<u>0.034</u>	0.069	0.590	0.004	0.047	0.559	0.008	<u>0.468</u>
		claude-sonnet-4	0.900	0.050	0.494	0.773	0.003	0.315	0.803	0.000	0.218	0.720	0.000	0.124
		qwen3-235b-a22b	0.897	0.006	<u>0.564</u>	0.914	0.006	0.470	1.000	0.000	0.179	1.000	0.000	0.122
		gemini-2.5-pro	0.990	0.045	0.511	0.949	0.000	0.127	0.939	0.030	0.085	1.000	0.037	0.036
341	3-shot learning w/ reasoning path	llama-3.1-405b-instruct	0.652	0.023	0.257	0.680	0.005	0.255	0.667	0.006	0.181	0.640	0.000	0.436
		qwen-2.5-7b-instruct	1.000	0.028	0.518	<u>0.995</u>	0.000	<u>0.478</u>	0.995	0.005	<u>0.370</u>	1.000	0.000	0.257
		phi-4-reasoning-plus	0.962	0.063	0.261	0.949	0.000	0.081	0.953	0.000	0.068	0.913	0.000	0.057
		mixtral-8x7b-instruct	1.000	0.000	0.233	0.983	0.000	0.079	1.000	0.000	0.018	1.000	0.000	0.074
		o3-mini	0.963	0.037	0.070	1.000	0.000	0.048	0.949	0.017	0.065	1.000	0.000	0.006
		claude-3.5-haiku	0.943	0.042	0.489	0.953	0.003	0.301	0.984	0.000	0.144	0.907	0.000	0.063
		llama-3.1-8b-instruct	0.293	0.010	0.229	0.458	0.000	0.327	0.300	0.000	0.044	0.400	0.000	0.029
		gpt-4o	0.983	0.009	0.106	<u>0.995</u>	0.000	0.136	1.000	0.000	0.006	0.973	0.000	0.031
		grok-4-fast	0.133	<u>0.204</u>	0.290	0.533	<u>0.167</u>	0.381	0.533	0.100	0.249	0.552	0.000	0.293
		gpt-5	0.980	0.413	0.815	0.976	0.505	0.812	0.953	0.299	0.834	0.981	0.155	0.709
342	3-shot learning w/ reasoning path	deepseek-r1-0528	0.800	0.120	0.112	0.784	0.054	0.094	0.625	0.036	0.407	0.625	0.010	<u>0.619</u>
		claude-sonnet-4	0.900	0.053	0.507	0.800	0.010	0.333	0.760	0.000	0.229	0.790	0.000	<u>0.225</u>
		qwen3-235b-a22b	0.963	0.009	0.460	0.915	0.017	<u>0.492</u>	0.964	0.000	0.278	1.000	0.000	0.170
		gemini-2.5-pro	0.980	0.124	<u>0.711</u>	0.962	0.085	0.235	0.972	0.100	0.090	1.000	0.000	0.045
		llama-3.1-405b-instruct	0.567	0.057	0.325	0.550	0.100	0.221	0.642	0.008	<u>0.526</u>	0.743	0.000	0.481
		qwen-2.5-7b-instruct	1.000	0.032	0.539	0.991	0.012	0.479	1.000	0.009	0.394	1.000	0.004	0.263
		phi-4-reasoning-plus	0.953	0.030	0.221	0.963	0.000	0.096	0.957	0.000	0.068	0.927	0.000	0.063
		mixtral-8x7b-instruct	1.000	0.018	0.046	1.000	0.000	0.127	1.000	0.000	0.000	0.941	0.000	0.020
		o3-mini	1.000	0.054	0.087	0.818	0.000	0.015	1.000	0.000	0.085	0.925	<u>0.019</u>	0.047
		claude-3.5-haiku	0.938	0.047	0.547	0.957	0.003	0.302	0.947	0.000	0.152	0.903	0.000	0.075
343	3-shot learning w/ reasoning path	llama-3.1-8b-instruct	0.334	0.023	0.283	0.410	0.006	0.342	0.241	0.000	0.052	0.333	0.000	0.045
		gpt-4o	0.970	0.000	0.037	1.000	0.000	0.042	1.000	0.000	0.019	1.000	0.000	0.001

350 ≈ 0.20), *gemini-2.5-pro* ($F1 \approx 0.71$, Exact accuracy ≈ 0.12), and *deepseek-r1-0528* ($F1 \approx 0.11$, Exact accuracy ≈ 0.12). All other systems remain far below 1% Exact accuracy, which highlights the challenge of exhaustive enumeration. Consistently, the models perform best under the 3-shot learning setting with reasoning paths, followed by 3-shot learning without reasoning paths, while the zero-shot setting sees the worst model performances. This observation confirms that reasoning-path supervision is especially critical for this task.

4.3 TASK 3: GENERATIVE TASK

351 **Formulation of Task 3.** This task evaluates whether, given n mutually consistent premises, LLMs
 352 can generate n new statements that remain logically consistent. The process begins by partitioning
 353 the global set of atomic propositions \mathcal{P} and their truth assignments ℓ into n disjoint groups
 354 $\{G_i\}_{i=1}^n$. For each group, a set of ten natural-language facts $\{\text{Prem}_i\}$ is generated under strict
 355 logical and linguistic constraints, including the mandatory use of multiple logical connectives
 356 and a rich vocabulary. Each generated fact is then translated into a symbolic logical form $f_{i,k}^{\text{sym}}$.
 357 The core of the task lies in the exhaustive consistency evaluation of all cross-group combinations
 358 $C_\alpha = (f_{1,a_1}^{\text{sym}}, \dots, f_{n,a_n}^{\text{sym}})$ for $\alpha \in \{1, \dots, 10\}^n$; a combination is deemed consistent if and only if

378 Table 4: Performance on **Task 3 (Generative Task)** across different group statements numbers
 379 (2–5). Results are shown for *Executive Rate* and *Consistency* under the zero-shot setup.

Model	Exec (G2)	Cons (G2)	Exec (G3)	Cons (G3)	Exec (G4)	Cons (G4)	Exec (G5)	Cons (G5)
grok-4-fast	1	0.836	0.95	0.71	0.74	0.458	0.67	0.427
gpt-5	1	0.826	0.94	0.686	0.77	0.436	0.66	0.381
deeplearn-r1-0528	1	0.802	0.88	0.649	0.63	0.372	0.46	0.283
claude-sonnet-4	0.94	0.776	0.93	0.608	0.6	0.324	0.53	0.172
qwen3-235b-a22b	0.93	0.593	0.77	0.471	0.48	0.141	0.3	0.019
gemini-2.5-pro	1	0.817	0.93	0.663	0.76	0.416	0.65	0.348
llama-3.1-405b	0.92	0.696	0.91	0.639	0.67	0.369	0.54	0.247
qwen2.5-7b	0.88	0.575	0.82	0.452	0.53	0.101	0.38	0.12
phi-4-reasoning-plus	0.93	0.687	0.9	0.625	0.67	0.349	0.53	0.219
mixtral-8x7b	0.84	0.587	0.77	0.466	0.55	0.128	0.33	0.106
o3-mini	1	0.79	0.94	0.713	0.87	0.478	0.67	0.358
claude-3.5-haiku	0.94	0.6958	0.91	0.638	0.68	0.369	0.43	0.257
llama-3.1-8b	0.89	0.668	0.88	0.596	0.66	0.308	0.33	0.138
gpt-4o	0.98	0.703	0.89	0.649	0.68	0.385	0.55	0.287

394 every fact within it evaluates to true under the global assignment ℓ . Further implementation details
 395 are provided in the Appendix.

399 As shown in Table 4, Execution rate, which means format correctness across n statements in a
 400 group, remains high for top models such as `grok-4-fast`, `gpt-5`, `gemini-2.5-pro`, and
 401 `o3-mini`, even when $n = 5$. Smaller models (e.g., `qwen2.5-7b`, `mixtral-8x7b`) show no-
 402 table degradation as n increases. Furthermore, performance follows a clear trend that higher n leads
 403 to worse performance, which reflect the **difficulty still exists even for non-enumerative tasks**.

5 DIFFICULTY-BASED ANALYSIS

408 As introduced in Section 4, we design **three** benchmark tasks and extend them with variants to
 409 capture a deeper assessment of performance. For Task 1, we evaluate on **hard samples**, where
 410 consistent and inconsistent labels differ by only one position, and also introduce a **label comple-
 411 tion variant**. For Task 2, we evaluate on **short reasoning edge samples**, **short statement length
 412 samples**, and **commonsense, counterfactual, and human-like natural language statements**. This
 413 design provides a finer view of when models succeed and when they fail.

5.1 TASK 1 ON HARD SAMPLES AND THE LABEL COMPLETION VARIANT

417 To better probe model limitations, we formulate two harder task variants using hard samples
 418 and label completion, as detailed in the Appendix K. Compared with the aggregate Task 1 re-
 419 sults, model performances on hard samples reveal sharper contrasts. On hard samples (dark-
 420 colored bars in Figure 5a), all model performances drop remarkably. While on the comple-
 421 tion variant (Figure 5b), model performances differ more significantly: strong models (`gpt-5`,
 422 `gemini-2.5-pro`) plateau around 80–86%, while smaller models (e.g., `claude-3.5-haiku`)
 423 collapse below 40%, near random guessing.

5.2 TASK 2 ON SAMPLES WITH SHORT REASONING PATH AND STATEMENT LENGTH

428 Performance shown in Figure 6 improves modestly but remains low overall. On the Short Path
 429 subset, under the 3-shot learning setting with reasoning paths, `gpt-5` averagely increases its Exact
 430 accuracy from about 34% to 58%, while `grok-4-fast`’s Exact accuracy averagely rises from
 431 12% to 31%. On the Short Length subset, gains are smaller: for instance, `gpt-5` averagely reaches
 only 34% Exact accuracy, which shows that shorter statements provide limited benefit. Across both

432 Table 5: Performance on three tasks and downstream benchmark correlations.
433

Benchmark	Pearson (Task 1)	Spearman (Task 1)	Pearson (Task 2)	Spearman (Task 2)	Pearson (Task 3)	Spearman (Task 3)
livecodebench	0.675	0.636	0.651	0.696	0.623	0.689
infinite	0.762	0.763	0.735	0.779	0.744	0.749
aime	0.786	0.643	0.653	0.678	0.690	0.652
aa-lcr	0.624	0.598	0.614	0.695	0.603	0.665
acebench	0.632	0.640	0.526	0.688	0.714	0.702

434
435 subsets, few-shot and especially few-path prompting remain the most effective strategies, with the
436 best models retaining a clear advantage.
437440 5.3 TASK 2 ON COMMONSENSE AND COUNTERFACTUAL SAMPLES
441442
443
444
445 **Task 2 on Commonsense and Counterfactual Formulation.** To address potential reasoning
446 shortcuts from generated statements **coinciding with or contradicting** real-world facts, we con-
447 ducted a controlled experiment. We used gpt-5.1 to generate 100 commonsense atomic propositions
448 and 100 counterfactual ones. For both sets, we **randomly substituted** these atomic propositions
449 into previously generated natural-language statement sets while preserving the sets’ original logical
450 labels, since the propositional structure remains unchanged. We then evaluated models on these
451 modified statement sets. **Task 2 on Commonsense and Counterfactual Findings.** Our qualitative
452 analysis reveals that the core reasoning strategy remains fundamentally unchanged between com-
453 monsense and counterfactual conditions (Appendix L Table 17 and Table 18). Models consistently
454 translate sentences into symbolic representations, leading to highly similar performance patterns
455 despite surface-level differences.
456457 5.4 TASK 2 ON HUMANIZED NATURAL-LANGUAGE STATEMENTS
458459
460
461 **Task 2 on Humanized Natural-Language Statements Formulation.** To address the lack of di-
462 versity and naturalness in templated text generation, we created 1000 “human-style” paraphrased
463 statement sets. We sampled from each (k)-statement sets and used gpt-4o to rewrite the sentences
464 into more natural English (see Appendix M for the prompt). **Task 2 on Humanized Natural-
465 Language Statements Findings.** As shown in Appendix L Table 19, large models exhibited almost
466 no performance drop, in contrast, small models suffered a clear degradation, which confirms that the
467 natural-language understanding component becomes significantly more challenging once the strong
468 surface regularities of templated sentences are removed. The finding that only semantically capable
469 large LLMs succeed when linguistic cues are removed provides strong evidence that LogiConBench
470 genuinely measures the different reasoning capabilities.
471472 6 REAL-WORLD SIGNIFICANCE
473474
475
476 To clarify the practical value of LogiConBench, we evaluated the same set of models on several
477 widely-used real-world downstream benchmarks, covering code generation (LiveCodeBench (Jain
478 et al., 2025)), long-context writing (InfiniteBench (Zhang, 2024)), mathematical reasoning
479 (aime (Maxwell-Jia, 2025)), long-horizon logical reasoning (AA-LCR (Artificial Analysis Team,
480 2025)), and agent collaboration (ACE Bench (Chen et al., 2025)), as shown in Appendix N Ta-
481 ble 20. We additionally computed Pearson and Spearman correlations between LogiConBench’s
482 **three tasks**, and each downstream benchmark (as shown in Table 5). The correlations are consis-
483 tently moderate to strong across all domains, showing that LogiConBench performance is tightly
484 aligned with capabilities that models actually rely on in real-world use.
485

486 **Key observation.** (1) **All three tasks correlate strongly with long-context reasoning and agent-**
 487 **style collaborative tasks**, which indicates that LogiConBench captures a model’s ability for agent
 488 planning, multi-step tool use, and delegated workflows. (2) **LogiConBench also correlates with**
 489 **math and code benchmarks**, which demonstrates that stable logical consistency is predictive of
 490 models’ reliability in symbolic and algorithmic domains. Importantly, (3) **Task 2 correlates more**
 491 **strongly with long-horizon and multi-context benchmarks**, which reflects that cross-premise
 492 consistency (the core of Task 2) aligns with the demands of real agent systems, which often must
 493 reason coherently across multiple partial states or instructions.

494 7 UNDERSTANDING MODEL BEHAVIORS

495 7.1 QUANTITATIVE ERROR ANALYSIS

496 Across all tasks’ quantitative performance, we observe three recurring failure modes. (1) **Enumera-**
 497 **tion breakdown**: in Task 2, models often omit some consistent label lists, produce duplicates,
 498 or output in the wrong format, which reflects a lack of systematic coverage. (2) **Error propa-**
 499 **gation**: as k increases, small local mistakes compound along reasoning chains, which explains
 500 the sharp accuracy drop from $k = 2$ to $k = 5$ in Task 1 and the plateauing of frontier mod-
 501 els in the Hard samples. (3) **Bias asymmetry**: many models exhibit skewed sensitivity, either
 502 over-predicting consistencies (e.g., claude-3.5-haiku) or over-detecting inconsistencies (e.g.,
 503 phi-4-reasoning-plus), while a few frontier systems (e.g., gpt-5) lean toward inconsis-
 504 tency more systematically. Together, these trends suggest that contradiction detection (Task 1) is
 505 still manageable for frontier models, but exhaustive enumeration (Task 2) exposes deeper weak-
 506 nesses in structured reasoning and systematic search, with large room for improvement.

511 7.2 QUALITATIVE ERROR ANALYSIS

512 **(1) Different-sized models have a clear difference.** Large models (e.g., GPT-4, Claude-Sonnet) first translate problems into symbolic form, enabling effective short-step logic. In contrast, smaller models (e.g., Llama-3.1-8B) tend to paraphrase the problem and jump to a conclusion, explaining their low accuracy despite moderate F1 scores.**(2) Shared Error Patterns in Large Models.** Even advanced models exhibit critical flaws. Their reasoning is often short-sighted, leading to three recurring errors: *Incomplete Enumeration* (checking too few cases), *One-Way Simplification* (failing to map symbolic results back to the original problem), and *Lost Goals* (losing sight of the main objective during reasoning).**(3) Task-Specific Failure Modes.** The two tasks expose distinct weaknesses. In Task 1, models struggle with *counterfactual exploration*, failing to systematically consider “what-if” scenarios. In Task 2, *semantic drift* occurs, where models output correct intermediate reasoning symbols as the final answer, confusing the tool with the solution.

524 8 CONCLUSIONS, LIMITATIONS AND FUTURE WORKS

525 **LogiConBench** advances the study of logical consistency in LLMs by addressing three key lim-
 526 itations of existing benchmarks: lack of scalability, absence of explicit reasoning structures, and
 527 insufficient difficulty. Our framework automatically generates unlimited logical rule combina-
 528 tions with precise labels, constructs graphs with controllable depths that provide explicit reasoning paths,
 529 and remains challenging for state-of-the-art LLMs. Large-scale experiments with 14 frontier mod-
 530 els show that while *Discriminative task* can reach 85–95% accuracy, *Enumerative task* remains
 531 extremely difficult, with the best average exact accuracy only 34%. Moreover, the introduction
 532 of difficulty-based task variants reveals stable relative performance rankings across models, which
 533 highlights the benchmark’s evaluative value. Despite its contributions, **LogiConBench** has certain
 534 limitations. First, the natural language generation process still relies on templates and lexical substi-
 535 tution, which may limit linguistic diversity compared to fully human-authored datasets. Second, our
 536 experiments mainly evaluate single-turn consistency reasoning, without extending to interactive or
 537 long-horizon reasoning scenarios. Future directions include enhancing the diversity of language for-
 538 mulations beyond templates and extending evaluation to interactive multi-turn or multi-agent tasks
 539 where logical consistency plays a central role. We also foresee applying LogiConBench for model
 training and alignment to strengthen consistency reasoning in frontier LLMs.

540 ETHICS STATEMENT
541542 This work does not involve human subjects or sensitive personal data. All datasets are automatically
543 generated using symbolic rules and publicly available lexical resources, with no privacy or security
544 risks. The study does not raise foreseeable ethical concerns related to fairness, discrimination, or
545 potential harmful use.546
547 REPRODUCIBILITY STATEMENT
548549 All datasets and preprocessing procedures, and evaluation metrics are described in detail in the main
550 text and appendix. Complete implementation details are provided in an anonymized repository
551 containing the code and reproduction instructions at [https://anonymous.4open.science/r/](https://anonymous.4open.science/r/LogiConBench-11D1/)
552 LogiConBench-11D1/.553
554 REFERENCES
555556 Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl, Lingjiao
557 Chen, Gustavo de Rosa, Suriya Gunasekar, Mojan Javaheripi, Neel Joshi, et al. Phi-4-reasoning
558 technical report. *arXiv preprint arXiv:2504.21318*, 2025.559 Anthropic. Introducing claude 3.5 haiku, 2024. URL <https://www.anthropic.com/claude/haiku>.560 Anthropic. Introducing claude 4, 2025. URL <https://www.anthropic.com/news/claude-4>.

561 Artificial Analysis Team. Artificial analysis long context reasoning benchmark, 2025.

562 Akari Asai and Hannaneh Hajishirzi. Logic-guided data augmentation and regularization for consistent
563 question answering. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.),
564 *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pp.
565 5642–5650, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.499. URL <https://aclanthology.org/2020.acl-main.499>.566 Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
567 Yakhnenko. Translating embeddings for modeling multi-relational data. In C.J.
568 Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (eds.), *Advances in Neural Information Processing Systems*, volume 26. Curran Associates, Inc.,
569 2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf.570 Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated
571 corpus for learning natural language inference. In Lluís Màrquez, Chris Callison-Burch, and
572 Jian Su (eds.), *Proceedings of the 2015 Conference on Empirical Methods in Natural Language
573 Processing*, pp. 632–642, Lisbon, Portugal, September 2015. Association for Computational Lin-
574 guistics. doi: 10.18653/v1/D15-1075. URL <https://aclanthology.org/D15-1075>.575 Diego Calanzone, Stefano Teso, and Antonio Vergari. Logically consistent language models via
576 neuro-symbolic integration. In *The Thirteenth International Conference on Learning Repre-
577 sentations*, 2025. URL <https://openreview.net/forum?id=7PGluppo4k>.578 Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam Hruschka, and Tom
579 Mitchell. Toward an architecture for never-ending language learning. In *Proceedings of the
580 AAAI conference on artificial intelligence*, volume 24, pp. 1306–1313, 2010.581 Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai
582 Wang, Weinan Gan, Yuefeng Huang, et al. Acebench: Who wins the match point in tool usage?
583 *arXiv preprint arXiv:2501.12851*, 2025.584 Fengxiang Cheng, Haoxuan Li, Fenrong Liu, Robert Van Rooij, Kun Zhang, and Zhouchen Lin.
585 Empowering llms with logical reasoning: A comprehensive survey. In *Proceedings of the Thirty-
586 Fourth International Joint Conference on Artificial Intelligence*, 2025.

594 Ian Chiswell and Wilfrid Hodges. *Mathematical logic*. OUP Oxford, 2007.
 595

596 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 597 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 598 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 599 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

600 Bhavana Dalvi, Peter Jansen, Oyvind Tafjord, Zhengnan Xie, Hannah Smith, Leighanna Pi-
 601 patanangkura, and Peter Clark. Explaining answers with entailment trees. In Marie-Francine
 602 Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceedings of the 2021*
 603 *Conference on Empirical Methods in Natural Language Processing*, pp. 7358–7370, Online
 604 and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguis-
 605 tics. doi: 10.18653/v1/2021.emnlp-main.585. URL <https://aclanthology.org/2021.emnlp-main.585/>.

606 Christiane Fellbaum. Wordnet and wordnets. In Keith Brown (ed.), *Encyclopedia of Language and*
 607 *Linguistics*. Elsevier, Oxford, 2 edition, 2005.

608

609 Bishwamitra Ghosh, Sarah Hasan, Naheed Anjum Arafat, and Arijit Khan. Logical consistency of
 610 large language models in fact-checking. In *The Thirteenth International Conference on Learning*
 611 *Representations*, 2025. URL <https://openreview.net/forum?id=Sim1DuN0YT>.

612

613 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 614 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 615 of models. *arXiv preprint arXiv:2407.21783*, 2024.

616

617 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 618 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 619 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

620

621 Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
 622 Coady, David Peng, Yujie Qiao, Luke Benson, Lucy Sun, Alexander Wardle-Solano, Hannah
 623 Szabó, Ekaterina Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu, Brian Wong, Malcolm
 624 Sailor, Ansong Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Alexander Fabbri, Wo-
 625 jciech Maciej Kryscinski, Semih Yavuz, Ye Liu, Xi Victoria Lin, Shafiq Joty, Yingbo Zhou,
 626 Caiming Xiong, Rex Ying, Arman Cohan, and Dragomir Radev. FOLIO: Natural language rea-
 627 soning with first-order logic. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
 628 *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*,
 629 pp. 22017–22031, Miami, Florida, USA, November 2024. Association for Computational Lin-
 630 guistics. doi: 10.18653/v1/2024.emnlp-main.1229. URL <https://aclanthology.org/2024.emnlp-main.1229/>.

631

632 Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-lsc:
 633 A large-scale challenge for machine learning on graphs. In *Thirty-fifth Conference on Neural*
 634 *Information Processing Systems Datasets and Benchmarks Track (Round 2)*, 2021.

635

636 Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
 637 In *ACL (Findings)*, 2023.

638

639 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 640 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 641 *arXiv:2410.21276*, 2024.

642

643 Frank K Hwang and Dana S Richards. Steiner tree problems. *Networks*, 22(1):55–89, 1992.

644

645 Naman Jain et al. Livecodebench: Holistic and contamination free evaluation of large language
 646 models for code. In *Proceedings of the International Conference on Learning Representations*
 647 (*ICLR*), 2025.

648

649 Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
 650 ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
 651 Mixtral of experts. *arXiv preprint arXiv:2401.04088*, 2024.

648 Jaehun Jung, Lianhui Qin, Sean Welleck, Faeze Brahman, Chandra Bhagavatula, Ronan Le Bras,
 649 and Yejin Choi. Maieutic prompting: Logically consistent reasoning with recursive explanations.
 650 In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference*
 651 *on Empirical Methods in Natural Language Processing*, pp. 1266–1279, Abu Dhabi, United Arab
 652 Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
 653 emnlp-main.82. URL <https://aclanthology.org/2022.emnlp-main.82/>.

654 Nora Kassner, Oyvind Tafjord, Hinrich Schütze, and Peter Clark. BeliefBank: Adding memory
 655 to a pre-trained language model for a systematic notion of belief. In Marie-Francine Moens,
 656 Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Con-*
 657 *ference on Empirical Methods in Natural Language Processing*, pp. 8849–8861, Online and
 658 Punta Cana, Dominican Republic, November 2021. Association for Computational Linguis-
 659 tics. doi: 10.18653/v1/2021.emnlp-main.697. URL <https://aclanthology.org/2021.emnlp-main.697/>.

660 Nora Kassner, Oyvind Tafjord, Ashish Sabharwal, Kyle Richardson, Hinrich Schuetze, and Pe-
 661 ter Clark. Language models with rationality. In *The 2023 Conference on Empirical Methods*
 662 *in Natural Language Processing*, 2023. URL <https://openreview.net/forum?id=6j7JZnEzf4>.

663 Tao Li, Vivek Gupta, Maitrey Mehta, and Vivek Srikumar. A logic-driven framework for consistency
 664 of neural models. In *Proceedings of the 2019 Conference on Empirical Methods in Natural*
 665 *Language Processing*, 2019.

666 Fenrong Liu and Martin Stokhof. *Logic, Language and Philosophy: An Introduction to Standard*
 667 *Logic*. CSLI Publications, 2024.

668 Yinhong Liu, Zhijiang Guo, Tianya Liang, Ehsan Shareghi, Ivan Vulić, and Nigel Collier. Aligning
 669 with logic: Measuring, evaluating and improving logical preference consistency in large language
 670 models. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=V61nluxFlR>.

671 Maxwell-Jia. Aime: All 30 problems from the 2025 american invitational mathematics examination.
 672 Technical report, AIME, 2025.

673 Eric Mitchell, Joseph Noh, Siyan Li, Will Armstrong, Ananth Agarwal, Patrick Liu, Chelsea
 674 Finn, and Christopher Manning. Enhancing self-consistency and performance of pre-trained
 675 language models through natural language inference. In Yoav Goldberg, Zornitsa Kozareva,
 676 and Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical Methods in Natu-*
 677 *ral Language Processing*, pp. 1754–1768, Abu Dhabi, United Arab Emirates, December 2022.
 678 Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.115. URL
 679 <https://aclanthology.org/2022.emnlp-main.115/>.

680 Terufumi Morishita, Gaku Morio, Atsuki Yamaguchi, and Yasuhiro Sogawa. Learning deductive
 681 reasoning from synthetic corpus based on formal logic. In *Proceedings of the 40th Interna-*
 682 *tional Conference on Machine Learning*, pp. 25254–25274, 2023.

683 Yasumasa Onoe, Michael J. Q. Zhang, Eunsol Choi, and Greg Durrett. Creak: A dataset for
 684 commonsense reasoning over entity knowledge. In *NeurIPS Datasets and Benchmarks*, 2021.
 685 URL <https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/5737c6ec2e0716f3d8a7a5c4e0de0d9a-Abstract-round2.html>.

686 OpenAI. Introducing gpt-5, 2025a. URL <https://openai.com/index/introducing-gpt-5/>.

687 OpenAI. Openai o3-mini, 2025b. URL <https://openai.com/index/openai-o3-mini/>.

688 Daniel Paleka, Abhimanyu Pallavi Sudhir, Alejandro Alvarez, Vineeth Bhat, Adam Shen, Evan
 689 Wang, and Florian Tramèr. Consistency checks for language model forecasters. In *The Thirteenth*
 690 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=r5IXB1TCGc>.

702 Arijit Ray, Karan Sikka, Ajay Divakaran, Stefan Lee, and Giedrius Burachas. Sunny and dark
 703 outside?! improving answer consistency in VQA through entailed question generation. In Kentaro
 704 Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), *Proceedings of the 2019 Conference
 705 on Empirical Methods in Natural Language Processing and the 9th International Joint Conference
 706 on Natural Language Processing (EMNLP-IJCNLP)*, pp. 5860–5865, Hong Kong, China,
 707 November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1596. URL
 708 <https://aclanthology.org/D19-1596/>.

709 Shikhar Singh, Nuan Wen, Yu Hou, Pegah Alipoormolabashi, Te-lin Wu, Xuezhe Ma, and Nanyun
 710 Peng. COM2SENSE: A commonsense reasoning benchmark with complementary sentences. In
 711 Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Findings of the Association
 712 for Computational Linguistics: ACL-IJCNLP 2021*, pp. 883–898, Online, August 2021. Association
 713 for Computational Linguistics. doi: 10.18653/v1/2021.findings-acl.78. URL <https://aclanthology.org/2021.findings-acl.78/>.

714 Mooho Song, Hye Ryung Son, and Jay-Yoon Lee. Introducing verification task of set consistency
 715 with set-consistency energy networks. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
 716 Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association
 717 for Computational Linguistics (Volume 1: Long Papers)*, pp. 33346–33366, Vienna, Austria, July
 718 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/
 719 2025.acl-long.1599. URL <https://aclanthology.org/2025.acl-long.1599/>.

720 Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open multilingual graph of
 721 general knowledge. In *Proceedings of the AAAI conference on artificial intelligence*, volume 31,
 722 2017.

723 Oyvind Tafjord, Peter Clark, Matt Gardner, Wen-tau Yih, and Ashish Sabharwal. Quarel: A dataset
 724 and models for answering questions about qualitative relationships. In *Proceedings of the AAAI
 725 Conference on Artificial Intelligence*, volume 33, pp. 7063–7071, 2019.

726 Niket Tandon, Bhavana Dalvi, Keisuke Sakaguchi, Peter Clark, and Antoine Bosselut. WIQA: A
 727 dataset for “what if...” reasoning over procedural text. In Kentaro Inui, Jing Jiang, Vincent Ng, and
 728 Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural
 729 Language Processing and the 9th International Joint Conference on Natural Language Processing
 730 (EMNLP-IJCNLP)*, pp. 6076–6085, Hong Kong, China, November 2019. Association for
 731 Computational Linguistics. doi: 10.18653/v1/D19-1629. URL <https://aclanthology.org/D19-1629/>.

732 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
 733 A multi-task benchmark and analysis platform for natural language understanding. In Tal Linzen,
 734 Grzegorz Chrupała, and Afra Alishahi (eds.), *Proceedings of the 2018 EMNLP Workshop Black-
 735 boxNLP: Analyzing and Interpreting Neural Networks for NLP*, pp. 353–355, Brussels, Belgium,
 736 November 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-5446. URL
 737 <https://aclanthology.org/W18-5446/>.

738 Dag Westerståhl. Foundations of logic: completeness, incompleteness, computability. 2022.

739 xAI. Grok 4 fast, 2025. URL <https://x.ai/news/grok-4-fast>.

740 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 741 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 742 arXiv:2505.09388*, 2025.

743 Qwen An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 744 Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
 745 Jianwei Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
 746 Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin,
 747 Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yi-Chao Zhang,
 748 Yunyang Wan, Yuqi Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu, Shanghaoran Quan, and Zekun
 749 Wang. Qwen2.5 technical report. *ArXiv*, abs/2412.15115, 2024.

756 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
 757 and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
 758 answering. In *Conference on Empirical Methods in Natural Language Processing (EMNLP)*,
 759 2018.

760 ... Zhang. Infinitebench: Extending long context evaluation beyond 100k tokens. In *Proceedings of*
 761 *the 62nd Annual Meeting of the Association for Computational Linguistics (ACL)*, 2024.

764 USAGE OF AI

766 In this work, we made limited use of LLMs as an assistive writing tool. Specifically, we used LLMs
 767 to replace synonyms, restructure sentences, and brainstorm alternative ways of expressing ideas
 768 within paragraphs. All conceptual contributions, research design, experiments, analyses, and final
 769 writing decisions were made by the authors. The authors take full responsibility for the accuracy
 770 and originality of the content.

772 A RELATED WORK

774 A.1 DATASETS FOR LOGICAL CONSISTENCY

776 Several datasets have been introduced to study consistency, but they mostly fall into three categories:
 777 (1) *constraint-graph and knowledge-graph resources*, which encode logical relations over structured
 778 triples or constraint graphs; (2) *QA-style datasets*, which induce logical dependencies between an-
 779 swers to paired or sequential questions; and (3) *NLI-style corpora*, which frame consistency in terms
 780 of entailment, contradiction, or neutrality. While each line provides valuable insights, they are gen-
 781 erally tied to specific domains, limited rule templates, or narrow label spaces. Importantly, many
 782 of these resources conflate *factual consistency* (whether statements are true with respect to exter-
 783 nal world knowledge) with *logical consistency* (whether statements are mutually non-contradictory
 784 under formal rules), whereas our work isolates and directly evaluates the latter.

785 **Constraint-graph and knowledge-graph datasets.** **BeliefBank** (Kassner et al., 2021) builds an
 786 explicit constraint graph from ConceptNet (Speer et al., 2017) and WordNet (Fellbaum, 2005),
 787 where structural rules define positive implications and mutual exclusivities. By instantiating enti-
 788 ties into this graph, 12,525 “silver” truth-labeled facts are automatically propagated, and additional
 789 human-labeled calibration facts are introduced to refine consistency. The recently introduced **Log-
 790 ical Fact-checking Datasets** (Ghosh et al., 2025) (FreebaseLFC, NELLFC, and WikiLFC) are
 791 derived from large knowledge graphs (Bordes et al., 2013; Carlson et al., 2010; Hu et al., 2021),
 792 where triplets are transformed into (Fact, Context) pairs. These benchmarks explicitly support
 793 propositional logic queries with negation, conjunction, and disjunction, thus enabling large-scale
 794 fact-checking with logical operators. **EntailmentBank** (Dalvi et al., 2021) provides the first dataset
 795 of multistep and full derivation entailment trees, a graph-structured form of explanation that links
 796 atomic facts to hypotheses through multipremise entailment steps. However, these graph-based re-
 797 sources are tied to specific domains, such as facts, and to specific rule templates, which make them
 798 less general for evaluating logical consistency in diverse open-domain settings.

799 **QA-style consistency datasets.** **ConVQA** (Ray et al., 2019) consists of visual question–answer
 800 pairs that are logically related, which naturally induces logical constraints between answers, mak-
 801 ing the dataset well suited for evaluating consistency in visual reasoning. Several commonsense
 802 and scientific QA datasets follow a similar design by introducing logically related statements or
 803 questions. **Com2Sense** (Singh et al., 2021) presents paired statements where only one is logically
 804 consistent with commonsense knowledge, requiring models to distinguish true from false assertions.
 805 **CREAK** (Onoe et al., 2021) further targets commonsense abduction, consisting of fact-verification
 806 questions that require linking claims to implicit commonsense knowledge. Likewise, **OBQA** and
 807 **QuaRTz** provide science and quantitative reasoning questions with built-in logical dependencies
 808 between answers. Beyond pairwise consistency, datasets such as **WIQA** (Tandon et al., 2019),
 809 **QuaRel** (Tafjord et al., 2019), and **HotpotQA** (Yang et al., 2018) emphasize causal reasoning. For
 example, WIQA asks about the effects of perturbations on processes described in procedural texts,

810 requiring the model to trace causal chains and determine whether changes lead to positive, negative,
 811 or neutral outcomes. Nonetheless, these QA datasets typically test specific reasoning phenomena
 812 and do not provide systematic coverage of logical consistency rules across diverse contexts.
 813

814 **Natural Language inference (NLI) datasets.** Standard NLI corpora such as **SNLI** (Bowman
 815 et al., 2015) and **MultiNLI** (Wang et al., 2018) can be adapted for logical consistency evaluation,
 816 as they contain premise–hypothesis pairs annotated with entailment, contradiction, or neutrality.
 817 Recent extensions have moved beyond pairs to sets of statements: **Set-SNLI** and **Set-LConVQA**
 818 (Song et al., 2025) require detecting whether an entire set of sentences is mutually consistent and
 819 identifying the specific statements that introduce conflict. **FOLIO** (Han et al., 2024) is the first
 820 expert-written dataset for first-order logic (FOL) reasoning, where each example pairs a set of natu-
 821 ral language premises with a conclusion derived from NLI symbols, together with a parallel formal-
 822 ization in FOL. Yet these NLI-style resources are limited in scale and coverage of logical operators,
 823 which are contradiction, neutral, and entailment, and thus cannot fully capture the broad range of
 824 logical consistency phenomena.
 825

825 A.2 METHODS FOR LOGICAL CONSISTENCY REASONING

827 **Fact-checking tasks.** BeliefBank (Kassner et al., 2021) embeds a pretrained language model
 828 in a system with an evolving symbolic memory, using a weighted MaxSAT solver to reason over
 829 dependencies and a feedback mechanism to query the model with known beliefs as context. Ghosh
 830 et al. (2025) introduces logical fact-checking datasets over knowledge graphs, proposes measures
 831 of logical consistency on propositional logic queries, and applies supervised fine-tuning to improve
 832 performance. Calanzone et al. (2025) introduce a neuro-symbolic loss that enforces consistency
 833 with an external set of facts and rules, allowing multiple constraints to be combined in a principled
 834 way and improving generalization to unseen but semantically similar knowledge. Paleka et al.
 835 (2025) define consistency metrics for LLM forecasters based on arbitrage opportunities, generate
 836 logically related question sets, and demonstrate that instantaneous consistency metrics correlate
 837 with ground-truth forecasting performance.
 838

839 **NLI-based tasks.** Li et al. (2019) present a framework that compiles knowledge stated in first-
 840 order logic into loss functions, reducing inconsistency in neural models. ConCoRD constructs a
 841 factor graph combining model predictions and NLI-based pairwise relations, then applies weighted
 842 MaxSAT to select globally consistent answers, boosting performance on QA and VQA bench-
 843 marks (Mitchell et al., 2022). Maieutic Prompting recursively generates trees of abductive expla-
 844 nations and frames inference as a satisfiability problem over these explanations and their logical
 845 relations, achieving improvements on commonsense reasoning benchmarks (Jung et al., 2022) . RE-
 846 FLEX adds a rational, self-reflecting layer on top of LLMs: it builds belief graphs through backward
 847 chaining and uses a constraint reasoner to minimize contradictions, significantly improving consis-
 848 tency without harming accuracy (Kassner et al., 2023) .
 849

850 **Comparison QA approaches.** Asai & Hajishirzi (2020) propose logic-guided data augmentation
 851 and regularization, leveraging logical and linguistic knowledge to augment training data and
 852 constrain predictions, thereby improving global consistency across multiple QA tasks. REPAIR in-
 853 troduces a framework to quantify logical consistency via proxies such as transitivity, commutativity,
 854 and negation invariance, evaluates LLMs across multiple comparison tasks, and enhances consis-
 855 tency through data refinement and augmentation (Liu et al., 2025) .
 856

855 B TABLE 1 EXPLANATION

856 In this section, we explain how the statistics in Table 1 were obtained.

857 **BeliefBank.** Section 5.3 of Kassner et al. (2021) mentions that the dataset contains 12,525 “silver”
 858 truth-labeled facts. The constraints used are only of two types: Positive Implications and Mutual
 859 Exclusivities. Thus, we consider the rule count as 2. Since all constraints are directly instantiated
 860 without multi-step reasoning, the depth is set to 1, and the operators involved are implication (\rightarrow),
 861 negation (\neg), and bidirectional implication (\leftrightarrow). The dataset does not explicitly provide reasoning
 862 paths. As it is developed from ConceptNet, its scalability is considered limited.
 863

Table 6: Natural deduction rules for the five logical operators.

Operator	Introduction Rule	Elimination Rule
Implication (\rightarrow)	I_{\rightarrow} : If assuming φ leads (possibly through several steps) to ψ , then infer $\varphi \rightarrow \psi$ (discharge assumption, make it part of the conclusion).	E_{\rightarrow} (Modus Ponens): From φ and $\varphi \rightarrow \psi$, infer ψ .
Disjunction (\vee)	I_{\vee} : From φ , infer $\varphi \vee \psi$; or from ψ , infer $\varphi \vee \psi$ (introduce \vee by either side).	E_{\vee} : From $\varphi \vee \psi$, and the two derivations $\varphi \vdash \chi$ and $\psi \vdash \chi$, infer χ .
Conjunction (\wedge)	I_{\wedge} : From φ and ψ , infer $\varphi \wedge \psi$ (introduce \wedge in the conclusion).	E_{\wedge} : From $\varphi \wedge \psi$, infer either φ or ψ (eliminate \wedge from the premise).
Negation (\neg)	I_{\neg} : From assuming φ leads to contradiction \perp , infer $\neg\varphi$.	E_{\neg} : From φ and $\neg\varphi$, infer contradiction \perp .
Biconditional (\leftrightarrow)	I_{\leftrightarrow} : From $\varphi \rightarrow \psi$ and $\psi \rightarrow \varphi$, infer $\varphi \leftrightarrow \psi$.	E_{\leftrightarrow} : From $\varphi \leftrightarrow \psi$, infer either $\varphi \rightarrow \psi$ or $\psi \rightarrow \varphi$.

EntailmentBank. The dataset contains 1,840 QA pairs. Table 1 of Dalvi et al. (2021) reports that the average number of edges per inference is 6, which we use as the average reasoning depth. Only the implication operator (\rightarrow) is present, and reasoning paths are explicitly included. However, since all examples were annotated by experts, scalability remains limited.

LFC. According to Ghosh et al. (2025), the Logical Fact-checking datasets (FreebaseLFC, NELLFC, WikiLFC) consist of around 2,000 examples. Rules are listed in Tables 13, 19, and 20 of the paper, totaling 9 distinct logical rules. The maximum reasoning depth among them is 4. Since the dataset is constructed from existing sources (Freebase, NELL, and Wiki), scalability is limited, and no reasoning paths are provided.

Set-LConVQA & Set-SNLI. Section 4 of Song et al. (2025) states that the dataset contains $6,754 + 6,225 + 200 \times 4 = 13,779$ instances. From Tables 6–9, we identify the largest reasoning depth as 5. The total number of rules is $36 + 6 + 3 + 6 = 51$. Operators involved include conjunction (\wedge), disjunction (\vee), implication (\rightarrow), negation (\neg), and bidirectional implication (\leftrightarrow). Since the dataset is derived from SNLI and LConVQA, scalability is limited, and reasoning paths are not included.

LogiconBench. Our benchmark contains 280k logical graphs, with maximum depth 32, involving all five standard operators. Each graph explicitly records reasoning paths, and the dataset construction process can be scaled indefinitely. Therefore, scalability is considered unlimited, and the number of rules grows with the dataset size.

C DETAILS OF THE PRELIMINARIES

Table 6 summarizes the introduction and elimination rules in the Natural Deduction for the five logical operators (Liu & Stokhof, 2024) considered in our work: implication, disjunction, conjunction, negation, and biconditional. We used introduction rules to construct the logical graph, and we included the elimination rules for rewriting. These rules specify how new propositions can be derived or simplified in a proof system, and thus provide the basis for generating and evaluating logical graphs. By grounding our benchmark in these standard rules, we ensure that the reasoning tasks are both formally precise and interpretable.

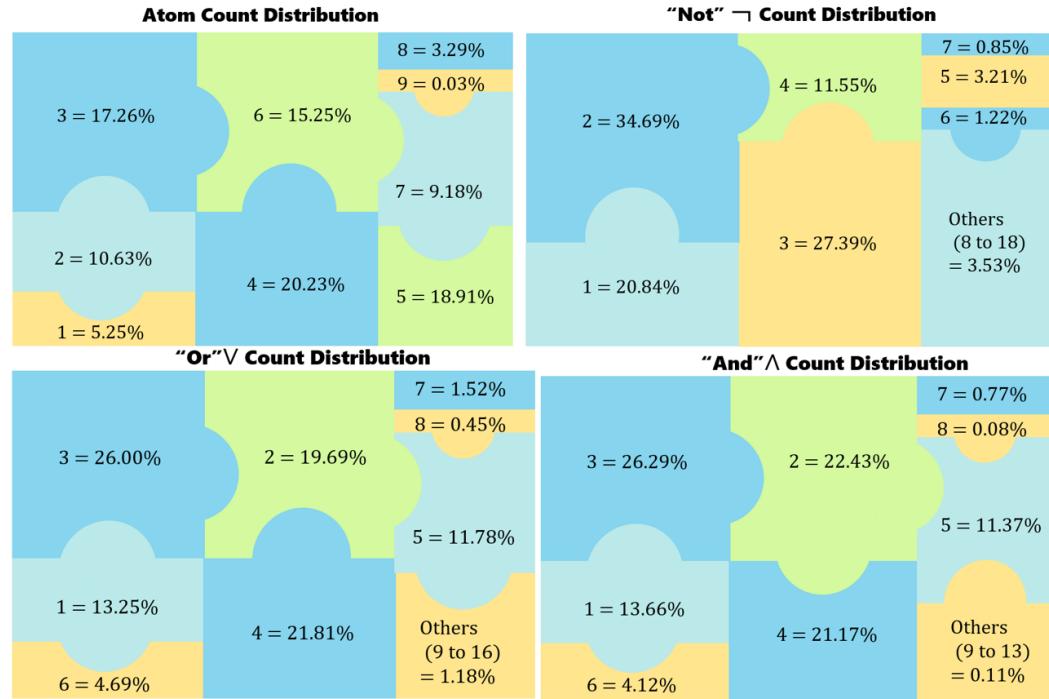


Figure 4: Count Distribution

D DATASETS STATISTICS

To better characterize our dataset, we report the distribution of logical operators within the constructed nodes in Figure 4. Specifically, we count the occurrences of Not, And, and Or, since these operators are directly involved in forming the node-level expressions. In contrast, Implication (\rightarrow) and Equivalence (\leftrightarrow) are naturally reflected in the directed edges between nodes, and thus are not included in the node-level statistics. The results in Tables 7 10 9 8 show that the distributions vary with k , but consistently exhibit a wide coverage across different counts, ensuring diversity in logical complexity.

Table 7: Atom Count Distribution

Atom Count	1	2	3	4	5	6	7	8	9
$k=2$	2743	5302	10284	12524	12007	10230	6136	1366	0
$k=3$	11959	22465	34740	40529	38863	30806	19166	7423	98
$k=4$	16490	40684	60423	67757	58154	47196	28414	11506	52
$k=5$	28089	52362	84020	99497	96025	73891	43030	18548	203

Table 8: Not Count Distribution

Not Count	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$k=2$	9883	18196	18284	8460	2719	1166	758	432	390	88	80	16	40	28	22	5	11	14
$k=3$	43066	70093	54328	24771	6539	2438	1777	1128	871	455	195	86	264	23	12	3	0	0
$k=4$	75087	112364	88805	37269	8972	2910	2110	1489	791	373	185	155	79	35	32	20	0	0
$k=5$	99746	178536	137921	55743	12151	4427	3137	1863	1020	170	383	288	60	21	30	67	43	59

Table 9: Or Count Distribution

Or Count	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$k=2$	7661	11386	15850	13479	7657	2661	948	300	253	122	101	58	58	11	10	37
$k=3$	28294	37021	51723	42465	26075	12697	4489	1417	794	374	398	89	213	0	0	0
$k=4$	49910	71836	85635	73407	32373	11421	2660	832	670	1177	565	62	128	0	0	0
$k=5$	57077	100481	133061	110012	59731	23579	7642	1763	800	522	373	233	254	137	0	0

972
973
974 Table 10: And Count Distribution
975
976
977

And Count	1	2	3	4	5	6	7	8	9	10	11	12	13
k=2	7174	12532	16139	13768	7400	2821	636	67	30	9	6	3	7
k=3	33272	47867	55672	40465	20332	6955	1211	133	129	13	0	0	0
k=4	40469	71935	82740	71965	41676	17501	3426	386	73	193	312	0	0
k=5	71365	119122	131369	101983	53451	15553	1928	248	261	42	343	0	0

978
979 E PATH EXTRACTION
980981 The details of extracting the shortest path is described as follows:
982983 1. For each permutation π of S , concatenate undirected shortest paths between consecutive
984 pairs (π_i, π_{i+1}) to form a walk covering all targets.
985 2. Among all permutations, pick the walk with the fewest distinct edges (ties broken by fewer
986 nodes).
987 3. Recover edge labels from the original directed graph: if we traverse $u \rightarrow v$ along a stored
988 edge, use its type; if we traverse against direction $v \rightarrow u$, flip \rightarrow/\leftarrow and keep \times or \leftrightarrow
989 unchanged.
990991 This yields an ordered edge list $\mathcal{E} = [(u_1, t_1, v_1), \dots, (u_m, t_m, v_m)]$ that we use for labeling.
992993 F LABEL EXAMPLE
994995 Consider three target nodes $S = \{(p \vee \neg u), p, (s \wedge \neg p)\}$, connected by the path
996

997
$$(p \vee \neg u) \leftarrow p \times \neg p \leftarrow (s \wedge \neg p).$$

998 By labeling nodes according to LOGIC RULES, the consistent assignments over all nodes on the
999 path in order are
1000

1001
$$T, T, F, F; \quad T, F, T, T; \quad F, T, F, F; \quad F, F, T, F; \quad F, F, T, T.$$

1002 Projecting these assignments onto the target list S gives the consistent_lists:
1003

1004
$$[T, T, F], [T, F, T], [F, T, F], [F, F, F], [F, F, T].$$

1005 Since S has $2^3 = 8$ possible Boolean assignments, the other three, $[T, T, T], [T, F, F], [F, T, T]$ are
1006 inconsistent_lists.
10071008 G REWRITE RULES
10091010 The rewrite rules are shown in Table 11.
10111012 Table 11: rewrite
1013

ID	Rewrite Rule	Description	Example
A	$\varphi \rightsquigarrow \text{simplify}(\varphi)$	Simplification	$(p \wedge \top) \vee \neg q \rightsquigarrow p \vee q$
B	$\varphi \rightsquigarrow \text{NNF}(\varphi)$	Negation Normal Form	$\neg(p \rightarrow q) \rightsquigarrow p \wedge \neg q$
C	$(a \rightarrow b) \rightsquigarrow (\neg a \vee b)$	Implication elimination	$p \rightarrow q \rightsquigarrow \neg p \vee q$
D1	$(a \leftrightarrow b) \rightsquigarrow (a \rightarrow b) \wedge (b \rightarrow a)$	Equivalence elimination	$p \leftrightarrow q \rightsquigarrow (p \rightarrow q) \wedge (q \rightarrow p)$
D2	$(a \leftrightarrow b) \rightsquigarrow (a \wedge b) \vee (\neg a \wedge \neg b)$	Equivalence elimination	$p \leftrightarrow q \rightsquigarrow (p \wedge q) \vee (\neg p \wedge \neg q)$
E	$(\neg a \vee b) \rightsquigarrow (a \rightarrow b)$	Implication introduction	$\neg p \vee q \rightsquigarrow p \rightarrow q$
F	$(a \wedge b) \vee (\neg a \wedge \neg b) \rightsquigarrow (a \leftrightarrow b)$	Equivalence introduction	$(p \wedge q) \vee (\neg p \wedge \neg q) \rightsquigarrow p \leftrightarrow q$
G1	$\varphi \rightsquigarrow \text{CNF}(\varphi)$	Conjunctive Normal Form	$\neg(p \wedge q) \vee r \rightsquigarrow (\neg p \vee r) \wedge (\neg q \vee r)$
G2	$\varphi \rightsquigarrow \text{DNF}(\varphi)$	Disjunctive Normal Form	$(p \vee q) \wedge r \rightsquigarrow (p \wedge r) \vee (q \wedge r)$

1026 H SYMBOL LANGUAGE TO NATURAL LANGUAGE STRUCTURES

1028 This appendix summarizes the templates used in data construction. First, we present the **negation**
 1029 **rules**, which ensure coverage of both affirmative and negative variants of atomic statements.
 1030

- 1031 • *The NOUN is ADJ*” \mapsto *The NOUN is not ADJ*”,
- 1032 • *The NOUN occurs*” \mapsto *The NOUN does not occur*”,
- 1033 • *The NOUN VERBs*” \mapsto *The NOUN does not VERB*”,
- 1034 • *The NOUN has ...*” \mapsto *The NOUN does not have ...*”.

1037 Second, we define **composite formula templates**, where structural operators correspond to logical
 1038 connectives (e.g., conjunction, disjunction, negation), enabling natural language rendering of
 1039 complex formulas.

- 1041 • $A \wedge B$; ; \mapsto ; ; *First, A. Second, B.*”
- 1042 • $A \vee B \vee C$ \mapsto *Either (i) A, or (ii) B, or (iii) C.*”
- 1043 • $\neg A$; ; \mapsto ; ; *It is not the case that the following holds: A.*”

1046 I EVALUATION METRICS

1049 **Task 1 and Task 1 on Hard Samples.** The evaluation metric is **accuracy**, defined as the percentage
 1050 of correctly predicted labels. We report: (1) accuracy on consistent lists (i.e., given a consistent
 1051 set, the model outputs “yes”), (2) accuracy on inconsistent lists (i.e., given an inconsistent set, the
 1052 model outputs “no”), and (3) overall accuracy. Since our experiments include 500 consistent and
 500 inconsistent lists, the overall accuracy is computed as the average of the two.

1054 **Task 1 Variant: Label Completion.** The evaluation metric is **overall accuracy**, which measures
 1055 the correctness of label completion, i.e., whether the predicted Boolean assignment correctly
 1056 completes all statements without contradiction.

1058 **Task 2 and Task 2 on Easy Samples.** The evaluation metrics include **Format accuracy**, **Exact**
 1059 **accuracy**, **Precision**, **Recall**, and **F1**.

- 1061 • **Format accuracy**: the percentage of outputs that follow the required enumeration format.
- 1062 • **Exact accuracy**: a strict metric that measures the proportion of samples where the model
 1063 enumerates *exactly* all the consistent label lists in the dataset.
- 1064 • **TP**, **TN**, **FP**, **FN**: we treat the unlisted assignments as the model’s predicted inconsistent
 1066 lists. Given the ground truth partition of assignments into consistent vs. inconsistent:
 - 1067 – **TP (True Positive)** = percentage of assignments that are consistent in the ground truth
 1068 and also predicted as consistent.
 - 1069 – **FN (False Negative)** = percentage of assignments that are consistent in the ground
 1070 truth but predicted as inconsistent.
 - 1071 – **TN (True Negative)** = percentage of assignments that are inconsistent in the ground
 1072 truth and also predicted as inconsistent.
 - 1073 – **FP (False Positive)** = percentage of assignments that are inconsistent in the ground
 1074 truth but predicted as consistent.
- 1076 • **Precision**: intuitively, how many of the lists predicted as consistent are truly consistent.
- 1077 • **Recall**: how many of the truly consistent lists are successfully identified by the model.
- 1078 • **F1 score**: the harmonic mean of precision and recall, reflecting the balance between the
 1079 two.

1080
1081 Table 12: Performance decomposition across zero-shot, 3-shot, and 3-shot with path. Each block
1082 reports consistent (con.), inconsistent (incon.), and overall accuracy for $k = 2, 3, 4, 5$.

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093	Model (mode)	Accuracy on 2 Statements			Accuracy on 3 Statements			Accuracy on 4 Statements			Accuracy on 5 Statements		
		con.	incon.	overall									
zero-shot learning													
claude-3.5-haiku (zero-shot)	31.57	38.58	35.07	31.61	38.64	35.12	31.66	38.69	35.17	31.70	38.75	35.22	
claude-sonnet-4 (zero-shot)	51.63	63.10	57.37	51.68	63.16	57.42	51.72	63.21	57.47	51.77	63.27	57.52	
deeplearn-1-0528 (zero-shot)	67.86	82.93	75.40	67.90	82.99	75.45	67.95	83.04	75.50	67.99	83.10	75.55	
gemini-2.5-pro (zero-shot)	35.68	43.61	39.64	35.73	43.66	39.69	35.77	43.72	39.74	35.82	43.77	39.79	
gpt-4o (zero-shot)	17.39	21.25	19.32	17.43	21.30	19.37	17.48	21.36	19.42	17.52	21.41	19.47	
llama-3.1-405b-instruct (zero-shot)	29.98	36.65	33.32	30.03	36.70	33.37	30.07	36.76	33.42	30.12	36.81	33.47	
llama-3.1-8b-instruct (zero-shot)	21.78	26.62	24.20	21.82	26.67	24.25	21.87	26.73	24.30	21.91	26.78	24.35	
phi-4-reasoning-plus (zero-shot)	24.80	30.31	27.56	24.85	30.37	27.61	24.89	30.42	27.66	24.94	30.48	27.71	
mixtral-8x7b-instruct (zero-shot)	18.42	22.51	20.46	18.46	22.56	20.51	18.51	22.62	20.56	18.55	22.67	20.61	
o3-mini (zero-shot)	19.53	23.87	21.70	19.58	23.93	21.75	19.62	23.98	21.80	19.67	24.04	21.85	
gpt-5 (zero-shot)	79.57	97.25	88.41	79.61	97.30	88.46	79.66	97.36	88.51	79.70	97.41	88.56	
qwen-2.5-7b-instruct (zero-shot)	27.85	34.04	30.95	27.90	34.10	31.00	27.94	34.15	31.05	27.99	34.21	31.10	
qwen-3-235b-a22b (zero-shot)	43.91	53.67	48.79	43.95	53.72	48.84	44.00	53.78	48.89	44.04	53.83	48.94	
grok-4-fast (zero-shot)	69.43	84.86	77.15	69.48	84.92	77.20	69.52	84.97	77.25	69.57	85.03	77.30	
3-shot learning													
claude-3.5-haiku (3-shot)	31.14	38.06	34.60	31.19	38.12	34.65	31.23	38.17	34.70	31.28	38.23	34.75	
claude-sonnet-4 (3-shot)	52.85	64.60	58.73	52.90	64.65	58.78	52.94	64.71	58.83	52.99	64.76	58.88	
deeplearn-1-0528 (3-shot)	77.23	94.39	85.81	77.27	94.44	85.86	77.32	94.50	85.91	77.36	94.55	85.96	
gemini-2.5-pro (3-shot)	82.72	101.10	91.91	82.76	101.15	91.96	82.81	101.21	92.01	82.85	101.26	92.06	
gpt-4o (3-shot)	28.40	34.71	31.56	28.45	34.77	31.61	28.49	34.82	31.66	28.54	34.88	31.71	
llama-3.1-405b-instruct (3-shot)	34.55	42.22	38.38	34.59	42.28	38.43	34.64	42.33	38.48	34.68	42.39	38.53	
llama-3.1-8b-instruct (3-shot)	19.72	24.10	21.91	19.76	24.16	21.96	19.81	24.21	22.01	19.85	24.27	22.06	
phi-4-reasoning-plus (3-shot)	28.87	35.29	32.08	28.92	35.35	32.13	28.96	35.40	32.18	29.01	35.46	32.23	
mixtral-8x7b-instruct (3-shot)	46.96	57.40	52.18	47.01	57.45	52.23	47.05	57.51	52.28	47.10	57.56	52.33	
o3-mini (3-shot)	47.87	58.51	53.19	47.91	58.56	53.24	47.96	58.62	53.29	48.00	58.67	53.34	
gpt-5 (3-shot)	82.87	101.29	92.08	82.92	101.34	92.13	82.96	101.40	92.18	83.01	101.45	92.23	
qwen-2.5-7b-instruct (3-shot)	41.12	50.26	45.69	41.17	50.31	45.74	41.21	50.37	45.79	41.26	50.42	45.84	
qwen-3-235b-a22b (3-shot)	68.57	83.81	76.19	68.62	83.87	76.24	68.66	83.92	76.29	68.71	83.98	76.34	
grok-4-fast (3-shot)	82.49	100.82	91.65	82.53	100.87	91.70	82.58	100.93	91.75	82.62	100.98	91.80	
3-shot learning w/ reasoning path													
claude-3.5-haiku (3-shot with path)	46.76	51.15	51.95	46.80	51.20	52.00	46.85	51.26	52.05	46.89	51.31	52.10	
claude-sonnet-4 (3-shot with path)	63.79	77.96	70.87	63.83	78.02	70.92	63.88	78.07	70.97	63.92	78.13	71.02	
deeplearn-1-0528 (3-shot with path)	89.06	108.86	98.96	89.11	108.91	99.01	89.15	108.97	99.06	89.20	109.02	99.11	
gemini-2.5-pro (3-shot with path)	82.66	101.02	91.84	82.70	101.08	91.89	82.75	101.13	91.94	82.79	101.19	91.99	
gpt-4o (3-shot with path)	35.13	42.93	39.03	35.17	42.99	39.08	35.22	43.04	39.13	35.26	43.10	39.18	
llama-3.1-405b-instruct (3-shot with path)	53.58	65.49	59.53	53.63	65.54	59.58	53.67	65.60	59.63	53.72	65.65	59.68	
llama-3.1-8b-instruct (3-shot with path)	42.62	52.09	47.36	42.67	52.15	47.41	42.71	52.20	47.46	42.76	52.26	47.51	
phi-4-reasoning-plus (3-shot with path)	46.89	57.32	52.11	46.94	57.37	52.16	46.98	57.43	52.21	47.03	57.48	52.26	
mixtral-8x7b-instruct (3-shot with path)	43.24	52.85	48.05	43.29	52.91	48.10	43.33	52.96	48.15	43.38	53.02	48.20	
o3-mini (3-shot with path)	49.12	60.04	54.58	49.17	60.09	54.63	49.21	60.15	54.68	49.26	60.20	54.73	
gpt-5 (3-shot with path)	88.81	108.55	98.68	88.86	108.61	98.73	88.90	108.66	98.78	88.95	108.72	98.83	
qwen-2.5-7b-instruct (3-shot with path)	47.49	58.04	52.76	47.53	58.09	52.81	47.58	58.15	52.86	47.62	58.20	52.91	
qwen-3-235b-a22b (3-shot with path)	83.61	102.20	92.90	83.66	102.25	92.95	83.70	102.31	93.00	83.75	102.36	93.05	
grok-4-fast (3-shot with path)	88.41	108.06	98.24	88.46	108.12	98.29	88.50	108.17	98.34	88.55	108.23	98.39	

J EXPERIMENTAL RESULTS

J.1 TASK 1 ON HARD SAMPLES

The performance of Task 1 on Hard Samples are detailed in Table 12.

J.2 TASK 1 VARIANT: LABEL COMPLETION

The performance of Task 1 Variant is shown in Table 13

J.3 TASK 2 PRECISION AND RECALL

The Precision and Recall Score of Task 2 is shown in Table 14.

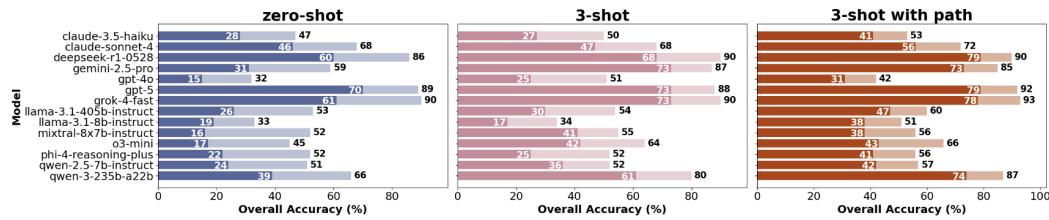
J.4 TASK 2 ON EASY SAMPLES (SHORT REASONING PATH SAMPLES AND SHORT STATEMENT LENGTH SAMPLES)

The Performance of Task 2 on Easy Samples is shown in Table 15 and Table 16.

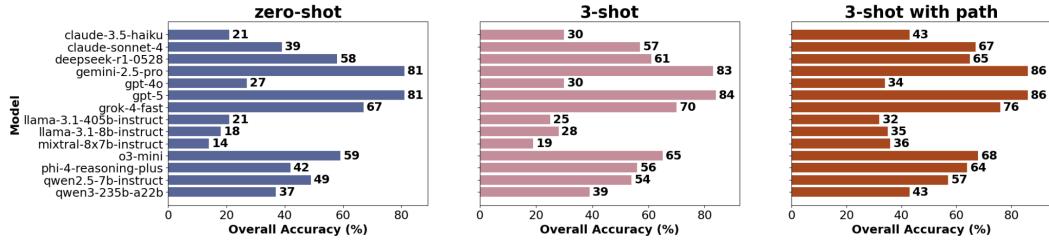
K DIFFICULTY ONE AND TWO

Table 13: Performance in Task 1 Variant: Label Completion of accuracy (%)

Model	2 statements			3 statements			4 statements			5 statements		
	zero	few	few_path									
claude-3.5-haiku	0.112	0.341	0.765	0.116	0.171	0.196	0.259	0.303	0.323	0.378	0.419	0.470
claude-sonnet-4	0.312	0.587	0.672	0.518	0.617	0.654	0.413	0.534	0.713	0.319	0.576	0.654
deepeek-r1-0528	0.582	0.595	0.608	0.646	0.667	0.747	0.570	0.598	0.646	0.523	0.613	0.622
google-gemini-2.5-pro	0.890	0.912	0.966	0.828	0.867	0.878	0.758	0.759	0.814	0.765	0.790	0.792
gpt-4o	0.276	0.291	0.363	0.260	0.274	0.294	0.243	0.307	0.341	0.302	0.357	0.366
llama-3.1-405b-instruct	0.280	0.335	0.490	0.227	0.263	0.327	0.205	0.262	0.275	0.158	0.162	0.189
llama-3.1-8b-instruct	0.321	0.546	0.645	0.145	0.194	0.264	0.138	0.216	0.290	0.150	0.177	0.234
phi-4-reasoning-plus	0.423	0.532	0.654	0.432	0.546	0.672	0.598	0.657	0.677	0.243	0.542	0.564
mixtral-8x7b-instruct	0.122	0.143	0.714	0.228	0.294	0.297	0.102	0.178	0.224	0.143	0.174	0.215
o3-mini	0.527	0.582	0.615	0.702	0.740	0.780	0.610	0.670	0.688	0.532	0.632	0.668
gpt-5	0.876	0.924	0.934	0.835	0.883	0.891	0.789	0.791	0.809	0.778	0.790	0.808
qwen2.5-7b-instruct	0.469	0.497	0.501	0.552	0.553	0.638	0.489	0.601	0.619	0.473	0.513	0.526
qwen3-235b-a22b	0.461	0.512	0.522	0.460	0.503	0.538	0.392	0.395	0.483	0.168	0.178	0.200
grok-4-fast	0.613	0.637	0.640	0.665	0.761	0.823	0.720	0.728	0.813	0.686	0.708	0.776



(a) Task 1 (on hard/all samples)



(b) Task 1 Variant (label completion)

Figure 5: **(a) Task 1 (on hard/all samples)**. Hard samples are cases where the provided lists of Boolean labels come from consistent and inconsistent lists differing in only one element. **(b) Task 1 Variant (label completion)**. One label is missing, and the model must recover it to make the full label list consistent. Light color indicates results on all samples, and dark color is for hard samples.

Formulation of Task 1 on hard samples. In the original task, closed-source models such as `grok-4-fast` and `gpt-5` perform well, which suggests that the task may not fully expose their limitations. To probe this, we design a hard-sample variant where provided lists of Boolean labels come from consistent and inconsistent lists differing in only one element, which makes them more challenging to distinguish. For example, choosing `[T, T, T]` in `consistent_lists` or `[T, T, F]` in `inconsistent_lists` as the label list to discriminate.

Formulation of Task 1 variant: Label Completion. Label Completion is a harder variant of the Discriminative task. Instead of verifying a full label set, the model must recover the hidden label so that the full label list remains logically consistent, which increases reasoning difficulty.

Formulation of Task 2: Easy Samples. In the original Task 2, smaller open-source models such as `llama-3.1-8b-instruct` and `phi-4-reasoning-plus` struggle with complex dependency structures. To provide a controlled easier variant, we construct test sets by selecting the 1,000

Table 14: Precision and Recall in Task 2.

Model	2 Statements		3 Statements		4 Statements		5 Statements	
	Precision	Recall	Precision	Recall	Precision	Recall	Precision	Recall
claude-3.5-haiku_zero	0.648	0.396	0.436	0.196	0.414	0.095	0.278	0.034
claude-3.5-haiku_few	0.451	0.444	0.505	0.219	0.398	0.087	0.316	0.044
claude-3.5-haiku_fewpath	0.588	0.528	0.522	0.227	0.385	0.091	0.302	0.036
claude-sonnet-4_zero	0.591	0.476	0.523	0.263	0.547	0.168	0.531	0.076
claude-sonnet-4_few	0.587	0.479	0.504	0.264	0.531	0.161	0.499	0.076
claude-sonnet-4_fewpath	0.615	0.486	0.534	0.283	0.487	0.136	0.482	0.066
deepseek-r1-0528_zero	0.109	0.110	0.081	0.069	0.064	0.035	0.429	0.375
deepseek-r1-0528_few	0.111	0.133	0.084	0.072	0.504	0.341	0.483	0.455
deepseek-r1-0528_fewpath	0.110	0.123	0.109	0.100	0.074	0.043	0.716	0.546
gemini-2.5-pro_zero	0.609	0.495	0.556	0.388	0.181	0.077	0.077	0.033
gemini-2.5-pro_few	0.584	0.489	0.172	0.116	0.158	0.071	0.084	0.027
gemini-2.5-pro_fewpath	0.595	0.481	0.318	0.220	0.178	0.072	0.012	0.004
gpt-4o_zero	0.133	0.104	0.109	0.049	0.054	0.016	0.091	0.014
gpt-4o_few	0.127	0.101	0.221	0.103	0.016	0.004	0.117	0.018
gpt-4o_fewpath	0.044	0.034	0.071	0.031	0.041	0.013	0.003	0.000
gpt-5_zero	0.852	0.702	0.875	0.739	0.886	0.667	0.913	0.566
gpt-5_few	0.859	0.730	0.856	0.720	0.912	0.716	0.894	0.590
gpt-5_fewpath	0.782	0.688	0.897	0.777	0.894	0.669	0.926	0.626
grok-4-fast_zero	0.000	0.000	0.309	0.299	0.364	0.187	0.340	0.157
grok-4-fast_few	0.178	0.133	0.355	0.214	0.434	0.259	0.255	0.143
grok-4-fast_fewpath	0.108	0.078	0.417	0.382	0.369	0.213	0.421	0.241
llama-3.1-405b_zero	0.517	0.386	0.576	0.421	0.520	0.461	0.427	0.444
llama-3.1-405b_few	0.592	0.403	0.623	0.453	0.523	0.453	0.447	0.466
llama-3.1-405b_fewpath	0.611	0.430	0.633	0.445	0.574	0.485	0.467	0.497
llama-3.1-8b-instruct_zero	0.287	0.002	0.326	0.000	0.117	0.056	0.186	0.036
llama-3.1-8b-instruct_few	0.229	0.010	0.316	0.000	0.083	0.032	0.101	0.017
llama-3.1-8b-instruct_fewpath	0.283	0.000	0.342	0.006	0.107	0.038	0.097	0.029
mixtral-8x7b_zero	0.110	0.121	0.139	0.076	0.128	0.046	0.083	0.010
mixtral-8x7b_few	0.180	0.333	0.131	0.060	0.033	0.013	0.102	0.058
mixtral-8x7b_fewpath	0.037	0.065	0.178	0.104	0.000	0.000	0.074	0.012
o3-mini_zero	0.099	0.076	0.023	0.011	0.176	0.046	0.040	0.006
o3-mini_few	0.085	0.063	0.083	0.035	0.165	0.044	0.024	0.003
o3-mini_fewpath	0.100	0.081	0.021	0.012	0.013	0.003	0.152	0.031
phi-4-reasoning-plus_zero	0.229	0.206	0.140	0.082	0.167	0.037	0.249	0.044
phi-4-reasoning-plus_few	0.296	0.266	0.134	0.074	0.135	0.053	0.171	0.038
phi-4-reasoning-plus_fewpath	0.251	0.246	0.151	0.085	0.142	0.052	0.214	0.039
qwen-2.5-7b-instruct_zero	0.544	0.391	0.504	0.410	0.364	0.371	0.204	0.292
qwen-2.5-7b-instruct_few	0.637	0.436	0.521	0.441	0.364	0.376	0.221	0.307
qwen-2.5-7b-instruct_fewpath	0.670	0.451	0.543	0.429	0.398	0.389	0.227	0.314
qwen3-235b-a22b_zero	0.667	0.430	0.529	0.372	0.480	0.163	0.570	0.078
qwen3-235b-a22b_few	0.758	0.450	0.599	0.386	0.459	0.113	0.601	0.069
qwen3-235b-a22b_fewpath	0.592	0.376	0.632	0.402	0.500	0.121	0.533	0.066

samples with the shortest reasoning paths and the 1,000 samples with the shortest natural language statements to reduce logical and linguistic complexity, respectively.

L COMMONSENSE CONDITION RESULTS

M HUMANIZED PROMPTS

We use the following prompt to humanize the statements.

Please rewrite the following sentences into natural human-style English.

Table 15: Performance in Task 2 short Reasoning Paths

Model (mode)	Accuracy on 2 Statements			Accuracy on 3 Statements			Accuracy on 4 Statements			Accuracy on 5 Statements		
	Precision	Recall	F1									
claude-3.5-haiku_zero	0.609	0.471	0.531	0.345	0.433	0.384	0.246	0.420	0.310	0.198	0.420	0.269
claude-3.5-haiku_few	0.643	0.489	0.556	0.370	0.449	0.406	0.249	0.419	0.312	0.255	0.474	0.332
claude-3.5-haiku_few path	0.753	0.541	0.630	0.378	0.460	0.415	0.294	0.470	0.362	0.280	0.500	0.359
claude-sonnet-4_zero	0.725	0.544	0.622	0.507	0.533	0.519	0.459	0.583	0.514	0.708	0.741	0.724
claude-sonnet-4_few	0.730	0.543	0.623	0.537	0.548	0.543	0.478	0.594	0.530	0.757	0.752	0.754
claude-sonnet-4_few path	0.745	0.550	0.633	0.537	0.557	0.546	0.487	0.609	0.541	0.797	0.770	0.783
deepseek-r1-0528_zero	0.613	0.439	0.512	0.258	0.257	0.257	0.523	0.444	0.480	0.499	0.430	0.462
deepseek-r1-0528_few	0.773	0.535	0.632	0.611	0.539	0.573	0.957	0.854	0.902	0.521	0.450	0.483
deepseek-r1-0528_few path	0.824	0.620	0.708	0.628	0.580	0.603	0.976	0.858	0.913	0.691	0.568	0.624
gemini-2.5-pro_zero	0.746	0.559	0.639	0.437	0.468	0.452	0.390	0.525	0.448	0.551	0.872	0.676
gemini-2.5-pro_few	0.744	0.564	0.642	0.464	0.508	0.485	0.431	0.585	0.497	0.993	0.949	0.970
gemini-2.5-pro_few path	0.765	0.558	0.645	0.626	0.566	0.594	0.488	0.611	0.542	0.997	0.952	0.974
gpt-4.0_zero	0.450	0.430	0.439	0.184	0.260	0.216	0.251	0.451	0.323	0.235	0.457	0.311
gpt-4.0_few	0.459	0.423	0.441	0.323	0.397	0.357	0.278	0.453	0.344	0.243	0.461	0.318
gpt-4.0_few path	0.481	0.436	0.458	0.396	0.436	0.415	0.321	0.509	0.393	0.364	0.571	0.445
llama-3.1-405b-instruct_zero	0.498	0.499	0.498	0.236	0.456	0.311	0.742	0.812	0.775	0.307	0.703	0.427
llama-3.1-405b-instruct_few	0.498	0.499	0.499	0.501	0.497	0.499	0.750	0.811	0.779	0.333	0.747	0.461
llama-3.1-405b-instruct_few path	1.000	0.794	0.885	0.454	0.719	0.557	0.881	0.816	0.847	0.355	0.771	0.486
llama-3.1-8b-instruct_zero	0.526	0.484	0.505	0.147	0.224	0.178	0.145	0.308	0.197	0.070	0.308	0.114
llama-3.1-8b-instruct_few	0.633	0.488	0.551	0.402	0.425	0.413	0.202	0.431	0.276	0.083	0.358	0.135
llama-3.1-8b-instruct_few path	0.999	1.000	1.000	0.495	0.503	0.499	0.315	0.521	0.392	0.098	0.391	0.157
phi-4-reasoning-plus_zero	0.230	0.251	0.240	0.167	0.253	0.201	0.158	0.224	0.185	0.152	0.218	0.179
phi-4-reasoning-plus_few	0.287	0.279	0.283	0.204	0.291	0.240	0.176	0.243	0.204	0.167	0.246	0.199
phi-4-reasoning-plus_few path	0.325	0.346	0.335	0.283	0.365	0.319	0.259	0.335	0.292	0.239	0.319	0.273
mixtral-8x7b-instruct_zero	0.000	0.000	0.000	0.004	0.008	0.005	0.046	0.122	0.066	0.000	0.000	0.000
mixtral-8x7b-instruct_few	0.045	0.068	0.054	0.059	0.112	0.077	0.056	0.153	0.082	0.003	0.020	0.005
mixtral-8x7b-instruct_few path	0.050	0.073	0.059	0.169	0.264	0.206	0.149	0.343	0.208	0.080	0.346	0.130
o3-mini_zero	0.633	0.461	0.534	0.455	0.469	0.462	0.625	0.689	0.655	0.644	0.840	0.729
o3-mini_few	0.670	0.481	0.560	0.506	0.497	0.501	0.671	0.713	0.691	0.674	0.844	0.749
o3-mini_few path	0.722	0.530	0.611	0.536	0.510	0.523	0.993	0.821	0.899	0.751	0.786	0.768
gpt-5.0_zero	0.905	0.664	0.766	0.954	0.954	0.954	0.886	0.892	0.889	0.914	0.951	0.932
gpt-5.0_few	0.872	0.686	0.768	0.980	0.950	0.965	0.893	0.902	0.898	0.968	0.936	0.952
gpt-5.0_few path	1.000	0.689	0.816	0.999	0.994	0.997	0.912	0.899	0.905	1.000	0.992	0.996
qwen2.5-7b-instruct_zero	0.597	0.428	0.498	0.601	0.566	0.583	0.182	0.365	0.243	0.096	0.363	0.152
qwen2.5-7b-instruct_few	0.612	0.433	0.507	0.646	0.578	0.610	0.245	0.501	0.329	0.352	0.766	0.482
qwen2.5-7b-instruct_few path	0.647	0.446	0.528	0.693	0.606	0.646	0.295	0.497	0.370	0.406	0.802	0.539
qwen3-235b-a22b_zero	0.952	0.940	0.946	0.342	0.338	0.340	0.367	0.646	0.468	0.961	0.844	0.899
qwen3-235b-a22b_few	0.958	0.949	0.954	0.782	0.723	0.751	0.511	0.605	0.554	0.960	0.877	0.916
qwen3-235b-a22b_few path	0.962	0.955	0.958	0.813	0.715	0.761	0.514	0.671	0.582	0.974	0.884	0.927
grok-4-fast_zero	0.835	0.805	0.820	0.752	0.776	0.764	0.718	0.825	0.768	0.839	0.987	0.907
grok-4-fast_few	0.977	0.956	0.966	0.781	0.797	0.789	0.886	0.826	0.855	0.990	0.841	0.909
grok-4-fast_few path	0.979	0.965	0.972	0.814	0.801	0.808	0.986	0.897	0.940	0.978	0.967	0.973

Requirements:

- Do NOT keep any numeric labels (no "1", "2", "First,...", etc.).
- Do NOT place "not" or any negation operator at the beginning of a sentence. Negation must appear inside the clause in a natural way.
- Preserve all logical relations exactly.

N REAL-WORLD BENCHMARK

O TASK 1 AND TASK 2 CORRELATION ANALYSIS

As shown in Figure 7, across all modes, Pearson correlation coefficients between Task 1 and Task 2 remain high (mostly > 0.6), which indicates that models that perform well in harder variants also tend to rank highly in easier ones. This suggests that difficulty calibration mainly shifts the absolute performance levels while preserving the relative ordering of models. In other words, all tasks probe a shared underlying reasoning capability at different levels of difficulty, which validates the robustness and coherence of our benchmark design. The correlation analysis results are shown in Figure 7.

1296
1297
1298 Table 16: Performance in Task 2 short Statement Length
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331

Model (mode)	Accuracy on 2 Statements			Accuracy on 3 Statements			Accuracy on 4 Statements			Accuracy on 5 Statements		
	Prec.	Rec.	F1									
claude-3.5-haiku_zero	0.501	0.331	0.399	0.566	0.523	0.544	0.489	0.493	0.491	0.384	0.548	0.452
claude-3.5-haiku_few	0.499	0.333	0.400	0.589	0.534	0.560	0.507	0.499	0.503	0.452	0.593	0.513
claude-3.5-haiku_few path	0.504	0.333	0.401	0.630	0.561	0.593	0.603	0.549	0.574	0.497	0.622	0.552
claude-sonnet4_zero	0.817	0.541	0.651	0.788	0.610	0.688	0.513	0.525	0.519	0.500	0.603	0.547
claude-sonnet4_few	0.814	0.546	0.654	0.820	0.633	0.714	0.516	0.548	0.531	0.753	0.707	0.729
claude-sonnet4_few path	0.830	0.546	0.659	0.829	0.657	0.733	0.555	0.557	0.556	1.000	0.756	0.861
deepeek-r1-0528_zero	0.827	0.597	0.693	0.739	0.591	0.657	0.773	0.691	0.730	0.947	0.611	0.743
deepeek-r1-0528_few	0.841	0.603	0.702	0.788	0.710	0.747	0.768	0.798	0.783	0.839	0.720	0.775
deepeek-r1-0528_few path	0.889	0.817	0.852	0.784	0.730	0.756	0.789	0.800	0.795	0.913	0.780	0.841
gemini-2.5-pro_zero	0.788	0.542	0.642	0.751	0.586	0.658	0.333	0.496	0.399	0.335	0.529	0.410
gemini-2.5-pro_few	0.879	0.615	0.723	1.000	0.713	0.833	0.532	0.517	0.524	0.672	0.717	0.694
gemini-2.5-pro_few path	0.941	0.640	0.762	1.000	0.715	0.834	0.537	0.633	0.581	0.676	0.740	0.706
gpt-40_zero	0.641	0.469	0.541	0.606	0.532	0.567	0.480	0.500	0.490	0.368	0.540	0.438
gpt-40_few	0.644	0.485	0.554	0.636	0.561	0.596	0.493	0.516	0.504	0.383	0.544	0.450
gpt-40_few path	0.922	0.627	0.747	0.689	0.566	0.621	0.602	0.568	0.585	0.459	0.606	0.523
llama-3.1-405b-instruct_zero	0.697	0.545	0.612	0.537	0.522	0.529	0.285	0.358	0.318	0.479	0.604	0.534
llama-3.1-405b-instruct_few	0.745	0.583	0.654	0.745	0.572	0.647	0.503	0.537	0.519	0.585	0.668	0.624
llama-3.1-405b-instruct_few path	1.000	0.747	0.855	0.996	0.666	0.798	0.504	0.544	0.524	0.664	0.690	0.677
llama-3.1-8b-instruct_zero	0.325	0.389	0.354	0.350	0.408	0.377	0.990	0.625	0.766	0.503	0.436	0.467
llama-3.1-8b-instruct_few	0.452	0.427	0.439	0.499	0.479	0.489	1.000	0.725	0.840	0.693	0.610	0.649
llama-3.1-8b-instruct_few path	0.497	0.429	0.461	0.518	0.484	0.500	1.000	0.735	0.848	0.868	0.756	0.808
phi-4-reasoning-plus_zero	0.512	0.427	0.466	0.509	0.494	0.501	0.332	0.401	0.363	0.292	0.492	0.367
phi-4-reasoning-plus_few	0.527	0.440	0.480	0.564	0.516	0.539	0.362	0.418	0.388	0.332	0.505	0.401
phi-4-reasoning-plus_few path	0.540	0.438	0.484	0.582	0.531	0.555	0.379	0.446	0.410	0.408	0.582	0.480
mixtral-8x7b-instruct_zero	0.363	0.374	0.368	0.369	0.412	0.389	0.137	0.224	0.170	0.097	0.240	0.138
mixtral-8x7b-instruct_few	0.420	0.434	0.427	0.448	0.461	0.454	0.155	0.241	0.189	0.098	0.236	0.138
mixtral-8x7b-instruct_few path	0.750	1.000	0.857	0.502	0.487	0.494	0.168	0.260	0.204	0.190	0.383	0.254
o3-mini_zero	0.770	0.516	0.618	0.752	0.587	0.659	0.634	0.583	0.608	0.716	0.720	0.718
o3-mini_few	0.782	0.533	0.634	0.800	0.627	0.703	0.669	0.581	0.622	0.803	0.753	0.777
o3-mini_few path	0.907	0.611	0.730	0.848	0.865	0.856	0.671	0.600	0.634	0.837	0.759	0.796
gpt-5_zero	0.830	0.586	0.687	0.897	0.777	0.833	0.738	0.694	0.715	0.747	0.731	0.739
gpt-5_few	0.835	0.597	0.696	0.945	0.746	0.834	0.884	0.811	0.846	0.745	0.734	0.739
gpt-5_few path	0.949	0.798	0.867	0.937	0.796	0.861	0.866	0.844	0.855	0.887	0.839	0.862
qwen2.5-7b-instruct_zero	0.751	0.529	0.621	0.502	0.465	0.483	0.201	0.296	0.239	0.206	0.384	0.268
qwen2.5-7b-instruct_few	0.757	0.533	0.626	0.552	0.498	0.523	0.198	0.302	0.239	0.246	0.431	0.313
qwen2.5-7b-instruct_few path	0.797	0.539	0.643	0.600	0.521	0.558	0.249	0.353	0.292	0.254	0.441	0.322
qwen3-235b-a22b_zero	0.905	0.613	0.731	0.876	0.622	0.727	0.499	0.573	0.533	0.876	0.767	0.818
qwen3-235b-a22b_few	1.000	0.717	0.835	0.884	0.754	0.814	0.579	0.641	0.608	0.882	0.766	0.820
qwen3-235b-a22b_few path	0.999	0.725	0.840	0.999	0.717	0.835	0.633	0.702	0.666	0.995	0.793	0.883
grok-4-fast_zero	0.748	0.508	0.605	0.857	0.727	0.787	0.693	0.600	0.643	0.886	0.796	0.839
grok-4-fast_few	0.793	0.538	0.641	0.907	0.715	0.800	0.772	0.643	0.702	0.899	0.828	0.862
grok-4-fast_few path	0.850	0.560	0.675	0.921	0.709	0.801	0.769	0.658	0.709	0.891	0.847	0.868

1329
1330
1331 Table 17: Commonsense Version Results

Model	k = 2					k = 3					k = 4					k = 5				
	Fmt	Ex	Prec	Rec	F1	Fmt	Ex	Prec	Rec	F1	Fmt	Ex	Prec	Rec	F1	Fmt	Ex	Prec	Rec	F1
grok-4-fast	0.62	0.13	0.83	0.73	0.78	0.71	0.10	0.79	0.82	0.81	0.54	0.03	0.65	0.70	0.67	0.49	0.00	0.78	0.63	0.69
gpt-5	0.93	0.37	0.73	0.83	0.78	0.91	0.30	0.72	0.84	0.78	0.93	0.02	0.72	0.76	0.74	0.93	0.15	0.60	0.68	0.64
deepeek-r1-0528	0.83	0.26	0.72	0.61	0.56	0.71	0.14	0.81	0.51	0.63	0.46	0.05	0.80	0.54	0.64	0.58	0.03	0.81	0.55	0.66
claude-sonnet4	0.83	0.04	0.54	0.63	0.44	0.72	0.03	0.42	0.61	0.50	0.89	0.00	0.53	0.62	0.57	0.63	0.00	0.67	0.74	0.70
qwen3-235b-a22b	0.63	0.15	0.56	0.63	0.45	0.83	0.13	0.65	0.32	0.43	0.68	0.00	0.83	0.64	0.72	0.93	0.03	0.57	0.53	0.55
gemini-2.5-pro	0.98	0.04	0.64	0.56	0.46	0.93	0.02	0.90	0.73	0.81	0.92	0.09	0.81	0.85	0.83	0.83	0.05	0.86	0.52	0.65
llama-3.1-405b-instruct	0.63	0.04	0.76	0.76	0.74	0.73	0.00	0.53	0.63	0.58	0.65	0.00	0.51	0.67	0.58	0.59	0.00	0.60	0.62	0.61
qwen2.5-7b-instruct	0.98	0.01	0.66	0.64	0.54	0.99	0.01	0.65	0.64	0.65	0.99	0.00	0.64	0.84	0.72	1.00	0.00	0.59	0.66	0.63
phi-4-reasoning-plus	0.94	0.04	0.69	0.62	0.55	0.95	0.02	0.42	0.42	0.42	0.96	0.00	0.51	0.64	0.57	0.87	0.00	0.69	0.75	0.72
mixtral-8x7b-instruct	1.00	0.01	0.71	0.71	0.65	0.97	0.00	0.71	0.53	0.61	0.93	0.00	0.68	0.86	0.76	1.00	0.00	0.54	0.62	0.58
o3-mini	1.00	0.01	0.63	0.74	0.60	1.00	0.01	0.53	0.63	0.58	0.97	0.00	0.63	0.53	0.57	1.00	0.00	0.61	0.73	0.66
claude-3.5-haiku	1.00	0.02	0.53	0.55	0.38	0.93	0.00	0.51	0.35	0.42	0.92	0.00	0.55	0.64	0.59	0.83	0.00	0.63	0.76	0.69
llama-3.1-8b-instruct	0.53	0.01	0.85	0.53	0.58	0.42	0.00	0.52	0.33	0.41	0.38	0.00	0.55	0.64	0.59	0.43	0.00	0.80	0.56	0.66
gpt-40	1.00	0.04	0.53	0.52	0.36	0.98	0.02	0.53	0.62	0.57	1.00	0.00	0.62	0.52	0.56	1.00	0.00	0.80	0.63	0.71

1343
1344 P REINFORCEMENT LEARNING
1345
1346 Q REINFORCEMENT LEARNING EXPERIMENT ON TASK 1
1347
1348 Despite the fine-tuning experiment, we also conducted one RL experiment. We applied TRL ?
1349 with GRPO ? on Task 1 using two base models (LLaMA-3.1-8b and Qwen-2.5-7b) and found that

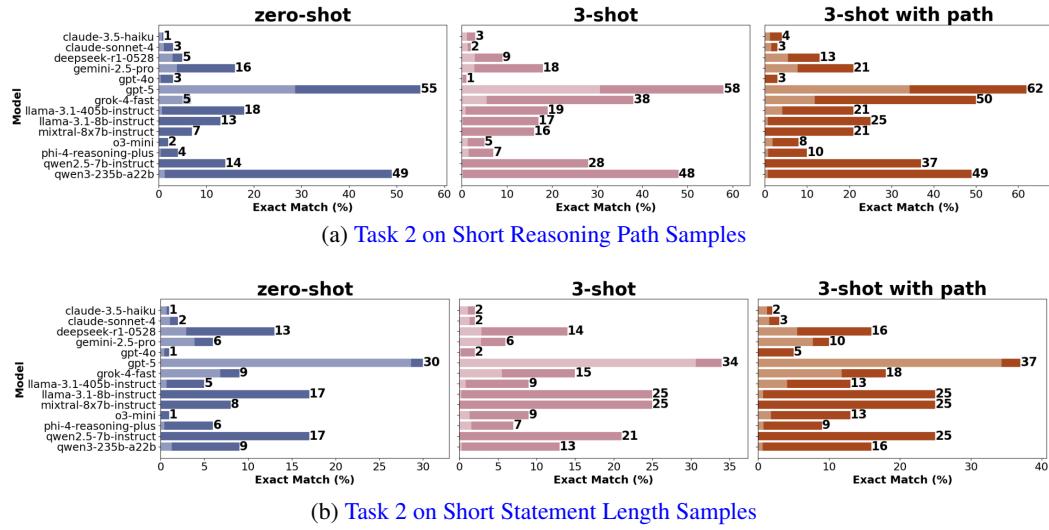


Figure 6: Performance on Task 2 under two easy conditions: (a) short reasoning paths and (b) short statement lengths. The lighter bars indicate the average Exact accuracy score on Task 2.

Table 18: Counterfactual Version Results

Model	k = 2					k = 3					k = 4					k = 5				
	Fmt	Ex	Prec	Rec	F1	Fmt	Ex	Prec	Rec	F1	Fmt	Ex	Prec	Rec	F1	Fmt	Ex	Prec	Rec	F1
grok-4-fast	0.59	0.19	0.85	0.75	0.80	0.69	0.10	0.39	0.42	0.41	0.51	0.02	0.25	0.31	0.28	0.49	0.00	0.13	0.21	0.16
gpt-5	0.90	0.31	0.75	0.85	0.78	0.89	0.27	0.72	0.84	0.78	0.93	0.24	0.72	0.76	0.74	0.93	0.15	0.65	0.68	0.66
deepseek-r1-0528	0.89	0.23	0.04	0.33	0.01	0.69	0.08	0.02	0.51	0.04	0.43	0.02	0.03	0.05	0.03	0.58	0.03	0.34	0.35	0.35
claude-sonnet-4	0.89	0.02	0.56	0.65	0.44	0.70	0.01	0.42	0.41	0.42	0.88	0.00	0.53	0.32	0.40	0.63	0.00	0.14	0.24	0.18
llama-3.1-405b-instruct	0.50	0.15	0.58	0.65	0.45	0.81	0.00	0.65	0.42	0.51	0.66	0.00	0.23	0.53	0.33	0.93	0.03	0.52	0.13	0.21
gemini-2.5-pro	0.95	0.04	0.66	0.58	0.46	0.91	0.10	0.40	0.43	0.41	0.89	0.04	0.02	0.05	0.03	0.83	0.05	0.06	0.52	0.11
llama-3.1-405b-instruct	0.50	0.01	0.38	0.28	0.12	0.71	0.00	0.53	0.63	0.58	0.63	0.00	0.53	0.36	0.43	0.59	0.00	0.33	0.32	0.32
qwen2.5-7b-instruct	0.85	0.01	0.37	0.36	0.16	0.97	0.01	0.35	0.64	0.45	1.00	0.00	0.45	0.32	0.38	1.00	0.00	0.53	0.26	0.35
phi-4-reasoning-plus	0.80	0.01	0.21	0.44	0.10	0.93	0.04	0.04	0.12	0.06	0.93	0.00	0.02	0.34	0.04	0.87	0.00	0.21	0.05	0.08
mixtral-8x7b-instruct	0.92	0.00	0.33	0.33	0.12	0.95	0.00	0.03	0.53	0.06	0.99	0.00	0.07	0.35	0.11	1.00	0.00	0.04	0.02	0.03
o3-mini	0.93	0.09	0.05	0.76	0.03	0.98	0.03	0.05	0.06	0.06	1.00	0.00	0.04	0.53	0.08	1.00	0.00	0.01	0.02	0.01
claude-3.5-haiku	0.87	0.02	0.55	0.27	0.17	0.91	0.00	0.21	0.35	0.27	0.92	0.00	0.15	0.12	0.14	0.83	0.00	0.06	0.04	0.05
llama-3.1-8b-instruct	0.50	0.01	0.27	0.55	0.17	0.40	0.00	0.52	0.33	0.41	0.35	0.00	0.06	0.03	0.04	0.43	0.00	0.06	0.06	0.06
gpt-4o	0.87	0.04	0.55	0.54	0.36	0.96	0.03	0.05	0.03	0.04	1.00	0.00	0.03	0.32	0.06	1.00	0.00	0.03	0.05	0.04

even small-scale RL using Task 1 data can have **modest** improvement on Task 1, Task 2, and other logical-related tasks, which demonstrates that LogiConBench **can be used as a meaningful reward source**, but the inherent reasoning ability **cannot be easily mitigated** through data augmentation.

Q.1 1. REWARD MODEL

The reward model is defined as follows.

When the correct answer is “unknown”:

- Answering “correct” or “incorrect”: 0.5 points
- Answer contains “unknown”: 1 point
- All other answers: 0.2 points

When the correct answer is “correct”:

- Answering “unknown” or “incorrect”: 0.5 points
- Answer contains “correct”: 1 point
- All other answers: 0.2 points

When the correct answer is “incorrect”:

Table 19: Humanized Version Results

Model	k = 2					k = 3					k = 4					k = 5				
	Fmt	Ex	Prec	Rec	F1	Fmt	Ex	Prec	Rec	F1	Fmt	Ex	Prec	Rec	F1	Fmt	Ex	Prec	Rec	F1
grok-4-fast	0.82	0.23	0.75	0.72	0.74	0.73	0.11	0.69	0.62	0.65	0.62	0.09	0.70	0.61	0.65	0.53	0.04	0.70	0.61	0.65
gpt-5	0.98	0.29	0.65	0.63	0.64	0.91	0.20	0.73	0.83	0.78	0.93	0.13	0.68	0.83	0.75	0.90	0.09	0.68	0.83	0.75
deepseek-r1-0528	0.82	0.05	0.06	0.41	0.04	0.90	0.08	0.83	0.70	0.76	0.85	0.04	0.86	0.69	0.76	0.87	0.02	0.86	0.69	0.76
claude-sonnet-4	0.87	0.04	0.46	0.53	0.38	0.82	0.06	0.63	0.62	0.62	0.82	0.05	0.58	0.63	0.60	0.85	0.00	0.58	0.63	0.60
qwen3-235b-a22b	0.62	0.20	0.48	0.63	0.47	0.70	0.04	0.64	0.62	0.63	0.73	0.03	0.65	0.63	0.64	0.73	0.01	0.65	0.63	0.64
gemini-2.5-pro	0.85	0.05	0.61	0.32	0.42	0.90	0.18	0.79	0.73	0.76	0.92	0.12	0.82	0.75	0.78	0.97	0.06	0.82	0.75	0.78
llama-3.1-405b-instruct	0.51	0.00	0.33	0.28	0.30	0.70	0.00	0.54	0.63	0.58	0.79	0.00	0.49	0.63	0.55	0.81	0.00	0.49	0.63	0.55
qwen2.5-7b-instruct	0.89	0.02	0.39	0.36	0.37	0.95	0.00	0.75	0.64	0.69	0.93	0.00	0.77	0.63	0.69	0.89	0.00	0.77	0.63	0.69
phi-4-reasoning-plus	0.79	0.04	0.28	0.44	0.34	0.92	0.05	0.84	0.82	0.83	0.90	0.02	0.85	0.81	0.83	0.93	0.01	0.85	0.81	0.83
mixtral-8x7b-instruct	0.92	0.03	0.33	0.33	0.33	0.96	0.00	0.82	0.54	0.65	0.92	0.00	0.78	0.55	0.64	0.94	0.00	0.78	0.55	0.64
o3-mini	0.97	0.05	0.05	0.76	0.09	0.97	0.07	0.65	0.69	0.67	0.88	0.03	0.65	0.68	0.66	0.90	0.00	0.65	0.68	0.66
claude-3.5-haiku	0.89	0.00	0.55	0.27	0.36	0.90	0.02	0.82	0.55	0.66	0.89	0.00	0.87	0.55	0.68	0.87	0.00	0.87	0.55	0.68
llama-3.1-8b-instruct	0.62	0.01	0.27	0.55	0.36	0.60	0.06	0.53	0.43	0.47	0.67	0.03	0.53	0.42	0.47	0.69	0.00	0.53	0.42	0.47
gpt-4o	0.87	0.04	0.55	0.54	0.54	0.98	0.04	0.72	0.81	0.76	0.92	0.02	0.76	0.80	0.78	0.93	0.00	0.76	0.80	0.78

Table 20: Performance on Downstream Benchmarks.

Model	LiveCodeBench	Infinite	AIME	AA-LCR	ACEBench (agent)
grok-4-fast	79.00	65.80	89.70	64.70	73.00
gpt-5	84.00	86.50	91.70	72.80	78.00
deepseek-r1-0528	64.30	36.50	68.00	52.30	64.00
claude-sonnet-4	55.90	64.60	74.30	64.70	53.00
qwen3-235b-a22b	79.00	53.20	91.00	67.00	51.00
gemini-2.5-pro	69.00	54.10	87.70	66.00	63.00
llama-3.1-405b-instruct	30.50	19.00	33.00	24.30	41.00
qwen2.5-7b-instruct	12.60	21.00	9.00	16.00	12.00
phi-4-reasoning-plus	23.10	32.00	21.00	20.00	15.00
mixtral-8x7b-instruct	6.60	13.00	3.00	8.00	6.00
o3-mini	71.70	28.70	25.00	30.00	65.00
claude-3.5-haiku	20.20	28.00	21.00	43.00	35.00
llama-3.1-8b-instruct	11.60	16.40	4.50	15.70	4.00
gpt-4o	42.50	25.10	25.70	53.00	71.50

- Answering “unknown” or “correct”: 0.5 points
- Answer contains “incorrect”: 1 point
- All other answers: 0.2 points

Q.2 2. EVALUATION RESULTS

Table 1. Task 1 Accuracy (Consistent / Inconsistent / Overall)

LLaMA

k	con	incon	overall
2	0.58	0.59	0.585
3	0.51	0.52	0.515
4	0.32	0.48	0.40
5	0.31	0.33	0.32

Qwen

Table 2. RL LLaMA on Task 2

Table 3. RL on Task 1 — Qwen Results

Table 4. General Downstream Evaluation (Before vs After RL)

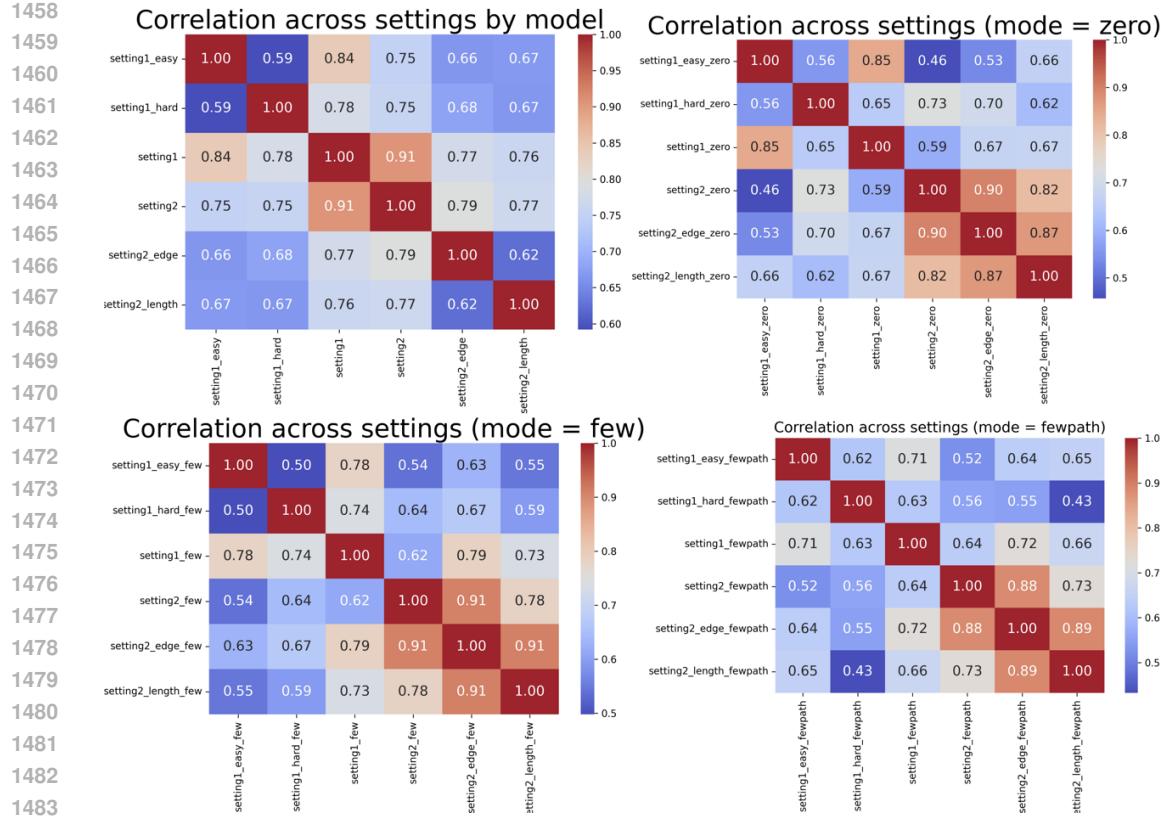


Figure 7: Correlations between different tasks.

	k	con	incon	overall
	2	0.42	0.5436	0.4818
	3	0.47	0.5308	0.5004
	4	0.33	0.4673	0.3987
	5	0.30	0.3406	0.3203

Q.3 3. OVERALL ANALYSIS

- **RL yields modest but consistent gains on Task 1 (and slight gains on Task 2).** RL improves Task 1 performance across most k values, though the gains are small. Task 2 benefits only marginally, indicating weak transfer to enumerative reasoning.
- **Little generalization to broader benchmarks.** On LogiQA, LogicNLI, MathQA, HumanEval, and MMLU, improvements are minimal or inconsistent.
- **Improvements are limited** due to low task complexity and reward-pattern learning rather than deep reasoning enhancement.
- **Positive result:** RL and fine-tuning results jointly indicate that LogiConBench can serve as a **useful training dataset** to improve reasoning capabilities.

k	format	exact	precision	recall	f1
2	0.691	0.285	0.7384	0.7962	0.7662
3	0.704	0.176	0.3894	0.8189	0.5278
4	0.613	0.104	0.5843	0.7320	0.6499
5	0.642	0.050	0.4830	0.5718	0.5237

k	format	exact	precision	recall	f1
2	0.989	0.183	0.4829	0.4899	0.4860
3	1.000	0.145	0.6348	0.4138	0.5010
4	0.977	0.058	0.4342	0.4280	0.4312
5	0.992	0.030	0.2143	0.2038	0.2090

R FINE-TUNING

S FINE-TUNING ANALYSIS: LIMITED GAINS AND HIGH COMPUTATIONAL COST

S.1 FINE-TUNING IMPROVES PERFORMANCE BUT THE GAINS ARE LIMITED

We conducted a controlled fine-tuning experiment and found that although fine-tuning yields measurable improvements on the benchmark, the gains are fundamentally limited. Meanwhile, the storage and computation required for fine-tuning are substantial. These results suggest that the performance bottleneck primarily lies in the models’ inherent reasoning limitations rather than insufficient supervision.

S.1.1 FINE-TUNING ON TASK 2 PROVIDES IMPROVEMENTS, BUT FAR FROM SOLVING THE TASK

We fine-tuned three small open-source models (Llama-3-8B, Qwen-2.5-7B, and Mistral-7B) on **1,000 synthetic Task 2 training samples** generated by our pipeline (100 for $k=2$, 200 for $k=3$, 300 for $k=4$, and 400 for $k=5$). Each training instance contains both the **full reasoning path** and the **final answer**, providing complete in-domain supervision perfectly aligned with the evaluation format.

Across all models, fine-tuning improves Task 2 performance, but the gains remain limited (Tables 21–23). Crucially, even after fine-tuning, none of the small models approach frontier-model performance.

S.1.2 FINE-TUNING DOES NOT OVERFIT: IT GENERALIZES TO TASK 1 AND INDEPENDENT BENCHMARKS

Despite being trained solely on Task 2, all models exhibit improvements on **Task 1** (Tables 24–26). Since Task 1 involves a distinct output format and only partially overlapping reasoning skills, this demonstrates **genuine reasoning transfer** rather than overfitting.

Fine-tuned models also show improvements on multiple **independent logical reasoning benchmarks** (Table 27), including LogicNLI, LogiQA, MathQA, HumanEval, and MMLU—none of which appear in the training data. This demonstrates that synthetic data strengthens models’ broader logical competence.

S.2 SUBSTANTIAL STORAGE AND COMPUTATIONAL COSTS OF FINE-TUNING

Fine-tuning is not only limited in performance gains, but also extremely expensive in storage and computation:

(1) Storage Cost. Each training instance requires storing its (i) symbolic representation, (ii) reasoning edges, (iii) atom expressions, (iv) consistency and non-consistency sets, and (v) the full log-

benchmark	llama	llama ft	qwen	qwen ft
LogiQA	39.6	42.1	33.0	32.5
LogicNLI	28.5	30.4	24.0	24.4
MathQA	42.8	38.2	36.0	33.6
HumanEval	22.6	25.3	32.9	33.8
MMLU	65.3	60.9	55.0	57.9

Table 21: Fine-tuning Llama-3 on Task 2 and evaluating on Task 2.

<i>k</i>	Format	Exact	Precision	Recall	F1
2	0.783	0.327	0.5626	0.9362	0.7028
3	0.802	0.190	0.4457	0.9749	0.6117
4	0.736	0.132	0.4349	0.5556	0.4879
5	0.669	0.080	0.4247	0.4419	0.4331

ical graph. Since the logical graph grows with $\mathcal{O}(n^3)$ complexity as the number of atoms increases, the storage footprint escalates rapidly.

(2) Computational Cost. Even with only 1,000 training examples, fine-tuning an 8B-parameter model requires an A800 GPU for approximately **4 hours**. Achieving stronger performance would require orders of magnitude more computation, making fine-tuning impractical at scale.

1620

1621

Table 22: Fine-tuning Qwen-2.5 on Task 2 and evaluating on Task 2.

1622

1623

<i>k</i>	Format	Exact	Precision	Recall	F1
2	1.00	0.213	0.6723	0.5773	0.6212
3	1.00	0.161	0.7587	0.4635	0.5754
4	1.00	0.066	0.4294	0.4593	0.4438
5	1.00	0.063	0.3277	0.3393	0.3340

1628

1629

Table 23: Fine-tuning Mistral-7B on Task 2 and evaluating on Task 2.

1630

1631

<i>k</i>	Format	Exact	Precision	Recall	F1
2	1.00	0.122	0.4307	0.8447	0.5705
3	1.00	0.113	0.3326	0.2312	0.2728
4	1.00	0.047	0.2626	0.2362	0.2487
5	1.00	0.000	0.1457	0.2749	0.1905

1637

1638

Table 24: Fine-tuning Llama-3 on Task 2 and evaluating on Task 1.

1639

1640

<i>k</i>	Cons	Incons	Overall
2	0.69	0.47	0.58
3	0.46	0.53	0.495
4	0.52	0.35	0.435
5	0.61	0.33	0.47

1646

1647

Table 25: Fine-tuning Qwen-2.5 on Task 2 and evaluating on Task 1.

1648

1649

<i>k</i>	Cons	Incons	Overall
2	0.43	0.52	0.48
3	0.63	0.62	0.63
4	0.67	0.79	0.73
5	0.64	0.78	0.71

1655

1656

Table 26: Fine-tuning Mistral-7B on Task 2 and evaluating on Task 1.

1657

1658

<i>k</i>	Cons	Incons	Overall
2	0.81	0.61	0.71
3	0.74	0.48	0.61
4	0.85	0.38	0.615
5	0.73	0.42	0.575

1664

1665

1666

Table 27: Performance on general benchmarks with and without fine-tuning.

1667

1668

Benchmark	Llama	Llama FT	Qwen	Qwen FT	Mistral	Mistral FT
LogiQA	39.6	45.2	33.0	35.2	34.0	33.0
LogicNLI	28.5	47.5	24.0	30.6	26.0	26.0
MathQA	42.8	49.6	36.0	28.0	33.0	36.2
HumanEval	22.6	29.3	32.9	41.0	28.7	32.0
MMLU	65.3	69.3	55.0	58.0	64.2	67.0