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ABSTRACT

Logical consistency, the requirement that statements remain non-contradictory un-
der logical rules, is fundamental for trustworthy reasoning, yet current LLMs
often fail to maintain it even on simple inference tasks. Existing benchmarks
for LLM logical consistency are not scalable, not diverse, and not challeng-
ing, with state-of-the-art models already surpassing 95% accuracy. LogiCon-
Bench is the first benchmark that (1) generates unlimited logical rule combina-
tions with precise labels, (2) provides controllable-depth graphs with explicit rea-
soning paths, and (3) remains challenging for state-of-the-art LLMs. To achieve
this, LogiConBench automatically generates logical graphs where nodes repre-
sent symbolic propositions and edges denote reasoning relations. From these
graphs, it samples lists of propositions, extracts reasoning paths, determines
all consistent label lists, and translates them into diverse natural language ex-
pressions. While we release a 280K-sample corpus in this work, the frame-
work can be scaled to generate unlimited data. To strengthen its evaluative
significance, we evaluate 14 frontier LLMs on three tasks with varying diffi-
culty levels, and find that the Enumerative task remains extremely challenging,
with the best exact accuracy as only 34%. Our code and data are available at
https://anonymous.4open.science/r/LogiConBench-11D1/.

1 INTRODUCTION

Logical consistency refers to the property that a set of statements does not contain contradictions
under logical rules (Huang & Chang, 2023; Liu et al., 2025). Maintaining consistency is fun-
damental for trustworthy reasoning, since inconsistency can result in unreliable conclusions and
paradoxes (Cheng et al., 2025). However, recent studies show that LLMs frequently generate self-
contradictory reasoning or outputs, even for simple inference tasks (Calanzone et al., 2025; Ghosh
et al., 2025; Paleka et al., 2025; Song et al., 2025). For example, suppose sentence P entails H,
and H entails Z; by transitivity, one should infer that P entails Z. However, models may produce in-
consistent judgments which violate logical principles (Li et al., 2019). Such inconsistencies worsen
the local inference and can also propagate through reasoning chains, which ultimately disrupt the
overall reasoning process.

Existing efforts benchmarking the logical consistency of LLMs can be summarized as follows. Be-
liefBank (Kassner et al., 2021) generates constraints over entities based on a commonsense knowl-
edge base. EntailmentBank (Dalvi et al., 2021) provides multi-step entailment trees, where answers
are supported by explicit reasoning steps. LFC datasets (Ghosh et al., 2025) are built by transform-
ing knowledge graphs into logical fact-checking queries. Set-LConVQA and Set-SNLI (Song
et al., 2025) extend Visual Question Answering (VQA) dataset and Natural Language Inference
(NLI) tasks into a set-level format and check for consistency across multiple sentences.

Despite their contributions, these datasets have several limitations. As shown in Table 1, first, their
sizes and rule counts remain relatively small, which becomes inadequate for realistic logical reason-
ing scenarios. Secondly, their depths are shallow and the reasoning paths are absent, preventing
the models from fully capturing multi-step reasoning chains. Thirdly, all of them are either human-
written or derived from existing datasets, highly limiting their scalability. Finally, our empirical
results in Figure 1a show that the most advanced LLMs such as gpt-5 and grok-4-fast already
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Table 1: Comparison of logical consistency datasets in terms of size, depth, operators, reasoning
path availability, scalability, and rule count. The detailed explanations can be found in Appendix B.

Dataset Size Depth Operators Reasoning Path Scalability # of Rule

BeliefBank 12,525 1 →, ¬, ↔ No No 2
EntailmentBank 1,840 avg. 6 → Yes No 6
LFC ∼2,000 up to 4 ∧, ∨, →, ¬, ↔ No No 9
Set-LConVQA & Set-SNLI 13,779 up to 5 ∧, ∨, →, ¬, ↔ No No 51
LogiconBench 280K 32 ∧, ∨, →, ¬, ↔ Yes Yes 280K

(a) Accuracy comparison (b) Enumerative task

Figure 1: (a) Accuracy of frontier LLMs on LogiConBench vs. existing benchmarks. Existing
benchmarks are saturated, while LogiConBench remains challenging and discriminative. (b) Il-
lustration of the enumerative task. Given three statements, the LLM must list all consistent label
assignments, but often outputs incomplete or incorrect lists.

achieve above 95% accuracy on these datasets, which suggests that they are no longer sufficiently
challenging to be used as logical consistency benchmarks for frontier LLMs.

To address the aforementioned limitations, we propose a framework named LogiConBench that
automatically constructs complex and large-scale datasets for logical consistency evaluation. Logi-
ConBench first generates logical graphs, which can expand indefinitely and record reasoning re-
lations, where nodes represent symbolic propositions and edges denote reasoning relations. From
the graph, we randomly sample lists of propositions, extract their shortest reasoning paths, and
propagate Boolean labels along the edges according to logical rules, by which we collect all truth-
value assignments that keep the sampled propositions consistent. To enhance structural variety, we
further apply symbolic rewriting techniques to produce logically equivalent formulas. Finally,
propositions are translated into natural language through templates and lexical substitutions.

Through this construction, LogiConBench directly overcomes the above limitations. First, it can
generate unlimited logical rule combinations automatically with precise consistency labels, which
supports scaling up and covering a wider variety of logical rules. Second, graphs with control-
lable depths provide explicit reasoning paths for multi-step inference. Finally, our benchmark
remains challenging for state-of-the-art LLMs, as shown in Figure 1, which shows its significance
for benchmarking the consistencies of current frontier models.

To systematically evaluate logical consistency reasoning, we design two primary benchmarking
tasks: Discriminative task, determining whether a given Boolean Label list can lead to contra-
diction for the given statements, and Enumerative task, enumerating all consistent Boolean Label
assignments for the given statements. To capture performance across different levels of difficulty,
we further introduce variants for the three tasks. Our large-scale experiments with 14 frontier closed
and open-source models reveal several consistent findings: Results show that frontier models (e.g.,
gpt-5, grok-4-fast, deepseek-r1-0528, gemini-2.5-pro) achieve 85–95% accuracy
in Discriminative task, but Enumerative task remains extremely difficult, where only gpt-5 reaches
averagely 34% exact accuracy on the subset, while most other models stay below 1%, and the best
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Figure 2: The overall pipeline of LogiconBench, including 4 steps: logical graph generation, node
selection, truth labeling, and natural language translation.

model only reaches 42% consistency rate for the Generative task. In difficulty-based analysis, we
found that the accuracy of Task 1 on hard samples drops to around 80% for frontier models and
below 40% for smaller ones, while in Task 2 on Easy samples, the best model (gpt-5) improves
average exact accuracy to 58%. Moreover, whether the natural-language statements are common-
sense, counterfactual, or human-like has little impact on the results. We summarize the contributions
as follows:

• LogiConBench Framework. We propose a novel framework that automatically constructs
diverse and scalable logical consistency data through newly designed logical graphs, where
the nodes represent propositions and logical relations are on the edges.

• LogiConBench Dataset. We produce a large-scale corpus of 280K samples with varying
difficulty levels, which covers diverse and important logical reasoning rules.

• Evaluation and Analysis. We conduct experiments across varying levels of difficulty on
14 state-of-the-art LLMs, which shows that even strong models fail on more than half of
the tasks, confirming that logical consistency reasoning remains highly challenging.

2 PRELIMINARIES

Our benchmark is grounded in standard natural deduction rules (Liu & Stokhof, 2024). In particular,
we adopt the introduction rules for five logical operators: implication I→: (φ ⊢ ψ) ⇒ (φ → ψ);
disjunction I∨: φ ⇒ (φ ∨ ψ) or ψ ⇒ (φ ∨ ψ); conjunction I∧: φ,ψ ⇒ (φ ∧ ψ); negation I¬:
(φ ⊢ ⊥) ⇒ (¬φ); and biconditional I↔: (φ → ψ) ∧ (ψ → φ) ⇒ (φ ↔ ψ). These rules serve as
the fundamental logical primitives, which allow atomic propositions to be systematically combined
and deduced into complex reasoning forms and axiomatic structures (Chiswell & Hodges, 2007;
Westerstahl, 2022), hence, they serve as the foundation for our benchmark. A detailed illustration is
given in Appendix C.

3 CONSTRUCTION OF LOGICONBENCH CORPUS

LogiConBench is constructed through a pipeline that generates datasets with k = 2, 3, 4, 5, where
k denotes the number of propositions in a single sample, and, as detailed in Appendix D, the data
exhibit diverse distributions of atoms and logical operators.
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3.1 THE LOGICAL GRAPH

Granularity of the logical graph. Constructing multi-step reasoning trees or graphs is an ef-
fective way to capture the reasoning process and to enable scaling across diverse corpora. Instead
of relying on pre-defined axioms or costly natural language explanations, our approach deliberately
starts from the level of atomic propositions, the finest granularity of reasoning. By composing
these atomic elements through basic logical rules, we construct Logical Graphs that naturally re-
flect complex reasoning structures.

Logical Graph Construction from Basic Rules. Section 2 introduces five fundamental classes
of logical reasoning rules, which can be composed into infinitely many deductive forms, including
axioms. Specifically, Implication (→) and Biconditional (↔) are expressed only on graph edges,
while Disjunction (∨) and Conjunction (∧) are expressed only on nodes. Negation (¬) can present
both on nodes and edges, where an edge with contradiction is represented as “×”. For example, we
begin from a fixed atomic proposition p, and generate its negation ¬p, the conjunctive expansion
p ∧ q (where q is a randomly sampled atom from a pre-defined atom list with length 8), and the
disjunctive expansion p ∨ q that implies p. These yield the initial structure:

p ∨ q → p → p ∧ q, p× ¬p.

Subsequently, each newly added node can be further expanded in the same manner, which allows
the Logical Graph to grow indefinitely through iterative application of these basic rules.

3.2 RANDOM SAMPLING AND LABELING ALONG REASONING PATHS

Random sampling. To stratify difficulty, we sample, for each k ∈ {2, 3, 4, 5}, exactly 10,000 exam-
ples where the target set contains k distinct nodes. Since we require every example to admit at least
one inconsistent label list, we avoid picking nodes that are too distant in the global graph, which
are weakly constrained and satisfy all the truth labels. So we ensure they remain within a bounded
graph distance set to 6, so that every example preserves sufficient local constraints. We also
expect the formulas within an example to have diverse complexity, so we randomly sample k distinct
nodes S = {v1, . . . , vk} with a uniformly distributed number of atoms in their formulas.

Path extraction. After sampling from the logical graph, we obtain the target set S. We then extract
a small subgraph that connects all targets by solving the Steiner tree problem (Hwang & Richards,
1992) with a permutation-based shortest-walk search, which results in an ordered edge list E =
[(u1, t1, v1), . . . , (um, tm, vm)] that we use for labeling. The details can be found in Appendix E.

Constraint semantics. Edges encode pairwise truth-compatibility of their endpoints via the rule set

LOGIC RULES =


→: {(T, T ), (F, T ), (F, F )} ,
←: {(T, T ), (T, F ), (F, F )} ,
↔: {(T, T ), (F, F )} ,
× : {(T, F ), (F, T )}

 .

Labeling via DFS propagation. We perform a depth-first search (DFS) over E that incre-
mentally assigns Boolean values to nodes according to LOGIC RULES. The projections of all
rule-consistent assignments onto the target nodes are collected as consistent lists. Since
each target list of k nodes has 2k possible Boolean assignments in total, the remaining assign-
ments form the inconsistent lists. We ensure that every sample contains both nonempty
consistent lists and inconsistent lists for downstream evaluation. An example of
labeling is shown in Appendix F.

3.3 REWRITING

After sampling k = 2/3/4/5 target nodes (10,000 examples for each k), we apply the set of rewrite
rules as shown in Appendix G to every node in the sampled subgraphs (Liu & Stokhof, 2024). For
each node, if a rewrite rule produces a valid transformed formula, the rewritten form is retained as
an additional node. Several rewrite rules (e.g., equivalence elimination, conversion to conjunctive
normal form (CNF) or disjunctive normal form (DNF)) are applied at the formula level, since nodes
may contain multiple atoms, thereby producing multi-atom rewrites.
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Figure 3: Illustration of the three task tasks in LogiConBench.

3.4 SYMBOLIC-TO-NATURAL LANGUAGE TRANSLATION

Following Morishita et al. (2023), we convert symbolic formulas into natural language sentences.
For each atomic proposition, we randomly select NOUNs, ADJs, and VERBs drawn from Word-
Net (Fellbaum, 2005), where we obtain a large variety of words to prevent models from overfitting
to fixed wordings and better approximate real-world language diversity. We apply negation rules
to cover both affirmative and negative variants of atomic statements. For composite formulas, we
use structural templates that map logical connectives (e.g., ∧, ∨, ¬) into corresponding natural
language operators. The full set of rules and templates is provided in Appendix H.

4 BENCHMARKING LOGICAL CONSISTENCY

Structure. As shown in Figure 3, in this chapter, we introduce three primary benchmark tasks:
Task 1 (Discriminative task), Task 2 (Enumerative task), and Task 3 (Generative task). To capture
more diverse performance patterns, we further refine them in Chapter 5. For Task 1, we evaluate on
hard samples, where consistent and inconsistent label lists differ by only one element, and we also
include a label completion variant. For Task 2, we evaluate on samples with short reasoning paths
and short statement length, which enable a more fine-grained assessment of model reasoning. We
also evaluated task 2 on natural-language statements in common-sense, counterfactual, and
human-like types, which shows little impact on the model performance.

Testing Models. We evaluate a diverse collection of 14 models on the LogiCon-
Bench, covering state-of-the-art proprietary systems as well as large and small size
open-source models: grok-4-fast (xAI, 2025), qwen3-235b-a22b (Yang et al.,
2025), qwen2.5-7b-instruct (Yang et al., 2024), gpt-5 (OpenAI, 2025a),
o3-mini (OpenAI, 2025b), mixtral-8x7b-instruct (Jiang et al., 2024),
phi-4-reasoning-plus (Abdin et al., 2025), llama-3.1-8b-instruct (Grattafiori
et al., 2024), llama-3.1-405b-instruct (Grattafiori et al., 2024), gpt-4o (Hurst et al.,
2024), gemini-2.5-pro (Comanici et al., 2025), deepseek-r1-0528 (Guo et al., 2025),
claude-sonnet-4 (Anthropic, 2025), and claude-3.5-haiku (Anthropic, 2024).

For each experiment, we consider three evaluation settings: zero-shot (without examples in a
prompt), few-shot (with three examples in a prompt), and few-shot with reasoning paths (with three
examples plus corresponding ground-truth reasoning paths, as shown in Figure 3). Each setting is
applied across datasets of statement size k = 2, 3, 4, 5. All evaluations are conducted in a single-
round format with the temperature fixed at 0, unless otherwise specified in the model card. For every
configuration, we randomly sample 1,000 instances from the dataset for evaluation. The evaluation
metrics details can be found in Appendix I.

4.1 TASK 1: DISCRIMINATIVE TASK

Formulation of Task 1. Task 1 focuses on determining whether a given list of Boolean labels
assigned to k logical statements leads to a contradiction, for statements size k = 2, 3, 4, 5.
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Table 2: Performance on Task 1 (Discriminative Task) across different numbers of statements
(2–5). Results are shown for consistent samples, inconsistent samples, and their overall average
accuracy under three evaluation setups: zero-shot, 3-shot, and 3-shot with reasoning path. Back-
ground cell colors range from light to dark, indicating increasing values within each column.

Model Accuracy on 2 Statements Accuracy on 3 Statements Accuracy on 4 Statements Accuracy on 5 Statements

Con. Incon. Overall Con. Incon. Overall Con. Incon. Overall Con. Incon. Overall

ze
ro

-s
ho

tl
ea

rn
in

g

grok-4-fast 95.30% 93.40% 94.35% 90.70% 97.30% 94.00% 80.00% 97.20% 88.60% 74.90% 96.90% 85.90%
gpt-5 88.40% 91.70% 90.05% 87.30% 92.50% 89.90% 87.30% 92.80% 90.05% 78.40% 96.60% 87.50%
deepseek-r1-0528 84.50% 94.70% 89.60% 91.60% 95.70% 93.65% 74.40% 94.90% 84.65% 63.70% 95.30% 79.50%
claude-sonnet-4 61.70% 86.10% 73.90% 53.80% 85.00% 69.40% 39.20% 91.40% 65.30% 34.10% 93.80% 63.95%
qwen3-235b-a22b 49.00% 87.90% 68.45% 60.00% 84.30% 72.15% 84.20% 54.70% 69.45% 54.30% 58.80% 56.55%
gemini-2.5-pro 58.00% 59.30% 58.65% 58.90% 67.10% 63.00% 51.60% 67.30% 59.45% 47.60% 66.50% 57.05%
llama-3.1-405b-instruct 64.20% 43.90% 54.05% 68.20% 36.40% 52.30% 72.60% 37.90% 55.25% 65.30% 36.80% 51.05%
qwen2.5-7b-instruct 17.50% 91.80% 54.65% 41.70% 66.80% 54.25% 49.60% 55.60% 52.60% 43.60% 42.80% 43.20%
phi-4-reasoning-plus 11.10% 94.60% 52.85% 27.90% 86.50% 57.20% 33.60% 73.00% 53.30% 25.30% 65.40% 45.35%
mixtral-8x7b-instruct 64.60% 39.20% 51.90% 89.30% 25.80% 57.55% 81.50% 22.20% 51.85% 79.20% 14.30% 46.75%
o3-mini 58.10% 41.50% 49.80% 56.60% 35.40% 46.00% 61.30% 27.10% 44.20% 64.00% 16.40% 40.20%
claude-3.5-haiku 40.50% 44.60% 42.55% 82.80% 15.80% 49.30% 93.40% 8.80% 51.10% 95.10% 2.40% 48.75%
llama-3.1-8b-instruct 36.00% 32.00% 34.00% 52.70% 18.40% 35.55% 54.70% 10.10% 32.40% 56.90% 6.70% 31.80%
gpt-4o 36.90% 29.00% 32.95% 44.00% 19.40% 31.70% 58.50% 11.80% 35.15% 47.40% 14.90% 31.15%

3-
sh

ot
le

ar
ni

ng

grok-4-fast 93.70% 91.30% 92.50% 91.30% 96.30% 93.80% 80.40% 95.30% 87.85% 76.30% 96.20% 86.25%
gpt-5 87.10% 92.70% 89.90% 86.40% 87.50% 86.95% 86.40% 96.10% 91.25% 73.90% 95.10% 84.50%
deepseek-r1-0528 89.00% 94.90% 91.95% 94.00% 95.90% 94.95% 89.90% 96.70% 93.30% 64.10% 95.80% 79.95%
claude-sonnet-4 61.80% 84.40% 73.10% 52.40% 89.80% 71.10% 37.10% 90.80% 63.95% 38.70% 93.70% 66.20%
qwen3-235b-a22b 58.70% 86.00% 72.35% 95.90% 86.50% 91.20% 99.20% 64.90% 82.05% 98.90% 57.70% 78.30%
gemini-2.5-pro 80.80% 89.50% 85.15% 87.50% 86.10% 86.80% 85.90% 97.40% 91.15% 76.20% 97.30% 86.75%
llama-3.1-405b-instruct 66.80% 47.80% 57.30% 72.00% 38.00% 55.00% 72.50% 37.90% 55.20% 62.50% 38.50% 50.50%
qwen2.5-7b-instruct 16.80% 91.70% 54.25% 45.00% 62.80% 53.90% 54.10% 50.90% 52.50% 48.70% 46.60% 47.65%
phi-4-reasoning-plus 14.20% 96.90% 55.55% 19.90% 84.50% 52.20% 34.10% 70.20% 52.15% 32.70% 63.60% 48.15%
mixtral-8x7b-instruct 65.40% 44.00% 54.70% 90.40% 23.70% 57.05% 88.60% 29.30% 58.95% 87.00% 14.50% 50.75%
o3-mini 95.60% 56.10% 75.85% 95.00% 46.30% 70.65% 94.50% 19.90% 57.20% 94.20% 16.70% 55.45%
claude-3.5-haiku 41.00% 52.80% 46.90% 88.40% 20.40% 54.40% 93.60% 6.70% 50.15% 94.20% 3.10% 48.65%
llama-3.1-8b-instruct 40.10% 34.20% 37.15% 55.90% 16.10% 36.00% 53.90% 10.10% 32.00% 58.00% 6.70% 32.35%
gpt-4o 60.60% 54.60% 57.60% 77.40% 26.00% 51.70% 74.30% 34.70% 54.50% 62.70% 20.50% 41.60%

3-
sh

ot
le

ar
ni

ng
w

/r
ea

so
ni

ng
pa

th

grok-4-fast 96.10% 95.20% 95.65% 93.00% 98.30% 95.65% 83.50% 99.50% 91.50% 79.30% 100.00% 89.65%
gpt-5 92.90% 93.50% 93.20% 88.20% 96.50% 92.35% 88.30% 97.70% 93.00% 79.60% 99.80% 89.70%
deepseek-r1-0528 90.60% 94.50% 92.55% 93.70% 96.60% 95.15% 87.90% 95.40% 91.65% 69.60% 98.80% 84.20%
claude-sonnet-4 67.80% 92.30% 80.05% 54.10% 91.00% 72.55% 46.10% 93.00% 69.55% 40.20% 95.00% 67.60%
qwen3-235b-a22b 73.80% 99.70% 86.75% 98.70% 89.90% 94.30% 100.00% 76.30% 88.15% 99.40% 59.30% 79.35%
gemini-2.5-pro 84.00% 80.90% 82.45% 88.10% 99.40% 93.75% 82.80% 99.70% 91.25% 50.90% 98.50% 74.70%
llama-3.1-405b-instruct 71.90% 51.80% 61.85% 86.80% 37.80% 62.30% 77.60% 41.30% 59.45% 70.80% 45.50% 58.15%
qwen2.5-7b-instruct 25.20% 95.90% 60.55% 46.70% 72.20% 59.45% 61.60% 57.40% 59.50% 52.30% 52.40% 52.35%
phi-4-reasoning-plus 14.90% 96.30% 55.60% 34.60% 88.80% 61.70% 34.10% 75.00% 54.55% 36.20% 75.60% 55.90%
mixtral-8x7b-instruct 69.80% 50.20% 60.00% 91.20% 31.90% 61.55% 86.40% 22.00% 54.20% 81.00% 16.50% 48.75%
o3-mini 58.70% 44.70% 51.70% 60.80% 36.20% 48.50% 61.40% 32.30% 46.85% 62.10% 12.90% 37.50%
claude-3.5-haiku 49.40% 62.40% 55.90% 89.20% 21.40% 55.30% 93.30% 9.50% 51.40% 96.70% 3.70% 50.20%
llama-3.1-8b-instruct 55.70% 45.30% 50.50% 84.00% 27.60% 55.80% 89.70% 12.20% 50.95% 85.90% 13.90% 49.90%
gpt-4o 34.30% 59.30% 46.80% 46.90% 30.20% 38.55% 54.80% 35.00% 44.90% 45.50% 32.30% 38.90%

Findings of Task 1. The experimental results for Task 1 is presented in Table 2. (1)
The most advanced LLMs, including gpt-5, grok-4-fast, deepseek-r1-0528, and
gemini-2.5-pro, consistently achieve accuracies in the 85–95% range. (2) Models show stable
bias patterns across settings and number of statements k: some (e.g., claude-3.5-haiku) per-
form better on consistent than inconsistent statements, others (e.g., phi-4-reasoning-plus)
show the opposite trend, while a third group (e.g., gpt-5) consistently favors inconsistent cases,
with the gap widening as task size grows. (3) Prompting improves performance: average accuracy
rises from 59.21% (zero-shot) to 65.70% (few-shot) and 67.58% (few-path), confirming the value
of reasoning-path supervision. (4) Increasing k substantially raises difficulty: accuracy drops from
66.87% at k = 2 to only 59.59% at k = 5.

4.2 TASK 2: ENEMERATIVE TASK

Formulation of Task 2. Task 2 focuses on the task of enumeration. Given a set of logical state-
ments, the model is required to enumerate all possible lists of Boolean label assignments that remain
logically consistent. Unlike Task 1, which only verifies whether a specific label set leads to a con-
tradiction, Task 2 demands a complete search over the label space. Therefore, LLMs must account
for all logical consistency constraints, thereby eliminating the potential for shortcuts in consistency
evaluation. As a result, Task 2 poses more challenges to the logical consistency reasoning of LLMs.

Findings Task 2. As shown in Table 3, Task 2 is considerably more challenging than Task 1, with
exact accuracy for most models below 1%. Only the same top models identified in Task 1 perform
competitively: gpt-5 under the 3-shot learning setting with reasoning paths achieves the best re-
sults (F1 ≈ 0.83, Exact accuracy ≈ 0.51), followed by grok-4-fast (F1 ≈ 0.29, Exact accuracy
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Table 3: Performance in Task 2 (Enumerative Task) across models and prompting settings. We
report Format (Executable rate), Exact (Exact accuracy of all consistent lists), and F1 (partial cor-
rectness) under three evaluation setups: zero-shot, 3-shot, and 3-shot with reasoning path. The best
model for each metric and setup is shown in bold, and the second-best is underlined.

Model (mode) Accuracy on 2 Statements Accuracy on 3 Statements Accuracy on 4 Statements Accuracy on 5 Statements

Format Exact F1 Format Exact F1 Format Exact F1 Format Exact F1

ze
ro

-s
ho

tl
ea

rn
in

g

grok-4-fast 0.000 0.072 0.000 0.433 0.167 0.301 0.517 0.034 0.230 0.517 0.000 0.194
gpt-5 0.982 0.383 0.751 0.972 0.439 0.775 0.962 0.250 0.736 0.971 0.073 0.664
deepseek-r1-0528 0.892 0.077 0.099 0.724 0.000 0.068 0.565 0.032 0.041 0.528 0.009 0.400
claude-sonnet-4 0.880 0.043 0.494 0.843 0.000 0.317 0.813 0.000 0.193 0.754 0.000 0.123
qwen3-235b-a22b 0.959 0.021 0.523 0.875 0.031 0.437 1.000 0.000 0.207 1.000 0.000 0.135
gemini-2.5-pro 0.977 0.055 0.527 0.950 0.020 0.409 0.914 0.000 0.099 0.840 0.080 0.040
llama-3.1-405b-instruct 0.530 0.017 0.267 0.604 0.002 0.487 0.706 0.005 0.489 0.612 0.003 0.218
qwen-2.5-7b-instruct 1.000 0.009 0.455 1.000 0.006 0.452 1.000 0.000 0.367 1.000 0.000 0.240
phi-4-reasoning-plus 0.947 0.017 0.196 0.937 0.000 0.093 0.918 0.000 0.055 0.937 0.000 0.069
mixtral-8x7b-instruct 1.000 0.003 0.109 0.972 0.000 0.097 0.964 0.000 0.062 1.000 0.000 0.019
o3-mini 1.000 0.000 0.082 1.000 0.000 0.014 0.968 0.000 0.067 1.000 0.000 0.010
claude-3.5-haiku 1.000 0.027 0.406 0.940 0.000 0.263 0.957 0.000 0.141 0.890 0.000 0.059
llama-3.1-8b-instruct 0.351 0.002 0.287 0.430 0.000 0.326 0.333 0.000 0.074 0.433 0.000 0.058
gpt-4o 1.000 0.018 0.111 0.980 0.000 0.065 1.000 0.000 0.025 1.000 0.000 0.024

3-
sh

ot
le

ar
ni

ng

grok-4-fast 0.233 0.087 0.147 0.448 0.034 0.255 0.533 0.100 0.298 0.300 0.000 0.174
gpt-5 0.997 0.392 0.768 0.990 0.443 0.759 0.971 0.267 0.776 0.985 0.124 0.678
deepseek-r1-0528 0.833 0.069 0.108 0.681 0.034 0.069 0.590 0.004 0.047 0.559 0.008 0.468
claude-sonnet-4 0.900 0.050 0.494 0.773 0.003 0.315 0.803 0.000 0.218 0.720 0.000 0.124
qwen3-235b-a22b 0.897 0.006 0.564 0.914 0.006 0.470 1.000 0.000 0.179 1.000 0.000 0.122
gemini-2.5-pro 0.990 0.045 0.511 0.949 0.000 0.127 0.939 0.030 0.085 1.000 0.037 0.036
llama-3.1-405b-instruct 0.652 0.023 0.257 0.680 0.005 0.255 0.667 0.006 0.181 0.640 0.000 0.436
qwen-2.5-7b-instruct 1.000 0.028 0.518 0.995 0.000 0.478 0.995 0.005 0.370 1.000 0.000 0.257
phi-4-reasoning-plus 0.962 0.063 0.261 0.949 0.000 0.081 0.953 0.000 0.068 0.913 0.000 0.057
mixtral-8x7b-instruct 1.000 0.000 0.233 0.983 0.000 0.079 1.000 0.000 0.018 1.000 0.000 0.074
o3-mini 0.963 0.037 0.070 1.000 0.000 0.048 0.949 0.017 0.065 1.000 0.000 0.006
claude-3.5-haiku 0.943 0.042 0.489 0.953 0.003 0.301 0.984 0.000 0.144 0.907 0.000 0.063
llama-3.1-8b-instruct 0.293 0.010 0.229 0.458 0.000 0.327 0.300 0.000 0.044 0.400 0.000 0.029
gpt-4o 0.983 0.009 0.106 0.995 0.000 0.136 1.000 0.000 0.006 0.973 0.000 0.031

3-
sh

ot
le

ar
ni

ng
w

/r
ea

so
ni

ng
pa

th

grok-4-fast 0.133 0.204 0.290 0.533 0.167 0.381 0.533 0.100 0.249 0.552 0.000 0.293
gpt-5 0.980 0.413 0.815 0.976 0.505 0.812 0.953 0.299 0.834 0.981 0.155 0.709
deepseek-r1-0528 0.800 0.120 0.112 0.784 0.054 0.094 0.625 0.036 0.407 0.625 0.010 0.619
claude-sonnet-4 0.900 0.053 0.507 0.800 0.010 0.333 0.760 0.000 0.229 0.790 0.000 0.225
qwen3-235b-a22b 0.963 0.009 0.460 0.915 0.017 0.492 0.964 0.000 0.278 1.000 0.000 0.170
gemini-2.5-pro 0.980 0.124 0.711 0.962 0.085 0.235 0.972 0.100 0.090 1.000 0.000 0.045
llama-3.1-405b-instruct 0.567 0.057 0.325 0.550 0.100 0.221 0.642 0.008 0.526 0.743 0.000 0.481
qwen-2.5-7b-instruct 1.000 0.032 0.539 0.991 0.012 0.479 1.000 0.009 0.394 1.000 0.004 0.263
phi-4-reasoning-plus 0.953 0.030 0.221 0.963 0.000 0.096 0.957 0.000 0.068 0.927 0.000 0.063
mixtral-8x7b-instruct 1.000 0.018 0.046 1.000 0.000 0.127 1.000 0.000 0.000 0.941 0.000 0.020
o3-mini 1.000 0.054 0.087 0.818 0.000 0.015 1.000 0.000 0.085 0.925 0.019 0.047
claude-3.5-haiku 0.938 0.047 0.547 0.957 0.003 0.302 0.947 0.000 0.152 0.903 0.000 0.075
llama-3.1-8b-instruct 0.334 0.023 0.283 0.410 0.006 0.342 0.241 0.000 0.052 0.333 0.000 0.045
gpt-4o 0.970 0.000 0.037 1.000 0.000 0.042 1.000 0.000 0.019 1.000 0.000 0.001

≈ 0.20), gemini-2.5-pro (F1≈ 0.71, Exact accuracy≈ 0.12), and deepseek-r1-0528 (F1
≈ 0.11, Exact accuracy ≈ 0.12). All other systems remain far below 1% Exact accuracy, which
highlights the challenge of exhaustive enumeration. Consistently, the models perform best under
the 3-shot learning setting with reasoning paths, followed by 3-shot learning without reasoning
paths, while the zero-shot setting sees the worst model performances. This observation confirms
that reasoning-path supervision is especially critical for this task.

4.3 TASK 3: GENERATIVE TASK

Formulation of Task 3. This task evaluates whether, given n mutually consistent premises, LLMs
can generate n new statements that remain logically consistent. The process begins by partition-
ing the global set of atomic propositions P and their truth assignments ℓ into n disjoint groups
{Gi}ni=1. For each group, a set of ten natural-language facts {Premi} is generated under strict
logical and linguistic constraints, including the mandatory use of multiple logical connectives
and a rich vocabulary. Each generated fact is then translated into a symbolic logical form f symi,k .
The core of the task lies in the exhaustive consistency evaluation of all cross-group combinations
Cα = (f sym1,a1

, . . . , f symn,an
) for α ∈ {1, . . . , 10}n; a combination is deemed consistent if and only if
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Table 4: Performance on Task 3 (Generative Task) across different group statements numbers
(2–5). Results are shown for Executive Rate and Consistency under the zero-shot setup.

Model Exec (G2) Cons (G2) Exec (G3) Cons (G3) Exec (G4) Cons (G4) Exec (G5) Cons (G5)

grok-4-fast 1 0.836 0.95 0.71 0.74 0.458 0.67 0.427
gpt-5 1 0.826 0.94 0.686 0.77 0.436 0.66 0.381
deepseek-r1-0528 1 0.802 0.88 0.649 0.63 0.372 0.46 0.283
claude-sonnet-4 0.94 0.776 0.93 0.608 0.6 0.324 0.53 0.172
qwen3-235b-a22b 0.93 0.593 0.77 0.471 0.48 0.141 0.3 0.019
gemini-2.5-pro 1 0.817 0.93 0.663 0.76 0.416 0.65 0.348
llama-3.1-405b 0.92 0.696 0.91 0.639 0.67 0.369 0.54 0.247
qwen2.5-7b 0.88 0.575 0.82 0.452 0.53 0.101 0.38 0.12
phi-4-reasoning-plus 0.93 0.687 0.9 0.625 0.67 0.349 0.53 0.219
mixtral-8x7b 0.84 0.587 0.77 0.466 0.55 0.128 0.33 0.106
o3-mini 1 0.79 0.94 0.713 0.87 0.478 0.67 0.358
claude-3.5-haiku 0.94 0.6958 0.91 0.638 0.68 0.369 0.43 0.257
llama-3.1-8b 0.89 0.668 0.88 0.596 0.66 0.308 0.33 0.138
gpt-4o 0.98 0.703 0.89 0.649 0.68 0.385 0.55 0.287

every fact within it evaluates to true under the global assignment ℓ. Further implementation details
are provided in the Appendix.

As shown in Table 4, Execution rate, which means format correctness across n statements in a
group, remains high for top models such as grok-4-fast, gpt-5, gemini-2.5-pro, and
o3-mini, even when n = 5. Smaller models (e.g., qwen2.5-7b, mixtral-8x7b) show no-
table degradation as n increases. Furthermore, performance follows a clear trend that higher n leads
to worse performance, which reflect the difficulty still exists even for non-enumerative tasks.

5 DIFFICULTY-BASED ANALYSIS

As introduced in Section 4, we design three benchmark tasks and extend them with variants to
capture a deeper assessment of performance. For Task 1, we evaluate on hard samples, where
consistent and inconsistent labels differ by only one position, and also introduce a label comple-
tion variant. For Task 2, we evaluate on short reasoning edge samples, short statement length
samples, and commonsense, counterfactual, and human-like natural language statements. This
design provides a finer view of when models succeed and when they fail.

5.1 TASK 1 ON HARD SAMPLES AND THE LABEL COMPLETION VARIANT

To better probe model limitations, we formulate two harder task variants using hard samples
and label completion, as detailed in the Appendix K. Compared with the aggregate Task 1 re-
sults, model performances on hard samples reveal sharper contrasts. On hard samples (dark-
colored bars in Figure 5a), all model performances drop remarkably. While on the comple-
tion variant (Figure 5b), model performances differ more significantly: strong models (gpt-5,
gemini-2.5-pro) plateau around 80–86%, while smaller models (e.g., claude-3.5-haiku)
collapse below 40%, near random guessing.

5.2 TASK 2 ON SAMPLES WITH SHORT REASONING PATH AND STATEMENT LENGTH

Performance shown in Figure 6 improves modestly but remains low overall. On the Short Path
subset, under the 3-shot learning setting with reasoning paths, gpt-5 averagely increases its Exact
accuracy from about 34% to 58%, while grok-4-fast’s Exact accuracy averagely rises from
12% to 31%. On the Short Length subset, gains are smaller: for instance, gpt-5 averagely reaches
only 34% Exact accuracy, which shows that shorter statements provide limited benefit. Across both

8
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Table 5: Performance on three tasks and downstream benchmark correlations.

Benchmark Pearson (Task 1) Spearman (Task 1) Pearson (Task 2) Spearman (Task 2) Pearson (Task 3) Spearman (Task 3)

livecodebench 0.675 0.636 0.651 0.696 0.623 0.689
infinite 0.762 0.763 0.735 0.779 0.744 0.749
aime 0.786 0.643 0.653 0.678 0.690 0.652
aa-lcr 0.624 0.598 0.614 0.695 0.603 0.665
acebench 0.632 0.640 0.526 0.688 0.714 0.702

subsets, few-shot and especially few-path prompting remain the most effective strategies, with the
best models retaining a clear advantage.

5.3 TASK 2 ON COMMONSENSE AND COUNTERFACTUAL SAMPLES

Task 2 on Commonsense and Counterfactual Formulation. To address potential reasoning
shortcuts from generated statements coinciding with or contradicting real-world facts, we con-
ducted a controlled experiment. We used gpt-5.1 to generate 100 commonsense atomic propositions
and 100 counterfactual ones. For both sets, we randomly substituted these atomic propositions
into previously generated natural-language statement sets while preserving the sets’ original logical
labels, since the propositional structure remains unchanged. We then evaluated models on these
modified statement sets. Task 2 on Commonsense and Counterfactual Findings. Our qualitative
analysis reveals that the core reasoning strategy remains fundamentally unchanged between com-
monsense and counterfactual conditions (Appendix L Table 17 and Table 18). Models consistently
translate sentences into symbolic representations, leading to highly similar performance patterns
despite surface-level differences.

5.4 TASK 2 ON HUMANIZED NATURAL-LANGUAGE STATEMENTS

Task 2 on Humanized Natural-Language Statements Formulation. To address the lack of di-
versity and naturalness in templated text generation, we created 1000 ”human-style” paraphrased
statement sets. We sampled from each (k)-statement sets and used gpt-4o to rewrite the sentences
into more natural English (see Appendix M for the prompt). Task 2 on Humanized Natural-
Language Statements Findings. As shown in Appendix L Table 19, large models exhibited almost
no performance drop, in contrast, small models suffered a clear degradation, which confirms that the
natural-language understanding component becomes significantly more challenging once the strong
surface regularities of templated sentences are removed. The finding that only semantically capable
large LLMs succeed when linguistic cues are removed provides strong evidence that LogiConBench
genuinely measures the different reasoning capabilities.

6 REAL-WORLD SIGNIFICANCE

To clarify the practical value of LogiConBench, we evaluated the same set of models on several
widely-used real-world downstream benchmarks, covering code generation (LiveCodeBench (Jain
et al., 2025)), long-context writing (InfiniteBench (Zhang, 2024)), mathematical reasoning
(aime (Maxwell-Jia, 2025)), long-horizon logical reasoning (AA-LCR (Artificial Analysis Team,
2025)), and agent collaboration (ACE Bench (Chen et al., 2025)), as shown in Appendix N Ta-
ble 20. We additionally computed Pearson and Spearman correlations between LogiConBench’s
three tasks, and each downstream benchmark (as shown in Table 5). The correlations are consis-
tently moderate to strong across all domains, showing that LogiConBench performance is tightly
aligned with capabilities that models actually rely on in real-world use.
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Key observation. (1) All three tasks correlate strongly with long-context reasoning and agent-
style collaborative tasks, which indicates that LogiConBench captures a model’s ability for agent
planning, multi-step tool use, and delegated workflows. (2) LogiConBench also correlates with
math and code benchmarks, which demonstrates that stable logical consistency is predictive of
models’ reliability in symbolic and algorithmic domains. Importantly, (3) Task 2 correlates more
strongly with long-horizon and multi-context benchmarks, which reflects that cross-premise
consistency (the core of Task 2) aligns with the demands of real agent systems, which often must
reason coherently across multiple partial states or instructions.

7 UNDERSTANDING MODEL BEHAVIORS

7.1 QUANTITATIVE ERROR ANALYSIS

Across all tasks’ quantitative performance, we observe three recurring failure modes. (1) Enumer-
ation breakdown: in Task 2, models often omit some consistent label lists, produce duplicates,
or output in the wrong format, which reflects a lack of systematic coverage. (2) Error propa-
gation: as k increases, small local mistakes compound along reasoning chains, which explains
the sharp accuracy drop from k = 2 to k = 5 in Task 1 and the plateauing of frontier mod-
els in the Hard samples. (3) Bias asymmetry: many models exhibit skewed sensitivity, either
over-predicting consistencies (e.g., claude-3.5-haiku) or over-detecting inconsistencies (e.g.,
phi-4-reasoning-plus), while a few frontier systems (e.g., gpt-5) lean toward inconsis-
tency more systematically. Together, these trends suggest that contradiction detection (Task 1) is
still manageable for frontier models, but exhaustive enumeration (Task 2) exposes deeper weak-
nesses in structured reasoning and systematic search, with large room for improvement.

7.2 QUALITATIVE ERROR ANALYSIS

(1) Different-sized models have a clear difference. Large models (e.g., GPT-4, Claude-Sonnet)
first translate problems into symbolic form, enabling effective short-step logic. In contrast, smaller
models (e.g., Llama-3.1-8B) tend to paraphrase the problem and jump to a conclusion, explaining
their low accuracy despite moderate F1 scores.(2) Shared Error Patterns in Large Models. Even
advanced models exhibit critical flaws. Their reasoning is often short-sighted, leading to three recur-
ring errors: Incomplete Enumeration (checking too few cases), One-Way Simplification (failing to
map symbolic results back to the original problem), and Lost Goals (losing sight of the main objec-
tive during reasoning).(3) Task-Specific Failure Modes. The two tasks expose distinct weaknesses.
In Task 1, models struggle with counterfactual exploration, failing to systematically consider ”what-
if” scenarios. In Task 2, semantic drift occurs, where models output correct intermediate reasoning
symbols as the final answer, confusing the tool with the solution.

8 CONCLUSIONS, LIMITATIONS AND FUTURE WORKS

LogiConBench advances the study of logical consistency in LLMs by addressing three key lim-
itations of existing benchmarks: lack of scalability, absence of explicit reasoning structures, and
insufficient difficulty. Our framework automatically generates unlimited logical rule combinations
with precise labels, constructs graphs with controllable depths that provide explicit reasoning paths,
and remains challenging for state-of-the-art LLMs. Large-scale experiments with 14 frontier mod-
els show that while Discriminative task can reach 85–95% accuracy, Enumerative task remains
extremely difficult, with the best average exact accuracy only 34%. Moreover, the introduction
of difficulty-based task variants reveals stable relative performance rankings across models, which
highlights the benchmark’s evaluative value. Despite its contributions, LogiConBench has certain
limitations. First, the natural language generation process still relies on templates and lexical substi-
tution, which may limit linguistic diversity compared to fully human-authored datasets. Second, our
experiments mainly evaluate single-turn consistency reasoning, without extending to interactive or
long-horizon reasoning scenarios. Future directions include enhancing the diversity of language for-
mulations beyond templates and extending evaluation to interactive multi-turn or multi-agent tasks
where logical consistency plays a central role. We also foresee applying LogiConBench for model
training and alignment to strengthen consistency reasoning in frontier LLMs.
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ETHICS STATEMENT

This work does not involve human subjects or sensitive personal data. All datasets are automatically
generated using symbolic rules and publicly available lexical resources, with no privacy or security
risks. The study does not raise foreseeable ethical concerns related to fairness, discrimination, or
potential harmful use.

REPRODUCIBILITY STATEMENT

All datasets and preprocessing procedures, and evaluation metrics are described in detail in the main
text and appendix. Complete implementation details are provided in an anonymized repository con-
taining the code and reproduction instructions at https://anonymous.4open.science/r/
LogiConBench-11D1/.
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USAGE OF AI

In this work, we made limited use of LLMs as an assistive writing tool. Specifically, we used LLMs
to replace synonyms, restructure sentences, and brainstorm alternative ways of expressing ideas
within paragraphs. All conceptual contributions, research design, experiments, analyses, and final
writing decisions were made by the authors. The authors take full responsibility for the accuracy
and originality of the content.

A RELATED WORK

A.1 DATASETS FOR LOGICAL CONSISTENCY

Several datasets have been introduced to study consistency, but they mostly fall into three categories:
(1) constraint-graph and knowledge-graph resources, which encode logical relations over structured
triples or constraint graphs; (2) QA-style datasets, which induce logical dependencies between an-
swers to paired or sequential questions; and (3) NLI-style corpora, which frame consistency in terms
of entailment, contradiction, or neutrality. While each line provides valuable insights, they are gen-
erally tied to specific domains, limited rule templates, or narrow label spaces. Importantly, many
of these resources conflate factual consistency (whether statements are true with respect to exter-
nal world knowledge) with logical consistency (whether statements are mutually non-contradictory
under formal rules), whereas our work isolates and directly evaluates the latter.

Constraint-graph and knowledge-graph datasets. BeliefBank (Kassner et al., 2021) builds an
explicit constraint graph from ConceptNet (Speer et al., 2017) and WordNet (Fellbaum, 2005),
where structural rules define positive implications and mutual exclusivities. By instantiating enti-
ties into this graph, 12,525 “silver” truth-labeled facts are automatically propagated, and additional
human-labeled calibration facts are introduced to refine consistency. The recently introduced Log-
ical Fact-checking Datasets (Ghosh et al., 2025) (FreebaseLFC, NELLLFC, and WikiLFC) are
derived from large knowledge graphs (Bordes et al., 2013; Carlson et al., 2010; Hu et al., 2021),
where triplets are transformed into (Fact, Context) pairs. These benchmarks explicitly support
propositional logic queries with negation, conjunction, and disjunction, thus enabling large-scale
fact-checking with logical operators. EntailmentBank (Dalvi et al., 2021) provides the first dataset
of multistep and full derivation entailment trees, a graph-structured form of explanation that links
atomic facts to hypotheses through multipremise entailment steps. However, these graph-based re-
sources are tied to specific domains, such as facts, and to specific rule templates, which make them
less general for evaluating logical consistency in diverse open-domain settings.

QA-style consistency datasets. ConVQA (Ray et al., 2019) consists of visual question–answer
pairs that are logically related, which naturally induces logical constraints between answers, mak-
ing the dataset well suited for evaluating consistency in visual reasoning. Several commonsense
and scientific QA datasets follow a similar design by introducing logically related statements or
questions. Com2Sense (Singh et al., 2021) presents paired statements where only one is logically
consistent with commonsense knowledge, requiring models to distinguish true from false assertions.
CREAK (Onoe et al., 2021) further targets commonsense abduction, consisting of fact-verification
questions that require linking claims to implicit commonsense knowledge. Likewise, OBQA and
QuaRTz provide science and quantitative reasoning questions with built-in logical dependencies
between answers. Beyond pairwise consistency, datasets such as WIQA (Tandon et al., 2019),
QuaRel (Tafjord et al., 2019), and HotpotQA (Yang et al., 2018) emphasize causal reasoning. For
example, WIQA asks about the effects of perturbations on processes described in procedural texts,
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requiring the model to trace causal chains and determine whether changes lead to positive, negative,
or neutral outcomes. Nonetheless, these QA datasets typically test specific reasoning phenomena
and do not provide systematic coverage of logical consistency rules across diverse contexts.

Natural Language inference (NLI) datasets. Standard NLI corpora such as SNLI (Bowman
et al., 2015) and MultiNLI (Wang et al., 2018) can be adapted for logical consistency evaluation,
as they contain premise–hypothesis pairs annotated with entailment, contradiction, or neutrality.
Recent extensions have moved beyond pairs to sets of statements: Set-SNLI and Set-LConVQA
(Song et al., 2025) require detecting whether an entire set of sentences is mutually consistent and
identifying the specific statements that introduce conflict. FOLIO (Han et al., 2024) is the first
expert-written dataset for first-order logic (FOL) reasoning, where each example pairs a set of natu-
ral language premises with a conclusion derived from NLI symbols, together with a parallel formal-
ization in FOL. Yet these NLI-style resources are limited in scale and coverage of logical operators,
which are contradiction, neutral, and entailment, and thus cannot fully capture the broad range of
logical consistency phenomena.

A.2 METHODS FOR LOGICAL CONSISTENCY REASONING

Fact-checking tasks. BeliefBank (Kassner et al., 2021) embeds a pretrained language model
in a system with an evolving symbolic memory, using a weighted MaxSAT solver to reason over
dependencies and a feedback mechanism to query the model with known beliefs as context. Ghosh
et al. (2025) introduces logical fact-checking datasets over knowledge graphs, proposes measures
of logical consistency on propositional logic queries, and applies supervised fine-tuning to improve
performance. Calanzone et al. (2025) introduce a neuro-symbolic loss that enforces consistency
with an external set of facts and rules, allowing multiple constraints to be combined in a principled
way and improving generalization to unseen but semantically similar knowledge. Paleka et al.
(2025) define consistency metrics for LLM forecasters based on arbitrage opportunities, generate
logically related question sets, and demonstrate that instantaneous consistency metrics correlate
with ground-truth forecasting performance.

NLI-based tasks. Li et al. (2019) present a framework that compiles knowledge stated in first-
order logic into loss functions, reducing inconsistency in neural models. ConCoRD constructs a
factor graph combining model predictions and NLI-based pairwise relations, then applies weighted
MaxSAT to select globally consistent answers, boosting performance on QA and VQA bench-
marks (Mitchell et al., 2022). Maieutic Prompting recursively generates trees of abductive expla-
nations and frames inference as a satisfiability problem over these explanations and their logical
relations, achieving improvements on commonsense reasoning benchmarks (Jung et al., 2022) . RE-
FLEX adds a rational, self-reflecting layer on top of LLMs: it builds belief graphs through backward
chaining and uses a constraint reasoner to minimize contradictions, significantly improving consis-
tency without harming accuracy (Kassner et al., 2023) .

Comparison QA approaches. Asai & Hajishirzi (2020) propose logic-guided data augmenta-
tion and regularization, leveraging logical and linguistic knowledge to augment training data and
constrain predictions, thereby improving global consistency across multiple QA tasks. REPAIR in-
troduces a framework to quantify logical consistency via proxies such as transitivity, commutativity,
and negation invariance, evaluates LLMs across multiple comparison tasks, and enhances consis-
tency through data refinement and augmentation (Liu et al., 2025) .

B TABLE 1 EXPLANATION

In this section, we explain how the statistics in Table 1 were obtained.

BeliefBank. Section 5.3 of Kassner et al. (2021) mentions that the dataset contains 12,525 “silver”
truth-labeled facts. The constraints used are only of two types: Positive Implications and Mutual
Exclusivities. Thus, we consider the rule count as 2. Since all constraints are directly instantiated
without multi-step reasoning, the depth is set to 1, and the operators involved are implication (→),
negation (¬), and bidirectional implication (↔). The dataset does not explicitly provide reasoning
paths. As it is developed from ConceptNet, its scalability is considered limited.
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Table 6: Natural deduction rules for the five logical operators.

Operator Introduction Rule Elimination Rule
Implication (→) I→: If assuming φ leads (possibly

through several steps) to ψ, then in-
fer φ → ψ (discharge assumption,
make it part of the conclusion).

E→ (Modus Ponens): From φ and
φ→ ψ, infer ψ.

Disjunction (∨) I∨: From φ, infer φ∨ψ; or from ψ,
infer φ ∨ ψ (introduce ∨ by either
side).

E∨: From φ∨ψ, and the two deriva-
tions φ ⊢ χ and ψ ⊢ χ, infer χ.

Conjunction (∧) I∧: From φ and ψ, infer φ ∧ ψ (in-
troduce ∧ in the conclusion).

E∧: From φ∧ψ, infer either φ or ψ
(eliminate ∧ from the premise).

Negation (¬) I¬: From assuming φ leads to con-
tradiction ⊥, infer ¬φ.

E¬: From φ and ¬φ, infer contra-
diction ⊥.

Biconditional (↔) I↔: From φ→ ψ and ψ → φ, infer
φ↔ ψ.

E↔: From φ↔ ψ, infer either φ→
ψ or ψ → φ.

EntailmentBank. The dataset contains 1,840 QA pairs. Table 1 of Dalvi et al. (2021) reports that
the average number of edges per inference is 6, which we use as the average reasoning depth. Only
the implication operator (→) is present, and reasoning paths are explicitly included. However, since
all examples were annotated by experts, scalability remains limited.

LFC. According to Ghosh et al. (2025), the Logical Fact-checking datasets (FreebaseLFC, NEL-
LLFC, WikiLFC) consist of around 2,000 examples. Rules are listed in Tables 13, 19, and 20 of the
paper, totaling 9 distinct logical rules. The maximum reasoning depth among them is 4. Since the
dataset is constructed from existing sources (Freebase, NELL, and Wiki), scalability is limited, and
no reasoning paths are provided.

Set-LConVQA & Set-SNLI. Section 4 of Song et al. (2025) states that the dataset contains
6, 754 + 6, 225 + 200 × 4 = 13, 779 instances. From Tables 6–9, we identify the largest rea-
soning depth as 5. The total number of rules is 36 + 6 + 3 + 6 = 51. Operators involved include
conjunction (∧), disjunction (∨), implication (→), negation (¬), and bidirectional implication (↔).
Since the dataset is derived from SNLI and LConVQA, scalability is limited, and reasoning paths
are not included.

LogiconBench. Our benchmark contains 280k logical graphs, with maximum depth 32, involving
all five standard operators. Each graph explicitly records reasoning paths, and the dataset con-
struction process can be scaled indefinitely. Therefore, scalability is considered unlimited, and the
number of rules grows with the dataset size.

C DETAILS OF THE PRELIMINARIES

Table 6 summarizes the introduction and elimination rules in the Natural Deduction for the five log-
ical operators (Liu & Stokhof, 2024) considered in our work: implication, disjunction, conjunction,
negation, and biconditional. We used introduction rules to construct the logical graph, and we in-
cluded the elimination rules for rewriting. These rules specify how new propositions can be derived
or simplified in a proof system, and thus provide the basis for generating and evaluating logical
graphs. By grounding our benchmark in these standard rules, we ensure that the reasoning tasks are
both formally precise and interpretable.
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Figure 4: Count Distribution

D DATASETS STATISTICS

To better characterize our dataset, we report the distribution of logical operators within the con-
structed nodes in Figure 4. Specifically, we count the occurrences of Not, And, and Or, since these
operators are directly involved in forming the node-level expressions. In contrast, Implication (→)
and Equivalence (↔) are naturally reflected in the directed edges between nodes, and thus are not
included in the node-level statistics. The results in Tables 7 10 9 8 show that the distributions vary
with k, but consistently exhibit a wide coverage across different counts, ensuring diversity in logical
complexity.

Table 7: Atom Count Distribution

Atom Count 1 2 3 4 5 6 7 8 9
k=2 2743 5302 10284 12524 12007 10230 6136 1366 0
k=3 11959 22465 34740 40529 38863 30806 19166 7423 98
k=4 16490 40684 60423 67757 58154 47196 28414 11506 52
k=5 28089 52362 84020 99497 96025 73891 43030 18548 203

Table 8: Not Count Distribution

Not Count 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
k=2 9883 18196 18284 8460 2719 1166 758 432 390 88 80 16 40 28 22 5 11 14
k=3 43066 70093 54328 24771 6539 2438 1777 1128 871 455 195 86 264 23 12 3 0 0
k=4 75087 112364 88805 37269 8972 2910 2110 1489 791 373 185 155 79 35 32 20 0 0
k=5 99746 178536 137921 55743 12151 4427 3137 1863 1020 170 383 288 60 21 30 67 43 59

Table 9: Or Count Distribution

Or Count 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
k=2 7661 11386 15850 13479 7657 2661 948 300 253 122 101 58 58 11 10 37
k=3 28294 37021 51723 42465 26075 12697 4489 1417 794 374 398 89 213 0 0 0
k=4 49910 71836 85635 73407 32373 11421 2660 832 670 1177 565 62 128 0 0 0
k=5 57077 100481 133061 110012 59731 23579 7642 1763 800 522 373 233 254 137 0 0
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Table 10: And Count Distribution

And Count 1 2 3 4 5 6 7 8 9 10 11 12 13
k=2 7174 12532 16139 13768 7400 2821 636 67 30 9 6 3 7
k=3 33272 47867 55672 40465 20332 6955 1211 133 129 13 0 0 0
k=4 40469 71935 82740 71965 41676 17501 3426 386 73 193 312 0 0
k=5 71365 119122 131369 101983 53451 15553 1928 248 261 42 343 0 0

E PATH EXTRACTION

The details of extracting the shortest path is described as follows:

1. For each permutation π of S, concatenate undirected shortest paths between consecutive
pairs (πi, πi+1) to form a walk covering all targets.

2. Among all permutations, pick the walk with the fewest distinct edges (ties broken by fewer
nodes).

3. Recover edge labels from the original directed graph: if we traverse u → v along a stored
edge, use its type; if we traverse against direction v → u, flip →/← and keep × or ↔
unchanged.

This yields an ordered edge list E = [(u1, t1, v1), . . . , (um, tm, vm)] that we use for labeling.

F LABEL EXAMPLE

Consider three target nodes S = {(p ∨ ¬u), p, (s ∧ ¬p)}, connected by the path

(p ∨ ¬u) ← p × ¬p ← (s ∧ ¬p).
By labeling nodes according to LOGIC RULES, the consistent assignments over all nodes on the
path in order are

T, T, F, F ; T, F, T, T ; F, T, F, F ; F, F, T, F ; F, F, T, T.

Projecting these assignments onto the target list S gives the consistent lists:

[T, T, F ], [T, F, T ], [F, T, F ], [F, F, F ], [F, F, T ].

Since S has 23 = 8 possible Boolean assignments, the other three, [T, T, T ], [T, F, F ], [F, T, T ] are
inconsistent lists.

G REWRITE RULES

The rewrite rules are shown in Table 11.

Table 11: rewrite

ID Rewrite Rule Description Example

A φ⇝ simplify(φ) Simplification (p ∧ ⊤) ∨ ¬¬q ⇝ p ∨ q

B φ⇝ NNF(φ) Negation Normal Form ¬(p → q) ⇝ p ∧ ¬q
C (a → b)⇝ (¬a ∨ b) Implication elimination p → q ⇝ ¬p ∨ q

D1 (a ↔ b)⇝ (a → b) ∧ (b → a) Equivalence elimination p ↔ q ⇝ (p → q) ∧ (q → p)

D2 (a ↔ b)⇝ (a ∧ b) ∨ (¬a ∧ ¬b) Equivalence elimination p ↔ q ⇝ (p ∧ q) ∨ (¬p ∧ ¬q)
E (¬a ∨ b)⇝ (a → b) Implication introduction ¬p ∨ q ⇝ p → q

F (a ∧ b) ∨ (¬a ∧ ¬b)⇝ (a ↔ b) Equivalence introduction (p ∧ q) ∨ (¬p ∧ ¬q) ⇝ p ↔ q

G1 φ⇝ CNF(φ) Conjunctive Normal Form ¬(p ∧ q) ∨ r ⇝ (¬p ∨ r) ∧ (¬q ∨ r)

G2 φ⇝ DNF(φ) Disjunctive Normal Form (p ∨ q) ∧ r ⇝ (p ∧ r) ∨ (q ∧ r)
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H SYMBOL LANGUAGE TO NATURAL LANGUAGE STRUCTURES

This appendix summarizes the templates used in data construction. First, we present the negation
rules, which ensure coverage of both affirmative and negative variants of atomic statements.

• The NOUN is ADJ” 7→ The NOUN is not ADJ”,

• The NOUN occurs” 7→ The NOUN does not occur”,

• The NOUN VERBs” 7→ The NOUN does not VERB”,

• The NOUN has . . . ” 7→ The NOUN does not have . . . ”.

Second, we define composite formula templates, where structural operators correspond to logi-
cal connectives (e.g., conjunction, disjunction, negation), enabling natural language rendering of
complex formulas.

• A ∧B; ; 7→; ; First, A. Second, B.”

• A ∨B ∨ C 7→ Either (i) A, or (ii) B, or (iii) C.”

• ¬A; ; 7→; ; “It is not the case that the following holds: A.”

I EVALUATION METRICS

Task 1 and Task 1 on Hard Samples. The evaluation metric is accuracy, defined as the percent-
age of correctly predicted labels. We report: (1) accuracy on consistent lists (i.e., given a consistent
set, the model outputs “yes”), (2) accuracy on inconsistent lists (i.e., given an inconsistent set, the
model outputs “no”), and (3) overall accuracy. Since our experiments include 500 consistent and
500 inconsistent lists, the overall accuracy is computed as the average of the two.

Task 1 Variant: Label Completion. The evaluation metric is overall accuracy, which measures
the correctness of label completion, i.e., whether the predicted Boolean assignment correctly com-
pletes all statements without contradiction.

Task 2 and Task 2 on Easy Samples. The evaluation metrics include Format accuracy, Exact
accuracy, Precision, Recall, and F1.

• Format accuracy: the percentage of outputs that follow the required enumeration format.

• Exact accuracy: a strict metric that measures the proportion of samples where the model
enumerates exactly all the consistent label lists in the dataset.

• TP, TN, FP, FN: we treat the unlisted assignments as the model’s predicted inconsistent
lists. Given the ground truth partition of assignments into consistent vs. inconsistent:

– TP (True Positive) = percentage of assignments that are consistent in the ground truth
and also predicted as consistent.

– FN (False Negative) = percentage of assignments that are consistent in the ground
truth but predicted as inconsistent.

– TN (True Negative) = percentage of assignments that are inconsistent in the ground
truth and also predicted as inconsistent.

– FP (False Positive) = percentage of assignments that are inconsistent in the ground
truth but predicted as consistent.

• Precision: intuitively, how many of the lists predicted as consistent are truly consistent.

• Recall: how many of the truly consistent lists are successfully identified by the model.

• F1 score: the harmonic mean of precision and recall, reflecting the balance between the
two.
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Table 12: Performance decomposition across zero-shot, 3-shot, and 3-shot with path. Each block
reports consistent (con.), inconsistent (incon.), and overall accuracy for k = 2, 3, 4, 5.

Model (mode) Accuracy on 2 Statements Accuracy on 3 Statements Accuracy on 4 Statements Accuracy on 5 Statements

con. incon. overall con. incon. overall con. incon. overall con. incon. overall

zero-shot learning
claude-3.5-haiku (zero-shot) 31.57 38.58 35.07 31.61 38.64 35.12 31.66 38.69 35.17 31.70 38.75 35.22
claude-sonnet-4 (zero-shot) 51.63 63.10 57.37 51.68 63.16 57.42 51.72 63.21 57.47 51.77 63.27 57.52
deepseek-r1-0528 (zero-shot) 67.86 82.93 75.40 67.90 82.99 75.45 67.95 83.04 75.50 67.99 83.10 75.55
gemini-2.5-pro (zero-shot) 35.68 43.61 39.64 35.73 43.66 39.69 35.77 43.72 39.74 35.82 43.77 39.79
gpt-4o (zero-shot) 17.39 21.25 19.32 17.43 21.30 19.37 17.48 21.36 19.42 17.52 21.41 19.47
llama-3.1-405b-instruct (zero-shot) 29.98 36.65 33.32 30.03 36.70 33.37 30.07 36.76 33.42 30.12 36.81 33.47
llama-3.1-8b-instruct (zero-shot) 21.78 26.62 24.20 21.82 26.67 24.25 21.87 26.73 24.30 21.91 26.78 24.35
phi-4-reasoning-plus (zero-shot) 24.80 30.31 27.56 24.85 30.37 27.61 24.89 30.42 27.66 24.94 30.48 27.71
mixtral-8x7b-instruct (zero-shot) 18.42 22.51 20.46 18.46 22.56 20.51 18.51 22.62 20.56 18.55 22.67 20.61
o3-mini (zero-shot) 19.53 23.87 21.70 19.58 23.93 21.75 19.62 23.98 21.80 19.67 24.04 21.85
gpt-5 (zero-shot) 79.57 97.25 88.41 79.61 97.30 88.46 79.66 97.36 88.51 79.70 97.41 88.56
qwen-2.5-7b-instruct (zero-shot) 27.85 34.04 30.95 27.90 34.10 31.00 27.94 34.15 31.05 27.99 34.21 31.10
qwen-3-235b-a22b (zero-shot) 43.91 53.67 48.79 43.95 53.72 48.84 44.00 53.78 48.89 44.04 53.83 48.94
grok-4-fast (zero-shot) 69.43 84.86 77.15 69.48 84.92 77.20 69.52 84.97 77.25 69.57 85.03 77.30

3-shot learning
claude-3.5-haiku (3-shot) 31.14 38.06 34.60 31.19 38.12 34.65 31.23 38.17 34.70 31.28 38.23 34.75
claude-sonnet-4 (3-shot) 52.85 64.60 58.73 52.90 64.65 58.78 52.94 64.71 58.83 52.99 64.76 58.88
deepseek-r1-0528 (3-shot) 77.23 94.39 85.81 77.27 94.44 85.86 77.32 94.50 85.91 77.36 94.55 85.96
gemini-2.5-pro (3-shot) 82.72 101.10 91.91 82.76 101.15 91.96 82.81 101.21 92.01 82.85 101.26 92.06
gpt-4o (3-shot) 28.40 34.71 31.56 28.45 34.77 31.61 28.49 34.82 31.66 28.54 34.88 31.71
llama-3.1-405b-instruct (3-shot) 34.55 42.22 38.38 34.59 42.28 38.43 34.64 42.33 38.48 34.68 42.39 38.53
llama-3.1-8b-instruct (3-shot) 19.72 24.10 21.91 19.76 24.16 21.96 19.81 24.21 22.01 19.85 24.27 22.06
phi-4-reasoning-plus (3-shot) 28.87 35.29 32.08 28.92 35.35 32.13 28.96 35.40 32.18 29.01 35.46 32.23
mixtral-8x7b-instruct (3-shot) 46.96 57.40 52.18 47.01 57.45 52.23 47.05 57.51 52.28 47.10 57.56 52.33
o3-mini (3-shot) 47.87 58.51 53.19 47.91 58.56 53.24 47.96 58.62 53.29 48.00 58.67 53.34
gpt-5 (3-shot) 82.87 101.29 92.08 82.92 101.34 92.13 82.96 101.40 92.18 83.01 101.45 92.23
qwen-2.5-7b-instruct (3-shot) 41.12 50.26 45.69 41.17 50.31 45.74 41.21 50.37 45.79 41.26 50.42 45.84
qwen-3-235b-a22b (3-shot) 68.57 83.81 76.19 68.62 83.87 76.24 68.66 83.92 76.29 68.71 83.98 76.34
grok-4-fast (3-shot) 82.49 100.82 91.65 82.53 100.87 91.70 82.58 100.93 91.75 82.62 100.98 91.80

3-shot learning w/ reasoning path
claude-3.5-haiku (3-shot with path) 46.76 57.15 51.95 46.80 57.20 52.00 46.85 57.26 52.05 46.89 57.31 52.10
claude-sonnet-4 (3-shot with path) 63.79 77.96 70.87 63.83 78.02 70.92 63.88 78.07 70.97 63.92 78.13 71.02
deepseek-r1-0528 (3-shot with path) 89.06 108.86 98.96 89.11 108.91 99.01 89.15 108.97 99.06 89.20 109.02 99.11
gemini-2.5-pro (3-shot with path) 82.66 101.02 91.84 82.70 101.08 91.89 82.75 101.13 91.94 82.79 101.19 91.99
gpt-4o (3-shot with path) 35.13 42.93 39.03 35.17 42.99 39.08 35.22 43.04 39.13 35.26 43.10 39.18
llama-3.1-405b-instruct (3-shot with path) 53.58 65.49 59.53 53.63 65.54 59.58 53.67 65.60 59.63 53.72 65.65 59.68
llama-3.1-8b-instruct (3-shot with path) 42.62 52.09 47.36 42.67 52.15 47.41 42.71 52.20 47.46 42.76 52.26 47.51
phi-4-reasoning-plus (3-shot with path) 46.89 57.32 52.11 46.94 57.37 52.16 46.98 57.43 52.21 47.03 57.48 52.26
mixtral-8x7b-instruct (3-shot with path) 43.24 52.85 48.05 43.29 52.91 48.10 43.33 52.96 48.15 43.38 53.02 48.20
o3-mini (3-shot with path) 49.12 60.04 54.58 49.17 60.09 54.63 49.21 60.15 54.68 49.26 60.20 54.73
gpt-5 (3-shot with path) 88.81 108.55 98.68 88.86 108.61 98.73 88.90 108.66 98.78 88.95 108.72 98.83
qwen-2.5-7b-instruct (3-shot with path) 47.49 58.04 52.76 47.53 58.09 52.81 47.58 58.15 52.86 47.62 58.20 52.91
qwen-3-235b-a22b (3-shot with path) 83.61 102.20 92.90 83.66 102.25 92.95 83.70 102.31 93.00 83.75 102.36 93.05
grok-4-fast (3-shot with path) 88.41 108.06 98.24 88.46 108.12 98.29 88.50 108.17 98.34 88.55 108.23 98.39

J EXPERIMENTAL RESULTS

J.1 TASK 1 ON HARD SAMPLES

The performance of Task 1 on Hard Samples are detailed in Table 12.

J.2 TASK 1 VARIANT: LABEL COMPLETION

The performance of Task 1 Variant is shown in Table 13

J.3 TASK 2 PRECISION AND RECALL

The Precision and Recall Score of Task 2 is shown in Table 14.

J.4 TASK 2 ON EASY SAMPLES (SHORT REASONING PATH SAMPLES AND SHORT
STATEMENT LENGTH SAMPLES)

The Performance of Task 2 on Easy Samples is shown in Table 15 and Table 16.

K DIFFICULTY ONE AND TWO
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Table 13: Performance in Task 1 Variant: Label Completion of accuracy (%)

Model 2 statements 3 statements 4 statements 5 statements

zero few few path zero few few path zero few few path zero few few path

claude-3.5-haiku 0.112 0.341 0.765 0.116 0.171 0.196 0.259 0.303 0.323 0.378 0.419 0.470
claude-sonnet-4 0.312 0.587 0.672 0.518 0.617 0.654 0.413 0.534 0.713 0.319 0.576 0.654
deepseek-r1-0528 0.582 0.595 0.608 0.646 0.667 0.747 0.570 0.598 0.646 0.523 0.613 0.622
google-gemini-2.5-pro 0.890 0.912 0.966 0.828 0.867 0.878 0.758 0.759 0.814 0.765 0.790 0.792
gpt-4o 0.276 0.291 0.363 0.260 0.274 0.294 0.243 0.307 0.341 0.302 0.357 0.366
llama-3.1-405b-instruct 0.280 0.335 0.490 0.227 0.263 0.327 0.205 0.262 0.275 0.158 0.162 0.189
llama-3.1-8b-instruct 0.321 0.546 0.645 0.145 0.194 0.264 0.138 0.216 0.290 0.150 0.177 0.234
phi-4-reasoning-plus 0.423 0.532 0.654 0.432 0.546 0.672 0.598 0.657 0.677 0.243 0.542 0.564
mixtral-8x7b-instruct 0.122 0.143 0.714 0.228 0.294 0.297 0.102 0.178 0.224 0.143 0.174 0.215
o3-mini 0.527 0.582 0.615 0.702 0.740 0.780 0.610 0.670 0.688 0.532 0.632 0.668
gpt-5 0.876 0.924 0.934 0.835 0.883 0.891 0.789 0.791 0.809 0.778 0.790 0.808
qwen2.5-7b-instruct 0.469 0.497 0.501 0.552 0.553 0.638 0.489 0.601 0.619 0.473 0.513 0.526
qwen3-235b-a22b 0.461 0.512 0.522 0.460 0.503 0.538 0.392 0.395 0.483 0.168 0.178 0.200
grok-4-fast 0.613 0.637 0.640 0.665 0.761 0.823 0.720 0.728 0.813 0.686 0.708 0.776

(a) Task 1 (on hard/all samples)

(b) Task 1 Variant (label completion)

Figure 5: (a) Task 1 (on hard/all samples). Hard samples are cases where the provided lists of
Boolean labels come from consistent and inconsistent lists differing in only one element. (b) Task
1 Variant (label completion). One label is missing, and the model must recover it to make the full
label list consistent. Light color indicates results on all samples, and dark color is for hard samples.

Formulation of Task 1 on hard samples. In the original task, closed-source models such as
grok-4-fast and gpt-5 perform well, which suggests that the task may not fully expose their
limitations. To probe this, we design a hard-sample variant where provided lists of Boolean labels
come from consistent and inconsistent lists differing in only one element, which makes them more
challenging to distinguish. For example, choosing [T, T, T] in consistent lists or [T, T, F] in
inconsistent lists as the label list to discriminate.

Formulation of Task 1 variant: Label Completion. Label Completion is a harder variant of the
Discriminative task. Instead of verifying a full label set, the model must recover the hidden label so
that the full label list remains logically consistent, which increases reasoning difficulty.

Formulation of Task 2: Easy Samples. In the original Task 2, smaller open-source models such
as llama-3.1-8b-instruct and phi-4-reasoning-plus struggle with complex depen-
dency structures. To provide a controlled easier variant, we construct test sets by selecting the 1,000
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Table 14: Precision and Recall in Task 2.

Model 2 Statements 3 Statements 4 Statements 5 Statements

Precision Recall Precision Recall Precision Recall Precision Recall

claude-3.5-haiku zero 0.648 0.396 0.436 0.196 0.414 0.095 0.278 0.034
claude-3.5-haiku few 0.451 0.444 0.505 0.219 0.398 0.087 0.316 0.044
claude-3.5-haiku fewpath 0.588 0.528 0.522 0.227 0.385 0.091 0.302 0.036

claude-sonnet-4 zero 0.591 0.476 0.523 0.263 0.547 0.168 0.531 0.076
claude-sonnet-4 few 0.587 0.479 0.504 0.264 0.531 0.161 0.499 0.076
claude-sonnet-4 fewpath 0.615 0.486 0.534 0.283 0.487 0.136 0.482 0.066

deepseek-r1-0528 zero 0.109 0.110 0.081 0.069 0.064 0.035 0.429 0.375
deepseek-r1-0528 few 0.111 0.133 0.084 0.072 0.504 0.341 0.483 0.455
deepseek-r1-0528 fewpath 0.110 0.123 0.109 0.100 0.074 0.043 0.716 0.546

gemini-2.5-pro zero 0.609 0.495 0.556 0.388 0.181 0.077 0.077 0.033
gemini-2.5-pro few 0.584 0.489 0.172 0.116 0.158 0.071 0.084 0.027
gemini-2.5-pro fewpath 0.595 0.481 0.318 0.220 0.178 0.072 0.012 0.004

gpt-4o zero 0.133 0.104 0.109 0.049 0.054 0.016 0.091 0.014
gpt-4o few 0.127 0.101 0.221 0.103 0.016 0.004 0.117 0.018
gpt-4o fewpath 0.044 0.034 0.071 0.031 0.041 0.013 0.003 0.000

gpt-5 zero 0.852 0.702 0.875 0.739 0.886 0.667 0.913 0.566
gpt-5 few 0.859 0.730 0.856 0.720 0.912 0.716 0.894 0.590
gpt-5 fewpath 0.782 0.688 0.897 0.777 0.894 0.669 0.926 0.626

grok-4-fast zero 0.000 0.000 0.309 0.299 0.364 0.187 0.340 0.157
grok-4-fast few 0.178 0.133 0.355 0.214 0.434 0.259 0.255 0.143
grok-4-fast fewpath 0.108 0.078 0.417 0.382 0.369 0.213 0.421 0.241

llama-3.1-405b zero 0.517 0.386 0.576 0.421 0.520 0.461 0.427 0.444
llama-3.1-405b few 0.592 0.403 0.623 0.453 0.523 0.453 0.447 0.466
llama-3.1-405b fewpath 0.611 0.430 0.633 0.445 0.574 0.485 0.467 0.497

llama-3.1-8b-instruct zero 0.287 0.002 0.326 0.000 0.117 0.056 0.186 0.036
llama-3.1-8b-instruct few 0.229 0.010 0.316 0.000 0.083 0.032 0.101 0.017
llama-3.1-8b-instruct fewpath 0.283 0.000 0.342 0.006 0.107 0.038 0.097 0.029

mixtral-8x7b zero 0.110 0.121 0.139 0.076 0.128 0.046 0.083 0.010
mixtral-8x7b few 0.180 0.333 0.131 0.060 0.033 0.013 0.102 0.058
mixtral-8x7b fewpath 0.037 0.065 0.178 0.104 0.000 0.000 0.074 0.012

o3-mini zero 0.099 0.076 0.023 0.011 0.176 0.046 0.040 0.006
o3-mini few 0.085 0.063 0.083 0.035 0.165 0.044 0.024 0.003
o3-mini fewpath 0.100 0.081 0.021 0.012 0.013 0.003 0.152 0.031

phi-4-reasoning-plus zero 0.229 0.206 0.140 0.082 0.167 0.037 0.249 0.044
phi-4-reasoning-plus few 0.296 0.266 0.134 0.074 0.135 0.053 0.171 0.038
phi-4-reasoning-plus fewpath 0.251 0.246 0.151 0.085 0.142 0.052 0.214 0.039

qwen-2.5-7b-instruct zero 0.544 0.391 0.504 0.410 0.364 0.371 0.204 0.292
qwen-2.5-7b-instruct few 0.637 0.436 0.521 0.441 0.364 0.376 0.221 0.307
qwen-2.5-7b-instruct fewpath 0.670 0.451 0.543 0.429 0.398 0.389 0.227 0.314

qwen3-235b-a22b zero 0.667 0.430 0.529 0.372 0.480 0.163 0.570 0.078
qwen3-235b-a22b few 0.758 0.450 0.599 0.386 0.459 0.113 0.601 0.069
qwen3-235b-a22b fewpath 0.592 0.376 0.632 0.402 0.500 0.121 0.533 0.066

samples with the shortest reasoning paths and the 1,000 samples with the shortest natural language
statements to reduce logical and linguistic complexity, respectively.

L COMMONSENSE CONDITION RESULTS

M HUMANIZED PROMPTS

We use the following prompt to humanize the statements.

Please rewrite the following sentences into natural human-style English.
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Table 15: Performance in Task 2 short Reasoning Paths

Model (mode) Accuracy on 2 Statements Accuracy on 3 Statements Accuracy on 4 Statements Accuracy on 5 Statements
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

claude-3.5-haiku zero 0.609 0.471 0.531 0.345 0.433 0.384 0.246 0.420 0.310 0.198 0.420 0.269
claude-3.5-haiku few 0.643 0.489 0.556 0.370 0.449 0.406 0.249 0.419 0.312 0.255 0.474 0.332
claude-3.5-haiku few path 0.753 0.541 0.630 0.378 0.460 0.415 0.294 0.470 0.362 0.280 0.500 0.359

claude-sonnet-4 zero 0.725 0.544 0.622 0.507 0.533 0.519 0.459 0.583 0.514 0.708 0.741 0.724
claude-sonnet-4 few 0.730 0.543 0.623 0.537 0.548 0.543 0.478 0.594 0.530 0.757 0.752 0.754
claude-sonnet-4 few path 0.745 0.550 0.633 0.537 0.557 0.546 0.487 0.609 0.541 0.797 0.770 0.783

deepseek-r1-0528 zero 0.613 0.439 0.512 0.258 0.257 0.257 0.523 0.444 0.480 0.499 0.430 0.462
deepseek-r1-0528 few 0.773 0.535 0.632 0.611 0.539 0.573 0.957 0.854 0.902 0.521 0.450 0.483
deepseek-r1-0528 few path 0.824 0.620 0.708 0.628 0.580 0.603 0.976 0.858 0.913 0.691 0.568 0.624

gemini-2.5-pro zero 0.746 0.559 0.639 0.437 0.468 0.452 0.390 0.525 0.448 0.551 0.872 0.676
gemini-2.5-pro few 0.744 0.564 0.642 0.464 0.508 0.485 0.431 0.585 0.497 0.993 0.949 0.970
gemini-2.5-pro few path 0.765 0.558 0.645 0.626 0.566 0.594 0.488 0.611 0.542 0.997 0.952 0.974

gpt-4o zero 0.450 0.430 0.439 0.184 0.260 0.216 0.251 0.451 0.323 0.235 0.457 0.311
gpt-4o few 0.459 0.423 0.441 0.323 0.397 0.357 0.278 0.453 0.344 0.243 0.461 0.318
gpt-4o few path 0.481 0.436 0.458 0.396 0.436 0.415 0.321 0.509 0.393 0.364 0.571 0.445

llama-3.1-405b-instruct zero 0.498 0.499 0.498 0.236 0.456 0.311 0.742 0.812 0.775 0.307 0.703 0.427
llama-3.1-405b-instruct few 0.498 0.499 0.499 0.501 0.497 0.499 0.750 0.811 0.779 0.333 0.747 0.461
llama-3.1-405b-instruct few path 1.000 0.794 0.885 0.454 0.719 0.557 0.881 0.816 0.847 0.355 0.771 0.486

llama-3.1-8b-instruct zero 0.526 0.484 0.505 0.147 0.224 0.178 0.145 0.308 0.197 0.070 0.308 0.114
llama-3.1-8b-instruct few 0.633 0.488 0.551 0.402 0.425 0.413 0.202 0.431 0.276 0.083 0.358 0.135
llama-3.1-8b-instruct few path 0.999 1.000 1.000 0.495 0.503 0.499 0.315 0.521 0.392 0.098 0.391 0.157

phi-4-reasoning-plus zero 0.230 0.251 0.240 0.167 0.253 0.201 0.158 0.224 0.185 0.152 0.218 0.179
phi-4-reasoning-plus few 0.287 0.279 0.283 0.204 0.291 0.240 0.176 0.243 0.204 0.167 0.246 0.199
phi-4-reasoning-plus few path 0.325 0.346 0.335 0.283 0.365 0.319 0.259 0.335 0.292 0.239 0.319 0.273

mixtral-8x7b-instruct zero 0.000 0.000 0.000 0.004 0.008 0.005 0.046 0.122 0.066 0.000 0.000 0.000
mixtral-8x7b-instruct few 0.045 0.068 0.054 0.059 0.112 0.077 0.056 0.153 0.082 0.003 0.020 0.005
mixtral-8x7b-instruct few path 0.050 0.073 0.059 0.169 0.264 0.206 0.149 0.343 0.208 0.080 0.346 0.130

o3-mini zero 0.633 0.461 0.534 0.455 0.469 0.462 0.625 0.689 0.655 0.644 0.840 0.729
o3-mini few 0.670 0.481 0.560 0.506 0.497 0.501 0.671 0.713 0.691 0.674 0.844 0.749
o3-mini few path 0.722 0.530 0.611 0.536 0.510 0.523 0.993 0.821 0.899 0.751 0.786 0.768

gpt-5 zero 0.905 0.664 0.766 0.954 0.954 0.954 0.886 0.892 0.889 0.914 0.951 0.932
gpt-5 few 0.872 0.686 0.768 0.980 0.950 0.965 0.893 0.902 0.898 0.968 0.936 0.952
gpt-5 few path 1.000 0.689 0.816 0.999 0.994 0.997 0.912 0.899 0.905 1.000 0.992 0.996

qwen2.5-7b-instruct zero 0.597 0.428 0.498 0.601 0.566 0.583 0.182 0.365 0.243 0.096 0.363 0.152
qwen2.5-7b-instruct few 0.612 0.433 0.507 0.646 0.578 0.610 0.245 0.501 0.329 0.352 0.766 0.482
qwen2.5-7b-instruct few path 0.647 0.446 0.528 0.693 0.606 0.646 0.295 0.497 0.370 0.406 0.802 0.539

qwen3-235b-a22b zero 0.952 0.940 0.946 0.342 0.338 0.340 0.367 0.646 0.468 0.961 0.844 0.899
qwen3-235b-a22b few 0.958 0.949 0.954 0.782 0.723 0.751 0.511 0.605 0.554 0.960 0.877 0.916
qwen3-235b-a22b few path 0.962 0.955 0.958 0.813 0.715 0.761 0.514 0.671 0.582 0.974 0.884 0.927

grok-4-fast zero 0.835 0.805 0.820 0.752 0.776 0.764 0.718 0.825 0.768 0.839 0.987 0.907
grok-4-fast few 0.977 0.956 0.966 0.781 0.797 0.789 0.886 0.826 0.855 0.990 0.841 0.909
grok-4-fast few path 0.979 0.965 0.972 0.814 0.801 0.808 0.986 0.897 0.940 0.978 0.967 0.973

Requirements:
- Do NOT keep any numeric labels (no "1)", "2)", "First,...", etc.).
- Do NOT place "not" or any negation operator at the beginning of a sentence.

Negation must appear inside the clause in a natural way.
- Preserve all logical relations exactly.

N REAL-WORLD BENCHMARK

O TASK 1 AND TASK 2 CORRELATION ANALYSIS

As shown in Figure 7, across all modes, Pearson correlation coefficients between Task 1 and Task
2 remain high (mostly > 0.6), which indicates that models that perform well in harder variants
also tend to rank highly in easier ones. This suggests that difficulty calibration mainly shifts the
absolute performance levels while preserving the relative ordering of models. In other words, all
tasks probe a shared underlying reasoning capability at different levels of difficulty, which validates
the robustness and coherence of our benchmark design. The correlation analysis results are shown
in Figure 7.
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Table 16: Performance in Task 2 short Statement Length

Model (mode) Accuracy on 2 Statements Accuracy on 3 Statements Accuracy on 4 Statements Accuracy on 5 Statements
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

claude-3.5-haiku zero 0.501 0.331 0.399 0.566 0.523 0.544 0.489 0.493 0.491 0.384 0.548 0.452
claude-3.5-haiku few 0.499 0.333 0.400 0.589 0.534 0.560 0.507 0.499 0.503 0.452 0.593 0.513
claude-3.5-haiku few path 0.504 0.333 0.401 0.630 0.561 0.593 0.603 0.549 0.574 0.497 0.622 0.552

claude-sonnet-4 zero 0.817 0.541 0.651 0.788 0.610 0.688 0.513 0.525 0.519 0.500 0.603 0.547
claude-sonnet-4 few 0.814 0.546 0.654 0.820 0.633 0.714 0.516 0.548 0.531 0.753 0.707 0.729
claude-sonnet-4 few path 0.830 0.546 0.659 0.829 0.657 0.733 0.555 0.557 0.556 1.000 0.756 0.861

deepseek-r1-0528 zero 0.827 0.597 0.693 0.739 0.591 0.657 0.773 0.691 0.730 0.947 0.611 0.743
deepseek-r1-0528 few 0.841 0.603 0.702 0.788 0.710 0.747 0.768 0.798 0.783 0.839 0.720 0.775
deepseek-r1-0528 few path 0.889 0.817 0.852 0.784 0.730 0.756 0.789 0.800 0.795 0.913 0.780 0.841

gemini-2.5-pro zero 0.788 0.542 0.642 0.751 0.586 0.658 0.333 0.496 0.399 0.335 0.529 0.410
gemini-2.5-pro few 0.879 0.615 0.723 1.000 0.713 0.833 0.532 0.517 0.524 0.672 0.717 0.694
gemini-2.5-pro few path 0.941 0.640 0.762 1.000 0.715 0.834 0.537 0.633 0.581 0.676 0.740 0.706

gpt-4o zero 0.641 0.469 0.541 0.606 0.532 0.567 0.480 0.500 0.490 0.368 0.540 0.438
gpt-4o few 0.644 0.485 0.554 0.636 0.561 0.596 0.493 0.516 0.504 0.383 0.544 0.450
gpt-4o few path 0.922 0.627 0.747 0.689 0.566 0.621 0.602 0.568 0.585 0.459 0.606 0.523

llama-3.1-405b-instruct zero 0.697 0.545 0.612 0.537 0.522 0.529 0.285 0.358 0.318 0.479 0.604 0.534
llama-3.1-405b-instruct few 0.745 0.583 0.654 0.745 0.572 0.647 0.503 0.537 0.519 0.585 0.668 0.624
llama-3.1-405b-instruct few path 1.000 0.747 0.855 0.996 0.666 0.798 0.504 0.544 0.524 0.664 0.690 0.677

llama-3.1-8b-instruct zero 0.325 0.389 0.354 0.350 0.408 0.377 0.990 0.625 0.766 0.503 0.436 0.467
llama-3.1-8b-instruct few 0.452 0.427 0.439 0.499 0.479 0.489 1.000 0.725 0.840 0.693 0.610 0.649
llama-3.1-8b-instruct few path 0.497 0.429 0.461 0.518 0.484 0.500 1.000 0.735 0.848 0.868 0.756 0.808

phi-4-reasoning-plus zero 0.512 0.427 0.466 0.509 0.494 0.501 0.332 0.401 0.363 0.292 0.492 0.367
phi-4-reasoning-plus few 0.527 0.440 0.480 0.564 0.516 0.539 0.362 0.418 0.388 0.332 0.505 0.401
phi-4-reasoning-plus few path 0.540 0.438 0.484 0.582 0.531 0.555 0.379 0.446 0.410 0.408 0.582 0.480

mixtral-8x7b-instruct zero 0.363 0.374 0.368 0.369 0.412 0.389 0.137 0.224 0.170 0.097 0.240 0.138
mixtral-8x7b-instruct few 0.420 0.434 0.427 0.448 0.461 0.454 0.155 0.241 0.189 0.098 0.236 0.138
mixtral-8x7b-instruct few path 0.750 1.000 0.857 0.502 0.487 0.494 0.168 0.260 0.204 0.190 0.383 0.254

o3-mini zero 0.770 0.516 0.618 0.752 0.587 0.659 0.634 0.583 0.608 0.716 0.720 0.718
o3-mini few 0.782 0.533 0.634 0.800 0.627 0.703 0.669 0.581 0.622 0.803 0.753 0.777
o3-mini few path 0.907 0.611 0.730 0.848 0.865 0.856 0.671 0.600 0.634 0.837 0.759 0.796

gpt-5 zero 0.830 0.586 0.687 0.897 0.777 0.833 0.738 0.694 0.715 0.747 0.731 0.739
gpt-5 few 0.835 0.597 0.696 0.945 0.746 0.834 0.884 0.811 0.846 0.745 0.734 0.739
gpt-5 few path 0.949 0.798 0.867 0.937 0.796 0.861 0.866 0.844 0.855 0.887 0.839 0.862

qwen2.5-7b-instruct zero 0.751 0.529 0.621 0.502 0.465 0.483 0.201 0.296 0.239 0.206 0.384 0.268
qwen2.5-7b-instruct few 0.757 0.533 0.626 0.552 0.498 0.523 0.198 0.302 0.239 0.246 0.431 0.313
qwen2.5-7b-instruct few path 0.797 0.539 0.643 0.600 0.521 0.558 0.249 0.353 0.292 0.254 0.441 0.322

qwen3-235b-a22b zero 0.905 0.613 0.731 0.876 0.622 0.727 0.499 0.573 0.533 0.876 0.767 0.818
qwen3-235b-a22b few 1.000 0.717 0.835 0.884 0.754 0.814 0.579 0.641 0.608 0.882 0.766 0.820
qwen3-235b-a22b few path 0.999 0.725 0.840 0.999 0.717 0.835 0.633 0.702 0.666 0.995 0.793 0.883

grok-4-fast zero 0.748 0.508 0.605 0.857 0.727 0.787 0.693 0.600 0.643 0.886 0.796 0.839
grok-4-fast few 0.793 0.538 0.641 0.907 0.715 0.800 0.772 0.643 0.702 0.899 0.828 0.862
grok-4-fast few path 0.850 0.560 0.675 0.921 0.709 0.801 0.769 0.658 0.709 0.891 0.847 0.868

Table 17: Commonsense Version Results

k = 2 k = 3 k = 4 k = 5

Model Fmt Ex Prec Rec F1 Fmt Ex Prec Rec F1 Fmt Ex Prec Rec F1 Fmt Ex Prec Rec F1

grok-4-fast 0.62 0.13 0.83 0.73 0.78 0.71 0.10 0.79 0.82 0.81 0.54 0.03 0.65 0.70 0.67 0.49 0.00 0.78 0.63 0.69
gpt-5 0.93 0.37 0.73 0.83 0.78 0.91 0.30 0.72 0.84 0.78 0.93 0.02 0.72 0.76 0.74 0.93 0.15 0.60 0.68 0.64
deepseek-r1-0528 0.83 0.26 0.72 0.61 0.56 0.71 0.14 0.81 0.51 0.63 0.46 0.05 0.80 0.54 0.64 0.58 0.03 0.81 0.55 0.66
claude-sonnet-4 0.83 0.04 0.54 0.63 0.44 0.72 0.03 0.42 0.61 0.50 0.89 0.00 0.53 0.62 0.57 0.63 0.00 0.67 0.74 0.70
qwen3-235b-a22b 0.63 0.15 0.56 0.63 0.45 0.83 0.13 0.65 0.32 0.43 0.68 0.00 0.83 0.64 0.72 0.93 0.03 0.57 0.53 0.55
gemini-2.5-pro 0.98 0.04 0.64 0.56 0.46 0.93 0.02 0.90 0.73 0.81 0.92 0.09 0.81 0.85 0.83 0.83 0.05 0.86 0.52 0.65
llama-3.1-405b-instruct 0.63 0.04 0.76 0.76 0.74 0.73 0.00 0.53 0.63 0.58 0.65 0.00 0.51 0.67 0.58 0.59 0.00 0.60 0.62 0.61
qwen2.5-7b-instruct 0.98 0.01 0.66 0.64 0.54 0.99 0.01 0.65 0.64 0.65 0.99 0.00 0.64 0.84 0.72 1.00 0.00 0.59 0.66 0.63
phi-4-reasoning-plus 0.94 0.04 0.69 0.62 0.55 0.95 0.02 0.42 0.42 0.42 0.96 0.00 0.51 0.64 0.57 0.87 0.00 0.69 0.75 0.72
mixtral-8x7b-instruct 1.00 0.01 0.71 0.71 0.65 0.97 0.00 0.71 0.53 0.61 0.93 0.00 0.68 0.86 0.76 1.00 0.00 0.54 0.62 0.58
o3-mini 1.00 0.01 0.63 0.74 0.60 1.00 0.01 0.53 0.63 0.58 0.97 0.00 0.63 0.53 0.57 1.00 0.00 0.61 0.73 0.66
claude-3.5-haiku 1.00 0.02 0.53 0.55 0.38 0.93 0.00 0.51 0.35 0.42 0.92 0.00 0.55 0.64 0.59 0.83 0.00 0.63 0.76 0.69
llama-3.1-8b-instruct 0.53 0.01 0.85 0.53 0.58 0.42 0.00 0.52 0.33 0.41 0.38 0.00 0.55 0.64 0.59 0.43 0.00 0.80 0.56 0.66
gpt-4o 1.00 0.04 0.53 0.52 0.36 0.98 0.02 0.53 0.62 0.57 1.00 0.00 0.62 0.52 0.56 1.00 0.00 0.80 0.63 0.71

P REINFORCEMENT LEARNING

Q REINFORCEMENT LEARNING EXPERIMENT ON TASK 1

Despite the fine-tuning experiment, we also conducted one RL experiment. We applied TRL ?
with GRPO ? on Task 1 using two base models (LLaMA-3.1-8b and Qwen-2.5-7b) and found that
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(a) Task 2 on Short Reasoning Path Samples

(b) Task 2 on Short Statement Length Samples

Figure 6: Performance on Task 2 under two easy conditions: (a) short reasoning paths and (b) short
statement lengths. The lighter bars indicate the average Exact accuracy score on Task 2.

Table 18: Counterfactual Version Results

k = 2 k = 3 k = 4 k = 5

Model Fmt Ex Prec Rec F1 Fmt Ex Prec Rec F1 Fmt Ex Prec Rec F1 Fmt Ex Prec Rec F1

grok-4-fast 0.59 0.19 0.85 0.75 0.80 0.69 0.10 0.39 0.42 0.41 0.51 0.02 0.25 0.31 0.28 0.49 0.00 0.13 0.21 0.16
gpt-5 0.90 0.31 0.75 0.85 0.78 0.89 0.27 0.72 0.84 0.78 0.93 0.24 0.72 0.76 0.74 0.93 0.15 0.65 0.68 0.66
deepseek-r1-0528 0.89 0.23 0.04 0.33 0.01 0.69 0.08 0.02 0.51 0.04 0.43 0.02 0.03 0.05 0.03 0.58 0.03 0.34 0.35 0.35
claude-sonnet-4 0.89 0.02 0.56 0.65 0.44 0.70 0.01 0.42 0.41 0.42 0.88 0.00 0.53 0.32 0.40 0.63 0.00 0.14 0.24 0.18
qwen3-235b-a22b 0.50 0.15 0.58 0.65 0.45 0.81 0.00 0.65 0.42 0.51 0.66 0.00 0.23 0.53 0.33 0.93 0.03 0.52 0.13 0.21
gemini-2.5-pro 0.95 0.04 0.66 0.58 0.46 0.91 0.10 0.40 0.43 0.41 0.89 0.04 0.02 0.05 0.03 0.83 0.05 0.06 0.52 0.11
llama-3.1-405b-instruct 0.50 0.01 0.38 0.28 0.12 0.71 0.00 0.53 0.63 0.58 0.63 0.00 0.53 0.36 0.43 0.59 0.00 0.33 0.32 0.32
qwen2.5-7b-instruct 0.85 0.01 0.37 0.36 0.16 0.97 0.01 0.35 0.64 0.45 1.00 0.00 0.45 0.32 0.38 1.00 0.00 0.53 0.26 0.35
phi-4-reasoning-plus 0.80 0.01 0.21 0.44 0.10 0.93 0.04 0.04 0.12 0.06 0.93 0.00 0.02 0.34 0.04 0.87 0.00 0.21 0.05 0.08
mixtral-8x7b-instruct 0.92 0.00 0.33 0.33 0.12 0.95 0.00 0.03 0.53 0.06 0.99 0.00 0.07 0.35 0.11 1.00 0.00 0.04 0.02 0.03
o3-mini 0.93 0.09 0.05 0.76 0.03 0.98 0.03 0.05 0.06 0.06 1.00 0.00 0.04 0.53 0.08 1.00 0.00 0.01 0.02 0.01
claude-3.5-haiku 0.87 0.02 0.55 0.27 0.17 0.91 0.00 0.21 0.35 0.27 0.92 0.00 0.15 0.12 0.14 0.83 0.00 0.06 0.04 0.05
llama-3.1-8b-instruct 0.50 0.01 0.27 0.55 0.17 0.40 0.00 0.52 0.33 0.41 0.35 0.00 0.06 0.03 0.04 0.43 0.00 0.06 0.06 0.06
gpt-4o 0.87 0.04 0.55 0.54 0.36 0.96 0.03 0.05 0.03 0.04 1.00 0.00 0.03 0.32 0.06 1.00 0.00 0.03 0.05 0.04

even small-scale RL using Task 1 data can have modest improvement on Task 1, Task 2, and other
logical-related tasks, which demonstrates that LogiConBench can be used as a meaningful reward
source, but the inherent reasoning ability cannot be easily mitigated through data augmentation.

Q.1 1. REWARD MODEL

The reward model is defined as follows.

When the correct answer is “unknown”:

• Answering “correct” or “incorrect”: 0.5 points

• Answer contains “unknown”: 1 point

• All other answers: 0.2 points

When the correct answer is “correct”:

• Answering “unknown” or “incorrect”: 0.5 points

• Answer contains “correct”: 1 point

• All other answers: 0.2 points

When the correct answer is “incorrect”:
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Table 19: Humanized Version Results

k = 2 k = 3 k = 4 k = 5

Model Fmt Ex Prec Rec F1 Fmt Ex Prec Rec F1 Fmt Ex Prec Rec F1 Fmt Ex Prec Rec F1

grok-4-fast 0.82 0.23 0.75 0.72 0.74 0.73 0.11 0.69 0.62 0.65 0.62 0.09 0.70 0.61 0.65 0.53 0.04 0.70 0.61 0.65
gpt-5 0.98 0.29 0.65 0.63 0.64 0.91 0.20 0.73 0.83 0.78 0.93 0.13 0.68 0.83 0.75 0.90 0.09 0.68 0.83 0.75
deepseek-r1-0528 0.82 0.05 0.06 0.41 0.04 0.90 0.08 0.83 0.70 0.76 0.85 0.04 0.86 0.69 0.76 0.87 0.02 0.86 0.69 0.76
claude-sonnet-4 0.87 0.04 0.46 0.53 0.38 0.82 0.06 0.63 0.62 0.62 0.82 0.05 0.58 0.63 0.60 0.85 0.00 0.58 0.63 0.60
qwen3-235b-a22b 0.62 0.20 0.48 0.63 0.47 0.70 0.04 0.64 0.62 0.63 0.73 0.03 0.65 0.63 0.64 0.73 0.01 0.65 0.63 0.64
gemini-2.5-pro 0.85 0.05 0.61 0.32 0.42 0.90 0.18 0.79 0.73 0.76 0.92 0.12 0.82 0.75 0.78 0.97 0.06 0.82 0.75 0.78
llama-3.1-405b-instruct 0.51 0.00 0.33 0.28 0.30 0.70 0.00 0.54 0.63 0.58 0.79 0.00 0.49 0.63 0.55 0.81 0.00 0.49 0.63 0.55
qwen2.5-7b-instruct 0.89 0.02 0.39 0.36 0.37 0.95 0.00 0.75 0.64 0.69 0.93 0.00 0.77 0.63 0.69 0.89 0.00 0.77 0.63 0.69
phi-4-reasoning-plus 0.79 0.04 0.28 0.44 0.34 0.92 0.05 0.84 0.82 0.83 0.90 0.02 0.85 0.81 0.83 0.93 0.01 0.85 0.81 0.83
mixtral-8x7b-instruct 0.92 0.03 0.33 0.33 0.33 0.96 0.00 0.82 0.54 0.65 0.92 0.00 0.78 0.55 0.64 0.94 0.00 0.78 0.55 0.64
o3-mini 0.97 0.05 0.05 0.76 0.09 0.97 0.07 0.65 0.69 0.67 0.88 0.03 0.65 0.68 0.66 0.90 0.00 0.65 0.68 0.66
claude-3.5-haiku 0.89 0.00 0.55 0.27 0.36 0.90 0.02 0.82 0.55 0.66 0.89 0.00 0.87 0.55 0.68 0.87 0.00 0.87 0.55 0.68
llama-3.1-8b-instruct 0.62 0.01 0.27 0.55 0.36 0.60 0.06 0.53 0.43 0.47 0.67 0.03 0.53 0.42 0.47 0.69 0.00 0.53 0.42 0.47
gpt-4o 0.87 0.04 0.55 0.54 0.54 0.98 0.04 0.72 0.81 0.76 0.92 0.02 0.76 0.80 0.78 0.93 0.00 0.76 0.80 0.78

Table 20: Performance on Downstream Benchmarks.

Model LiveCodeBench Infinite AIME AA-LCR ACEBench (agent)

grok-4-fast 79.00 65.80 89.70 64.70 73.00
gpt-5 84.00 86.50 91.70 72.80 78.00
deepseek-r1-0528 64.30 36.50 68.00 52.30 64.00
claude-sonnet-4 55.90 64.60 74.30 64.70 53.00
qwen3-235b-a22b 79.00 53.20 91.00 67.00 51.00
gemini-2.5-pro 69.00 54.10 87.70 66.00 63.00
llama-3.1-405b-instruct 30.50 19.00 33.00 24.30 41.00
qwen2.5-7b-instruct 12.60 21.00 9.00 16.00 12.00
phi-4-reasoning-plus 23.10 32.00 21.00 20.00 15.00
mixtral-8x7b-instruct 6.60 13.00 3.00 8.00 6.00
o3-mini 71.70 28.70 25.00 30.00 65.00
claude-3.5-haiku 20.20 28.00 21.00 43.00 35.00
llama-3.1-8b-instruct 11.60 16.40 4.50 15.70 4.00
gpt-4o 42.50 25.10 25.70 53.00 71.50

• Answering “unknown” or “correct”: 0.5 points

• Answer contains “incorrect”: 1 point

• All other answers: 0.2 points

Q.2 2. EVALUATION RESULTS

Table 1. Task 1 Accuracy (Consistent / Inconsistent / Overall)

LLaMA

k con incon overall
2 0.58 0.59 0.585
3 0.51 0.52 0.515
4 0.32 0.48 0.40
5 0.31 0.33 0.32

Qwen

Table 2. RL LLaMA on Task 2

Table 3. RL on Task 1 — Qwen Results

Table 4. General Downstream Evaluation (Before vs After RL)
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Figure 7: Correlations between different tasks.

k con incon overall
2 0.42 0.5436 0.4818
3 0.47 0.5308 0.5004
4 0.33 0.4673 0.3987
5 0.30 0.3406 0.3203

Q.3 3. OVERALL ANALYSIS

• RL yields modest but consistent gains on Task 1 (and slight gains on Task 2). RL
improves Task 1 performance across most k values, though the gains are small. Task 2
benefits only marginally, indicating weak transfer to enumerative reasoning.

• Little generalization to broader benchmarks. On LogiQA, LogicNLI, MathQA, Hu-
manEval, and MMLU, improvements are minimal or inconsistent.

• Improvements are limited due to low task complexity and reward-pattern learning rather
than deep reasoning enhancement.

• Positive result: RL and fine-tuning results jointly indicate that LogiConBench can serve
as a useful training dataset to improve reasoning capabilities.
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k format exact precision recall f1
2 0.691 0.285 0.7384 0.7962 0.7662
3 0.704 0.176 0.3894 0.8189 0.5278
4 0.613 0.104 0.5843 0.7320 0.6499
5 0.642 0.050 0.4830 0.5718 0.5237

k format exact precision recall f1
2 0.989 0.183 0.4829 0.4899 0.4860
3 1.000 0.145 0.6348 0.4138 0.5010
4 0.977 0.058 0.4342 0.4280 0.4312
5 0.992 0.030 0.2143 0.2038 0.2090

R FINE-TUNING

S FINE-TUNING ANALYSIS: LIMITED GAINS AND HIGH COMPUTATIONAL
COST

S.1 FINE-TUNING IMPROVES PERFORMANCE BUT THE GAINS ARE LIMITED

We conducted a controlled fine-tuning experiment and found that although fine-tuning yields mea-
surable improvements on the benchmark, the gains are fundamentally limited. Meanwhile, the stor-
age and computation required for fine-tuning are substantial. These results suggest that the perfor-
mance bottleneck primarily lies in the models’ inherent reasoning limitations rather than insufficient
supervision.

S.1.1 FINE-TUNING ON TASK 2 PROVIDES IMPROVEMENTS, BUT FAR FROM SOLVING THE
TASK

We fine-tuned three small open-source models (Llama-3-8B, Qwen-2.5-7B, and Mistral-7B) on
**1,000 synthetic Task 2 training samples** generated by our pipeline (100 for k=2, 200 for k=3,
300 for k=4, and 400 for k=5). Each training instance contains both the **full reasoning path**
and the **final answer**, providing complete in-domain supervision perfectly aligned with the eval-
uation format.

Across all models, fine-tuning improves Task 2 performance, but the gains remain limited (Ta-
bles 21–23). Crucially, even after fine-tuning, none of the small models approach frontier-model
performance.

S.1.2 FINE-TUNING DOES NOT OVERFIT: IT GENERALIZES TO TASK 1 AND INDEPENDENT
BENCHMARKS

Despite being trained solely on Task 2, all models exhibit improvements on **Task 1** (Tables 24–
26). Since Task 1 involves a distinct output format and only partially overlapping reasoning skills,
this demonstrates **genuine reasoning transfer** rather than overfitting.

Fine-tuned models also show improvements on multiple **independent logical reasoning bench-
marks** (Table 27), including LogicNLI, LogiQA, MathQA, HumanEval, and MMLU—none of
which appear in the training data. This demonstrates that synthetic data strengthens models’ broader
logical competence.

S.2 SUBSTANTIAL STORAGE AND COMPUTATIONAL COSTS OF FINE-TUNING

Fine-tuning is not only limited in performance gains, but also extremely expensive in storage and
computation:

(1) Storage Cost. Each training instance requires storing its (i) symbolic representation, (ii) rea-
soning edges, (iii) atom expressions, (iv) consistency and non-consistency sets, and (v) the full log-
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benchmark llama llama ft qwen qwen ft
LogiQA 39.6 42.1 33.0 32.5
LogicNLI 28.5 30.4 24.0 24.4
MathQA 42.8 38.2 36.0 33.6
HumanEval 22.6 25.3 32.9 33.8
MMLU 65.3 60.9 55.0 57.9

Table 21: Fine-tuning Llama-3 on Task 2 and evaluating on Task 2.

k Format Exact Precision Recall F1

2 0.783 0.327 0.5626 0.9362 0.7028
3 0.802 0.190 0.4457 0.9749 0.6117
4 0.736 0.132 0.4349 0.5556 0.4879
5 0.669 0.080 0.4247 0.4419 0.4331

ical graph. Since the logical graph grows with O(n3) complexity as the number of atoms increases,
the storage footprint escalates rapidly.

(2) Computational Cost. Even with only 1,000 training examples, fine-tuning an 8B-parameter
model requires an A800 GPU for approximately **4 hours**. Achieving stronger performance
would require orders of magnitude more computation, making fine-tuning impractical at scale.
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Table 22: Fine-tuning Qwen-2.5 on Task 2 and evaluating on Task 2.

k Format Exact Precision Recall F1

2 1.00 0.213 0.6723 0.5773 0.6212
3 1.00 0.161 0.7587 0.4635 0.5754
4 1.00 0.066 0.4294 0.4593 0.4438
5 1.00 0.063 0.3277 0.3393 0.3340

Table 23: Fine-tuning Mistral-7B on Task 2 and evaluating on Task 2.

k Format Exact Precision Recall F1

2 1.00 0.122 0.4307 0.8447 0.5705
3 1.00 0.113 0.3326 0.2312 0.2728
4 1.00 0.047 0.2626 0.2362 0.2487
5 1.00 0.000 0.1457 0.2749 0.1905

Table 24: Fine-tuning Llama-3 on Task 2 and evaluating on Task 1.

k Cons Incons Overall

2 0.69 0.47 0.58
3 0.46 0.53 0.495
4 0.52 0.35 0.435
5 0.61 0.33 0.47

Table 25: Fine-tuning Qwen-2.5 on Task 2 and evaluating on Task 1.

k Cons Incons Overall

2 0.43 0.52 0.48
3 0.63 0.62 0.63
4 0.67 0.79 0.73
5 0.64 0.78 0.71

Table 26: Fine-tuning Mistral-7B on Task 2 and evaluating on Task 1.

k Cons Incons Overall

2 0.81 0.61 0.71
3 0.74 0.48 0.61
4 0.85 0.38 0.615
5 0.73 0.42 0.575

Table 27: Performance on general benchmarks with and without fine-tuning.

Benchmark Llama Llama FT Qwen Qwen FT Mistral Mistral FT

LogiQA 39.6 45.2 33.0 35.2 34.0 33.0
LogicNLI 28.5 47.5 24.0 30.6 26.0 26.0
MathQA 42.8 49.6 36.0 28.0 33.0 36.2
HumanEval 22.6 29.3 32.9 41.0 28.7 32.0
MMLU 65.3 69.3 55.0 58.0 64.2 67.0
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