
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ONLINE PSEUDO-ZEROTH-ORDER TRAINING OF NEU-
ROMORPHIC SPIKING NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Brain-inspired neuromorphic computing with spiking neural networks (SNNs)
is a promising energy-efficient computational approach. However, successfully
training deep SNNs in a more biologically plausible and neuromorphic-hardware-
friendly way is still challenging. Most recent methods leverage spatial and temporal
backpropagation (BP), not adhering to neuromorphic properties. Despite the efforts
of some online training methods, tackling spatial credit assignments by alternatives
with competitive performance as spatial BP remains a significant problem. In this
work, we propose a novel method, online pseudo-zeroth-order (OPZO) training.
Our method only requires a single forward propagation with noise injection and
direct top-down signals for spatial credit assignment, avoiding spatial BP’s problem
of symmetric weights and separate phases for layer-by-layer forward-backward
propagation. OPZO solves the large variance problem of zeroth-order methods by
the pseudo-zeroth-order formulation and momentum feedback connections, while
having more guarantees than random feedback. Combining online training, OPZO
can pave paths to on-chip SNN training. Experiments on neuromorphic and static
datasets with both fully connected and convolutional networks demonstrate the
effectiveness of OPZO with competitive performance compared with spatial BP, as
well as estimated low training costs.

1 INTRODUCTION

Neuromorphic computing with biologically inspired spiking neural networks (SNNs) is an energy-
efficient computational framework with increasing attention recently (Roy et al., 2019; Schuman
et al., 2022). Imitating biological neurons to transmit spike trains for sparse event-driven computation
as well as parallel in-memory computation, efficient neuromorphic hardware is developed, supporting
SNNs with low energy consumption (Davies et al., 2018; Pei et al., 2019; Woźniak et al., 2020; Rao
et al., 2022; Davies, 2021).

Nevertheless, supervised training of SNNs is challenging considering neuromorphic properties.
While popular surrogate gradient methods can deal with the non-differentiable problem of discrete
spikes (Shrestha & Orchard, 2018; Wu et al., 2018; Neftci et al., 2019), they rely on backpropagation
(BP) through time and across layers for temporal and spatial credit assignment, which is biologically
problematic and would be inefficient on hardware.

Particularly, spatial BP suffers from problems of weight transport and separate forward-backward
stages with update locking (Crick, 1989; Frenkel et al., 2021), and temporal BP is further infeasible
for spiking neurons with the online property (Bellec et al., 2020). Considering learning in biological
systems with unidirectional local synapses, maintaining reciprocal forward-backward connections
with symmetric weights and separate phases of signal propagation is often viewed as biologically
problematic (Nøkland, 2016), and also poses challenges for efficient on-chip training of SNNs.
Methods with only forward passes, or with direct top-down feedback signals acting as modulation in
biological three-factor rules (Frémaux & Gerstner, 2016; Roelfsema & Holtmaat, 2018), are more
efficient and plausible, e.g., on neuromorphic hardware (Davies, 2021).

Some previous works explore alternatives for temporal and spatial credit assignment. To deal with
temporal BP, online training methods are developed for SNNs (Bellec et al., 2020; Xiao et al., 2022).
With tracked eligibility traces, they decouple temporal dependency and support forward-in-time
learning. However, alternatives to spatial BP still require deeper investigations. Most existing works

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

mainly rely on random feedback (Nøkland, 2016; Bellec et al., 2020), with limited guarantees and
poorer performance than spatial BP. Some works explore forward gradients (Silver et al., 2022;
Baydin et al., 2022), but they require an additional stage of heterogeneous signal propagation and
perform poorly due to the large variance. Recently, Malladi et al. (2023) show that zeroth-order
(ZO) optimization with simultaneous perturbation stochastic approximation (SPSA) can effectively
fine-tune pre-trained large language models, but it requires specially designed settings, not suitable
for general neural network training due to the large variance. On the other hand, local learning has
been studied, e.g., with local readout layers (Kaiser et al., 2020) or forward-forward self-supervised
learning (Hinton, 2022; Ororbia, 2023). It is complementary to global learning and can improve some
methods (Ren et al., 2023). As a crucial component of machine learning, efficient global learning
alternatives with competitive performance remain an important problem.

In this work, we propose a novel online pseudo-zeroth-order (OPZO) training method with only
a single forward propagation and direct top-down feedback for global learning. We first propose
a pseudo-zeroth-order formulation for neural network training, which decouples the model and
loss function and maintains the zeroth-order formulation for neural networks while leveraging the
available first-order property of the loss function for more informative feedback error signals. Then
we propose momentum feedback connections to directly propagate feedback signals to hidden layers.
The connections are updated based on the one-point zeroth-order estimation of the expectation of the
Jacobian, with which the large variance of zeroth-order methods can be solved, and more guarantees
are maintained compared with random feedback. OPZO only requires a noise injection in the common
forward propagation, flexibly applicable to black-box or non-differentiable models. Built upon online
training, OPZO enables training in a similar form as the three-factor Hebbian learning based on direct
top-down modulations, paving paths to on-chip training of SNNs. Our contributions include:

1. We propose a pseudo-zeroth-order formulation that decouples the model and loss function
for neural network training, which enables more informative feedback signals while keeping
the zeroth-order formulation of the (black-box) model.

2. We propose the OPZO training method with a single forward propagation and momentum
feedback connections, solving the large variance of zeroth-order methods and keeping low
costs. Built on online training, OPZO provides a more biologically plausible method friendly
for potential on-chip training of SNNs.

3. We conduct extensive experiments on neuromorphic and static datasets with fully connected
and convolutional networks, as well as on ImageNet with larger networks fine-tuned under
noise. Results show the effectiveness of OPZO in reaching competitive performance
compared with spatial BP and its robustness under different noise injections. OPZO is also
estimated to have lower computational costs than BP on potential neuromorphic hardware.

2 RELATED WORK

SNN Training Methods A mainstream method is spatio-temporal BP combined with surrogate
gradient (SG) (Shrestha & Orchard, 2018; Wu et al., 2018; Neftci et al., 2019), with many efforts
on architecture or objective design (Yao et al., 2024; Xiao et al., 2024b; Lv et al., 2024; Deng et al.,
2023; Guo et al., 2024; Xing et al., 2025). Another direction is to derive closed-form transformations
or implicit equilibriums between encodings of spike trains (weighted firing rates or the first time to
spike), and convert artificial neural networks (ANNs) to SNNs (Rueckauer et al., 2017; Deng & Gu,
2021; Stöckl & Maass, 2021; Meng et al., 2022b) or directly train SNNs with gradients from the
transformations (Zhou et al., 2021; Wu et al., 2021; Meng et al., 2022a) or equilibriums (Xiao et al.,
2021; Martin et al., 2021; Xiao et al., 2023). To tackle the problem of temporal BP, some online
training methods are proposed (Bellec et al., 2020; Xiao et al., 2022; Bohnstingl et al., 2022; Meng
et al., 2023; Yin et al., 2023) for forward-in-time learning, but many of them still require spatial BP.
Considering alternatives to spatial BP, Neftci et al. (2017); Lee et al. (2020); Bellec et al. (2020) apply
random feedback, Kaiser et al. (2020) propose online local learning, and Yang et al. (2022) propose
local tandem learning with ANN teachers. Different from them, we propose a new global learning
method with similar performance as spatial BP. Li et al. (2021) and Mukhoty et al. (2023) study
zeroth-order properties for each parameter or neuron to adjust surrogate functions or leverage a local
zeroth-order estimator for the Heaviside step function, lying in the spatio-temporal BP framework.
Differently, in this work, zeroth-order training refers to simultaneous perturbation for global network
training without BP.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Alternatives to Spatial Backpropagation For more biologically plausible global learning, al-
ternatives to spatial BP are proposed. Target propagation (Lee et al., 2015), feedback alignment
(FA) (Lillicrap et al., 2016), and sign symmetry (Liao et al., 2016; Xiao et al., 2018) avoid the weight
symmetry problem by propagating targets or using random / only sign-shared backward weights,
and Akrout et al. (2019) improves FA by learning it to be symmetric with forward weights. They,
however, still need an additional stage of sequential layer-by-layer backward propagation. Direct
feedback alignment (DFA) (Nøkland, 2016; Launay et al., 2020) improves FA to directly propagate
errors from the last layer to hidden ones. However, random feedbacks have limited guarantees and
perform much worse than BP. Some recent works study forward gradients (Silver et al., 2022; Baydin
et al., 2022; Ren et al., 2023; Xiao et al., 2024a; Bacho & Chu, 2024), but they require an additional
heterogeneous signal propagation stage, suffering from biological plausibility issues and larger costs.
There are also methods focusing on energy functions (Scellier & Bengio, 2017) or lifted proximal
formulation (Li et al., 2020). Besides global supervision, some works turn to local learning, using
local readout layers (Kaiser et al., 2020), forward-forward contrastive learning (Hinton, 2022), or
Hebbian learning (Journé et al., 2023). This work mainly focuses on global learning and can be
combined with local learning.

Zeroth-Order Optimization ZO optimization has been widely studied in machine learning, such
as for black-box optimization (Grill et al., 2015), adversarial attacks (Chen et al., 2017), reinforcement
learning (Salimans et al., 2017), etc., at relatively small scales, but its application to direct neural
network training is limited due to the variance caused by a large number of parameters. Recently,
Yue et al. (2023) theoretically shows that the complexity of ZO optimization can exhibit weak
dependencies on dimensionality considering the effective dimension, and Malladi et al. (2023)
proposes zeroth-order SPSA for memory-efficient fine-tuning pre-trained large language models with
a similar theoretical basis. However, it depends on specially designed settings (e.g., fine-tuning under
the prompt setting (Malladi et al., 2023; Gautam et al., 2024)) which are not applicable to general
neural network training, and requires two forward passes. Jiang et al. (2024) proposes a likelihood
ratio method to train neural networks, but it requires multiple forward propagation proportional to
the layer number in practice. Chen et al. (2024) considers the finite difference for each parameter
rather than simultaneous perturbation and proposes pruning methods for improvement, limited in
computational complexity. Differently, we propose a method for neural network training from scratch
with only one forward pass for low costs and comparable performance to spatial BP.

3 PRELIMINARIES

3.1 SPIKING NEURAL NETWORKS

Imitating biological neurons, each spiking neuron keeps a membrane potential u, integrates input
spike trains, and generates a spike for information transmission once u exceeds a threshold. u is reset
to the resting potential after a spike. We consider the commonly used leaky integrate and fire (LIF)
model with the dynamics of the membrane potential as: τm du

dt = −(u−urest)+R ·I(t), foru < Vth,
with input current I , threshold Vth, resistance R, and time constant τm. When u reaches Vth at time
tf , the neuron generates a spike and resets u to zero. The output spike train is s(t) =

∑
tf δ(t− tf).

SNNs consist of connected spiking neurons. We consider the simple current model Ii(t) =∑
j wijsj(t) + bi, where i, j represent the neuron index, wij is the weight and bi is a bias. The

discrete computational form is:ui [t+ 1] = λ(ui[t]− Vthsi[t]) +
∑
j

wijsj [t] + bi,

si[t+ 1] = H(ui [t+ 1]− Vth).

(1)

Here H(x) is the Heaviside step function, si[t] is the spike signal at discrete time step t, and
λ < 1 is a leaky term (taken as 1 − 1

τm
). For multi-layer networks, we use sl+1[t] to represent

the (l + 1)-th layer’s response after receiving signals sl[t] from the l-th layer, i.e., the expression is
ul+1[t+ 1] = λ(ul+1[t]− Vths

l+1[t]) +Wlsl[t+ 1] + bl.

Online Training of SNNs We build the proposed OPZO on online training methods for forward-in-
time learning. Here online training refers to online through the time dimension of SNNs (Bellec et al.,
2020; Xiao et al., 2022), as opposed to backpropagation through time. We consider OTTT (Xiao
et al., 2022) to online calculate gradients at each time by the tracked presynaptic trace âl[t] =

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

∑
τ≤t λ

t−τsl[τ] and instantaneous gradient gul+1 [t] =
(

∂L[t]
∂sN [t]

∏N−l−2
i=0

∂sN−i[t]
∂sN−i−1[t]

∂sl+1[t]
∂ul+1[t]

)⊤
as

∇WlL[t] = gul+1 [t]âl[t]
⊤. In OTTT, the instantaneous gradient requires layer-by-layer spatial

BP with surrogate derivatives for ∂sl[t]
∂ul[t]

. The proposed OPZO, on the other hand, leverages only
one forward propagation across layers and direct feedback to estimate gul+1 [t] without spatial BP
combining surrogate gradients.

3.2 ZEROTH-ORDER OPTIMIZATION

Zeroth-order optimization is a gradient-free method using only function values. A classical ZO
gradient estimator is SPSA (Spall, 1992), which estimates the gradient of parameters θ for L(θ) on a
random direction z as:

∇ZOL(θ) = L(θ + αz)− L(θ − αz)

2α
z ≈ zz⊤∇L(θ), (2)

where z is a multivariate variable with zero mean and unit variance, e.g., following the multivariate
Gaussian distribution, and α is a perturbation scale. Alternatively, we can use the one-sided formula-
tion for this directional gradient L(θ+αz)−L(θ)

α z. These two-point estimations are unbiased estimator
of ∇L(θ) in the limit α → 0 under the common assumptions of L-smoothness of L(θ) and i.i.d.
components of z with zero mean and unit variance (Nesterov & Spokoiny, 2017; Duchi et al., 2015).

Considering biological plausibility and efficiency, estimation with a single forward pass is more
appealing. Actually, we can leverage the single-point zeroth-order estimation (ZOsp):

∇ZOspL(θ) = L(θ + αz)

α
z. (3)

For non-zero α in practice, it has the same expectation as the two-point method. Additionally,
when z is uniformly sampled from the unit sphere, the single-point estimation is an unbiased
estimator of the smooth version of L: Lα(x) = Ez∈Sn [L(θ + αz)], which does not require L to be
differentiable (Flaxman et al., 2005).
The above formulation only requires a noise injection in the forward propagation, and the gradients
can be estimated with a top-down feedback signal, as shown in Fig. 1(d). This is also similar to
REINFORCE (Williams, 1992) and Evolution Strategies (Salimans et al., 2017) in reinforcement
learning, and is considered to be biologically plausible (Fiete & Seung, 2006). It is believed that the
brain is likely to employ perturbation methods for some kinds of learning (Lillicrap et al., 2020).

However, zeroth-order methods usually suffer from a large variance, since two-point methods only
estimate gradients in a random direction and the one-point formulation has even larger variances.
Therefore they hardly work for general neural network training. In the following, we propose our
momentum-based pseudo-zeroth-order method to solve the problem, also only based on one forward
propagation with noise injection and top-down feedback signals.

4 ONLINE PSEUDO-ZEROTH-ORDER TRAINING

In this section, we introduce the proposed online pseudo-zeroth-order method. We first introduce the
pseudo-zeroth-order formulation for neural network training in Section 4.1. Then in Section 4.2, we
introduce momentum feedback connections for error propagation with zeroth-order estimation of the
model. In Section 4.3, we demonstrate the combination with online training and a similar form as the
three-factor Hebbian learning. Finally, we introduce additional details in Section 4.4.

4.1 PSEUDO-ZEROTH-ORDER FORMULATION

Since zeroth-order methods suffer from large variances, a natural thought is to reduce the variance.
However, ZO methods only rely on a scalar feedback signal to act on the random direction z, making
it hard to improve gradient estimation. To this end, we introduce a pseudo-zeroth-order formulation.
As we build our work on online training, we first focus on the condition of a single SNN time step.

Specifically, we decouple the model function f(·;θ) and the loss function L(·). For each input x, the
model outputs o = f(x;θ), and then the loss is calculated as L(o,yx), where yx is the label for the
input. Different from ZO methods that only leverage the function value of L ◦ f , we assume that the
gradient of L(·) can be easily calculated, while keeping the zeroth-order formulation for f(·;θ). This
is consistent with real settings where gradients of the loss function have easy closed-form formulation,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

…………

(b) Spatial BP

𝑠𝑡−1
𝑙+1 𝑠𝑡

𝑙+1

𝑢𝑡−1
𝑙+1 𝑢𝑡

𝑙+1

𝑠𝑡−1
𝑙 𝑠𝑡

𝑙

𝑊𝑙 𝑊𝑙

Time

𝜕𝐿

𝜕𝑠𝑡−1
𝑙+1

Time

𝜕𝐿

𝜕𝑠𝑡
𝑙+1

𝜕𝐿

𝜕𝑠𝑡−1
𝑙

𝜕𝐿

𝜕𝑠𝑡
𝑙

𝜕𝐿

𝜕𝑊𝑙

𝜕𝐿

𝜕𝑊𝑙

𝜕𝐿

𝜕𝑢𝑡−1
𝑙+1

𝜕𝐿

𝜕𝑢𝑡
𝑙+1

ො𝑎𝑡−1
𝑙 ො𝑎𝑡

𝑙

(a) Online training of SNNs

ො𝑎𝑡−1
𝑙 ො𝑎𝑡

𝑙

…
…

𝑊𝑁−1

𝑊𝑙

𝑊𝑁−1⊤

𝑊𝑙⊤

(c) DFA

Random,
fixed

(d) ZOsp

…
…

(e) OPZO
𝐿

…
…

𝑊𝑁−1

𝑊𝑙

…
…

𝐿

𝐹𝑙

…
…

𝑊𝑁−1

𝑊𝑙

…
…

𝐿

𝑧𝑙

𝑥𝑙

𝑥𝑁

𝑥𝑙

𝑥𝑁

𝑥𝑙

𝑥𝑁

⨁ ⊗

…
…

𝑊𝑁−1

𝑊𝑙

…
…

𝐿

𝑧𝑙
𝑥𝑙

𝑥𝑁

⨁

𝑀𝑙

Spatial forward Spatial backward

𝑒 𝑒 𝑒

Figure 1: Illustration of different training methods. (a) Online training of SNNs with tracked traces
for temporal credit assignment. (b-e) Different spatial credit assignment methods. (b) Spatial BP
propagates errors layer-by-layer with symmetric weights. (c) DFA directly propagates error signals
from the top layer to the middle ones with fixed random connections. (d) Single-point zeroth-order
methods add perturbation during forward propagation, and afterward, the loss signal is passed to the
middle layers. (e) The proposed OPZO method leverages momentum feedback connections based on
perturbation vectors to directly propagate top-down error signals to neurons.

e.g., for mean-square-error (MSE) loss, ∇oL(o,yx) = o− yx, and for cross-entropy (CE) loss with
the softmax function σ, ∇oL(o,yx) = σ(o)− yx, while gradients of f(·;θ) are hard to compute
due to biological plausibility issues or non-differentiability of spikes.

With this formulation, we can consider feedback (error) signals e = ∇oL(o,yx) that carries more
information than a single value of L◦f(x), potentially encouraging techniques for variance reduction.
In the following, we introduce momentum feedback connections to directly propagate feedback
signals to hidden layers for gradient estimation.

4.2 MOMENTUM FEEDBACK CONNECTIONS

We motivate our method by first considering the directional gradient by the two-point estimation in
Section 3.2. With decoupled f(·;θ) and L(·) as in the pseudo-zeroth-order formulation and Taylor
expansion of L(·), the one-sided formulation turns into:

∇ZO
θ L ≈ ⟨∇oL(o,yx), õ− o⟩

α
z = z

∆o⊤

α
∇oL(o,yx), (4)

where o = f(x;θ), õ = f(x;θ+αz), and ∆o = õ−o. This can be viewed as propagating the error
signal with a connection weight z∆o⊤

α . To reduce the variance introduced by the random direction z,
we introduce momentum feedback connections across different iterations and propagate errors as:

Mk := λMk−1 + (1− λ)z
∆o⊤

α
,

∇PZO
θ L = Mk∇oL(o,yx),

(5)

where M is initialized as zero and k denotes the iteration number. The momentum feedback
connections can take advantage of different sampled directions z, largely alleviating the variance
caused by random directions.

The above formulation only considers the directional gradient with two-point estimation, while we are
more interested in methods with a single forward pass. Actually, z∆o⊤

α can be viewed as a random

estimator of Ex

[
J⊤
f (x)

]
, where Jf (x) is the Jacobian of f evaluated at x, and M can be viewed as

approximating it with moving average. Therefore, we can similarly use a one-point method:

Mk := λMk−1 + (1− λ)z
õ⊤

α
, (6)

where z õ⊤

α is also an estimator of Ex

[
J⊤
f (x)

]
, with the same expectation as z∆o⊤

α when α is given
in practice. It is also an unbiased estimator of Jacobian of the smoothed version of f , not requiring f
to be differentiable (see Appendix A.1 for details).

This leads to our method as shown in Fig. 1(e). During forward propagation, a random noise αz
is injected for each layer, and momentum feedback connections are updated based on z and the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

model output õ (information from pre- and post-synaptic neurons). Then errors are propagated
through the connections to each layer. We consider node perturbation which is superior to weight
perturbation1 (Lillicrap et al., 2020), then it has a similar form as the popular DFA (Nøkland, 2016),
while our feedback weight is not a random matrix but the estimated Jacobian (Fig. 1(c,e)).

Then we analyze some properties of momentum feedback connections. We assume that M can
converge to the estimated Ex

[
J⊤
f (x)

]
up to small errors ϵ2, and we focus on gradient estimation

with M = Ex

[
J⊤
f (x)

]
+ ϵ. We show that it largely reduces the variance of the zeroth-order method

(the proof and discussions are in Appendix A).
Proposition 4.1. Let d denote the dimension of θ, m denote the dimension of o (m≪ d), B denote
the mini-batch size, β = Var

[
z2i
]
, Vθ = 1

d

∑
i Var [(∇θLx)i] , Sθ = 1

d

∑
i E [(∇θLx)i]

2
, VL =

Var [Lx] , SL = E [Lx]
2, Vo = 1

m

∑
i Var [(∇oLx)i] , So = 1

m

∑
i E [(∇oLx)i]

2, where Lx is the
sample loss for input x, and ∇θLx and ∇oLx are the sample gradient for θ and o, respectively. We
further assume that the small error ϵ has i.i.d. components with zero mean and variance Vϵ, and
let Vo,M = 1

d

∑
i,j Var [(∇oLx)j] (Ex

[
J⊤
f (x)

]
)i,j . Then the average variance of the single-point

zeroth-order method is: 1
B

(
(d+ β)Vθ + (d+ β − 1)Sθ + 1

α2VL + 1
α2SL

)
+O(α2), while that of

the pseudo-zeroth-order method is: 1
B (mVϵVo +mVϵSo + Vo,M) .

Remark 4.2. Vθ corresponds to the sample variance of spatial BP, and Vo,M would be at a similar scale
as Vθ (see discussions in Appendix A). Since Vϵ is expected to be very small, the results show that
the zeroth-order estimation has at least d times larger variance than BP, while the pseudo-zeroth-order
method can significantly reduce the variance, which is also verified in experiments.

Besides the variance, another question is that momentum connections would take the expectation of
the Jacobian over data x, which can introduce bias into the gradient estimation. This is due to the
data-dependent non-linearity that leads to a data-dependent Jacobian, which can be a shared problem
for direct error feedback methods without layer-by-layer spatial BP. Despite the bias, we show that
under certain conditions, the estimated gradient can still provide a descent direction (the proof and
discussions are in Appendix A).
Proposition 4.3. Suppose that J⊤

f (x) is LJ -Liptschitz continuous and e(x) is Le-Liptschitz con-

tinuous, xi is uniformly distributed, when
∥∥∥Exi

[
J⊤
f (xi)e(xi)

]∥∥∥ > 1
2LJLe∆x + eϵ, where ∆x =

Exi,xj

[
∥xi − xj∥2

]
and eϵ = ∥ϵExi

[e(xi)]∥, we have
〈
Exi

[
J⊤
f (xi)e(xi)

]
,Exi

[Me(xi)]
〉
> 0.

Note that our analysis also holds for non-differentiable spiking neural networks. The single-point
estimation is actually an unbiased estimator for the smoothed fα with expectation over noise injection
(Appendix A.1), where f can be non-differentiable. This is similar to the stochastic setting where
spiking neurons can be differentiable and gradients can be defined (see Appendix B for details). By
treating f in the analysis as fα, the analysis is effective.

4.3 ONLINE PSEUDO-ZEROTH-ORDER TRAINING

We build the above pseudo-zeroth-order approach on online training methods to deal with spatial and
temporal credit assignments. As introduced in Section 3.1, we consider OTTT (Xiao et al., 2022)
and replace its backpropagated instantaneous gradient with our estimated gradient based on direct
top-down feedback. Then the update for synaptic weights has a similar form as the three-factor
Hebbian learning (Frémaux & Gerstner, 2016), and the global modulator is a direct top-down signal
without layer-by-layer BP:

∆Wi,j ∝ âi[t]ψ(uj [t])
(
−gtj

)
, (7)

where Wi,j is the weight from neuron i to j, âi[t] is the presynaptic activity trace, ψ(uj [t]) is a local
surrogate derivative for the change rate of the postsynaptic activity (Xiao et al., 2022), and gtj is the

1For xl+1 = ϕ
(
Wlxl

)
, node perturbation estimates gradients for xl+1 and calculates gradients as ∇WlL =(

∇xl+1L ⊙ ϕ′ (Wlxl
))

xl⊤, which has a smaller variance than directly estimating gradients for weights.
2If the parameters of the model are fixed, M is approximating a static matrix with projection to different

directions, which can converge quickly. For the gradually evolving parameters, the expectation of the Jacobian
over all samples may change slowly, and we can also expect M to track this expectation at a slow time scale.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

global top-down error (gradient) modulator. Here we leverage the local surrogate derivative because
it can be well-defined under the stochastic setting (see Appendix B) and better fits the biological rule.

For potentially asynchronous neuromorphic computing, there may be a delay in the propagation of
error signals. Xiao et al. (2022) show that with convergent inputs and certain surrogate derivatives,
the gradient is still theoretically effective under the delay ∆t, i.e., the update is based on âi[t +
∆t]ψ(uj [t+∆t])gtj . Alternatively, more eligibility traces can be used to store the local information,
e.g., âi[t]ψ(uj [t]), and induce weight updates when the top-down signal arrives (Bellec et al., 2020).
Our method shares these properties and we do not model delays in experiments for efficiency.

Moreover, the direct error propagations to different layers as well as the update of feedback con-
nections in our method can be parallel, which can better take advantage of parallel neuromorphic
computing than layer-by-layer spatial BP.

4.4 ADDITIONAL DETAILS

Combination with Local Learning There can be both global and local signals for learning in
biological systems, and local learning (LL) can improve global learning approximation methods (Ren
et al., 2023). Our proposed method can be combined with LL as well. We consider introducing
local readout layers, where a fully connected readout is added for each layer with supervised loss.
Additionally, we can also introduce intermediate global learning (IGL) that propagates global signals
from a middle layer to previous ones with OPZO. More details can be found in Appendix C.

About Noise Injection By default, we sample z from the Gaussian distribution. As sampling
from the Gaussian distribution may pose computational requirements for hardware, we can also
consider easier distributions such as the Rademacher distribution, which takes 1 and −1 both with the
probability 0.5. Sampling from unit spheres is also feasible. Additionally, z is by default added to the
neural activities for gradient estimation based on node perturbation. To further prevent perturbation
from interfering with sparse spike-driven forward propagation, we may empirically change the noise
injection as perturbation before neurons (i.e., perturb on membrane potentials), while maintaining
local surrogate derivatives for the spiking function. We will show in experiments that OPZO is robust
to these noise injection settings. Additionally, we can leverage antithetic z, i.e., z and −z, for every
two time steps of SNNs to further reduce the variance. More details can be found in Appendix C.

5 EXPERIMENTS

In this section, we conduct experiments on both neuromorphic and static datasets with fully connected
(FC) and convolutional (Conv) neural networks to demonstrate the effectiveness of the proposed
OPZO method. For N-MNIST and MNIST, we leverage FC networks with two hidden layers
composed of 800 neurons, and for DVS-CIFAR10, DVS-Gesture, CIFAR-10, and CIFAR-100, we
leverage 5-layer convolutional networks. We will also consider a deeper 9-layer convolutional
network, as well as fine-tuning ResNet-34 on ImageNet under noise. We take T = 30 time steps for
N-MNIST, T = 20 for DVS-Gesture, T = 10 for DVS-CIFAR10, and T = 6 time steps for static
datasets, following previous works (Xiao et al., 2022; Zhang & Li, 2020). More training details can
be found in Appendix C.

5.1 COMPARISON ON VARIOUS DATASETS

We first compare the proposed OPZO with other spatial credit assignment methods on various datasets
in Table 1, and all methods are based on the online training method OTTT (Xiao et al., 2022) under
the same settings. The compared methods include spatial BP, DFA (Nøkland, 2016), DKP (Webster
et al., 2020) that learns feedback connections in DFA, single-point zeroth-order method, and the
combination with local learning. We do not consider local learning settings for FC networks since
there are only two hidden layers. As shown in the results, the ZOsp method fails to effectively
optimize neural networks, while OPZO significantly improves the results, achieving performance at a
similar level as spatial BP. DFA with random feedback has a large gap with spatial BP, especially
on convolutional networks, while OPZO can achieve much better results. DKP improves DFA
on static datasets, but it performs poorly on neuromorphic datasets and has significant gaps with
OPZO on all datasets. When combined with local learning, OPZO (w/ LL) has about the same
performance as BP (w/ LL) and even outperforms BP (w/ LL) on neuromorphic datasets. These
results demonstrate the effectiveness of OPZO for promising performance in a more biologically
plausible and neuromorphic-friendly approach, paving paths for direct on-chip training of SNNs.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Accuracy (%) of different spatial credit assignment methods with online training on various
datasets.

Method N-MNIST DVS-Gesture DVS-CIFAR10 MNIST CIFAR-10 CIFAR-100

BP (Xiao et al., 2022) 98.15±0.05 95.72±0.33 75.43±0.39 98.38±0.02 90.00±0.06 64.82±0.09
BP (w/ LL) / 95.72±0.71 76.07±0.41 / 89.82±0.16 64.88±0.08

DFA (Nøkland, 2016) 97.98±0.03 91.67±0.75 60.60±0.67 98.05±0.04 79.90±0.15 49.50±0.13
DFA (w/ LL) / 91.43±0.59 61.77±0.62 / 82.38±0.22 54.76±0.21

DKP (Webster et al., 2020) 97.87±0.05 60.53±7.82 37.70±1.21 98.15±0.03 81.84±0.96 53.27±0.34

ZOsp 72.90±1.14 23.73±2.38 31.67±0.24 86.53±0.11 49.04±0.63 22.26±0.51
OPZO 98.27±0.04 94.33±0.16 72.77±0.82 98.34±0.10 85.74±0.15 60.93±0.16

OPZO (w/ LL) / 96.06±0.33 77.47±0.12 / 89.42±0.16 64.77±0.16

(a) MNIST (b) DVS-CIFAR10

1.E-12

1.E-06

1.E+00

1.E+06

0 50 100 150 200 250

v
ar

ia
n

ce

epoch

OPZO L1
OPZO L2
OPZO L3
OPZO L4
BP L1
BP L2
BP L3
BP L4
ZO L1
ZO L2
ZO L3
ZO L4

1.E-11

1.E-07

1.E-03

1.E+01

0 10 20 30 40

v
ar

ia
n

ce

epoch

OPZO L1

OPZO L2

BP L1

BP L2

ZO L1

ZO L2

Figure 2: Results of gradient variances of OPZO, spatial BP, and ZOsp on different datasets. “Li”
denotes the i-th layer.

Table 2: Accuracy (%) of OPZO on CIFAR-10
with different kinds of noise injection.

Distribution Pert. after neuron Pert. before neuron

Gaussian 85.73±0.15 84.37±0.13

Unit Sphere 86.01±0.28 84.50±0.13

Rademacher 85.69±0.17 84.03±0.23

Table 3: Accuracy (%) of different methods
with a deeper network.

Method DVS-Gesture CIFAR-100

Spatial BP 94.10±1.02 65.96±0.52

DFA (w/ LL) 93.40±0.49 52.94±0.20
DFA (w/ LL&IGL) 93.29±0.33 54.17±0.54

OPZO (w/ LL) 95.83±0.85 65.87±0.13
OPZO (w/ LL&IGL) 96.88±0.28 66.13±0.15

Note that our method is a different line from most recent works with state-of-the-art performance (Li
et al., 2023; Zhou et al., 2023; Guo et al., 2024; Yao et al., 2024), which are based on spatio-temporal
BP and focus on architecture or training objective improvement. We aim to develop alternatives to
BP, focusing on more biologically plausible and hardware-friendly training algorithms. So we mainly
compare different spatial credit assignment methods under the same settings.

5.2 GRADIENT VARIANCE

We analyze the gradient variance of different methods to verify that our method can effectively reduce
variance for effective training. As shown in Fig. 2, the variance of ZOsp is several orders larger than
spatial BP, leading to the failure of effective training. OPZO can largely reduce the variance to have a
similar scale as BP, which is consistent with our theoretical analysis.

5.3 EFFECTIVENESS FOR DIFFERENT NOISE INJECTION

Then we verify the effectiveness of OPZO for different noise injection settings as introduced in
Section 4.4. As shown in Table 2, the results under different noise distributions and injection positions
are similar, demonstrating the robustness of OPZO for different settings.

5.4 DEEPER NETWORKS

We further consider deeper and larger networks. We first perform experiments with a deeper 9-layer
convolutional network. We leverage local learning and intermediate global learning (Section 4.4).
As shown in Table 3, OPZO can also achieve similar performance as or outperform spatial BP and
significantly outperform DFA combined with these techniques. We also analyze pure OPZO without
auxiliary techniques and its scalability to deeper networks with residual connections in Section D.5,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

showing that pure OPZO has more reliance on the proper network structure (residual connections)
than BP for depth scalability.

Table 4: Accuracy (%) of different meth-
ods for fine-tuning ResNet-34 on Ima-
geNet under different noise scale (n.s.).
“Test” refers to the direct test of the orig-
inal model. “BP” refers to spatial BP.

ImageNet
n.s. Test BP DFA ZOsp OPZO

0.1 61.13 63.91 61.20 52.42 63.39

0.15 54.01 62.13 54.59 30.32 60.96

Table 5: Estimation of training costs on potential neuro-
morphic hardware for N -hidden-layer neural networks
(n neurons for hidden layers, m neurons for the output,
m ≪ n). The costs focus on the error backward proce-
dure. “*” denotes parallelizable for different layers.

Method Memory Operations

BP (if possible) O
(
(N − 1)n2 +mn

)
O
(
(N − 1)n2 +mn

)
DFA* O (Nmn) O (Nmn)

ZOsp* O(Nn) O(Nn)

OPZO* O (Nmn) O (Nmn)

We also conduct experiments for fine-tuning ResNet-34 on ImageNet under noise. This task is
on the ground that there can be hardware mismatch, e.g., hardware noise, for deploying SNNs to
neuromorphic hardware (Yang et al., 2022; Cramer et al., 2022), and we may expect direct on-chip
fine-tuning to better deal with the problem. Our method is more plausible and efficient for on-chip
learning than spatial BP and may be combined with other works aiming at high-performance training
on common devices in this scenario. We fine-tune a pre-trained NF-ResNet-34 model released by
Xiao et al. (2022) (original test accuracy 65.15%) under the noise injection setting with different
scales. As shown in Table 4, OPZO can successfully fine-tune the model, while DFA and ZOsp fail.
Spatial BP is neuromorphic-unfriendly, so its results are only for reference. The results show that
OPZO can scale to large-scale settings.

5.5 TRAINING COSTS AND FIRING SPARSITY

Finally, we analyze and compare the computational costs of different methods. We mainly consider
the estimated costs on potential neuromorphic hardware, which is the target of SNNs. Since bio-
logical systems leverage unidirectional local synapses, spatial BP (if assuming possible for weight
transport and separate forward-backward stage) should maintain additional backward layer-by-layer
connections for error backpropagation, leading to high memory and operation costs, as shown in
Table 5. Differently, DFA and OPZO maintain direct top-down feedback with much smaller costs,
which are also parallelizable for different layers. ZOsp may have even lower costs by propagating only
a scalar signal, but it is ineffective in practice. Also note that, different from previous zeroth-order
methods that require multiple forward propagations, our method only needs one common forward
propagation with noise injection and direct top-down feedback, keeping lower operation costs similar
to DFA. We also provide training costs on GPU in Appendix D, and our method is comparable to
spatial BP and DFA, since GPUs do not follow neuromorphic properties. It is interesting future work
to consider applications to neuromorphic hardware that is still under development (Davies, 2021;
Schuman et al., 2022).

We further study the firing rate and synaptic operations of the trained models in Appendix D.2,
showing that models trained by OPZO combined with local learning achieve the lowest operations, i.e.,
the most energy efficient. Additionally, we perform more analysis experiments of hyperparameters in
Section D.4. Please refer to Appendix D for more details and results.

6 CONCLUSION

In this work, we propose the online pseudo-zeroth-order method for training spiking neural networks
in a more biologically plausible and neuromorphic-hardware-friendly way, with low estimated costs
and competitive performance compared with spatial BP. OPZO performs spatial credit assignment
by a single forward propagation with noise injection and direct top-down feedback with momentum
feedback connections, avoiding drawbacks of spatial BP, solving the large variance problem of zeroth-
order methods, and significantly outperforming random feedback methods. With online training,
OPZO has a similar form as three-factor Hebbian learning with direct top-down modulations, taking
a step forward towards on-chip SNN training. Extensive experiments demonstrate the effectiveness

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

and robustness of OPZO for both fully connected and convolutional networks on neuromorphic and
static datasets.

REFERENCES

Mohamed Akrout, Collin Wilson, Peter Humphreys, Timothy Lillicrap, and Douglas B Tweed. Deep
learning without weight transport. In Advances in Neural Information Processing Systems, 2019.

Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo, Tapan
Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al. A low power, fully
event-based gesture recognition system. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017.

Florian Bacho and Dominique Chu. Low-variance forward gradients using direct feedback alignment
and momentum. Neural Networks, 169:572–583, 2024.

Atılım Güneş Baydin, Barak A Pearlmutter, Don Syme, Frank Wood, and Philip Torr. Gradients
without backpropagation. arXiv preprint arXiv:2202.08587, 2022.

Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj, Robert Legenstein,
and Wolfgang Maass. A solution to the learning dilemma for recurrent networks of spiking neurons.
Nature Communications, 11(1):1–15, 2020.

Thomas Bohnstingl, Stanisław Woźniak, Angeliki Pantazi, and Evangelos Eleftheriou. Online spatio-
temporal learning in deep neural networks. IEEE Transactions on Neural Networks and Learning
Systems, 2022.

Andrew Brock, Soham De, and Samuel L Smith. Characterizing signal propagation to close the per-
formance gap in unnormalized resnets. In International Conference on Learning Representations,
2021.

Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Diffenderfer, Jiancheng Liu, Konstantinos
Parasyris, Yihua Zhang, Zheng Zhang, Bhavya Kailkhura, and Sijia Liu. Deepzero: Scaling
up zeroth-order optimization for deep model training. In International Conference on Learning
Representations, 2024.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute models.
In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 15–26, 2017.

Benjamin Cramer, Sebastian Billaudelle, Simeon Kanya, Aron Leibfried, Andreas Grübl, Vitali
Karasenko, Christian Pehle, Korbinian Schreiber, Yannik Stradmann, Johannes Weis, et al. Sur-
rogate gradients for analog neuromorphic computing. Proceedings of the National Academy of
Sciences, 119(4):e2109194119, 2022.

Francis Crick. The recent excitement about neural networks. Nature, 337(6203):129–132, 1989.

Mike Davies. Taking neuromorphic computing to the next level with loihi2. Technical report, Intel
Labs’ Loihi, 2021.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. IEEE Micro, 38(1):82–99, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2009.

Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to spiking
neural networks. In International Conference on Learning Representations, 2021.

Shikuang Deng, Hao Lin, Yuhang Li, and Shi Gu. Surrogate module learning: reduce the gradient
error accumulation in training spiking neural networks. In International Conference on Machine
Learning, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for
zero-order convex optimization: The power of two function evaluations. IEEE Transactions on
Information Theory, 61(5):2788–2806, 2015.

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian.
Incorporating learnable membrane time constant to enhance learning of spiking neural networks.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

Ila R Fiete and H Sebastian Seung. Gradient learning in spiking neural networks by dynamic
perturbation of conductances. Physical Review Letters, 97(4):048104, 2006.

Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex optimization
in the bandit setting: gradient descent without a gradient. In Proceedings of the sixteenth annual
ACM-SIAM symposium on Discrete algorithms, pp. 385–394, 2005.

Nicolas Frémaux and Wulfram Gerstner. Neuromodulated spike-timing-dependent plasticity, and
theory of three-factor learning rules. Frontiers in Neural Circuits, 9:85, 2016.

Charlotte Frenkel, Martin Lefebvre, and David Bol. Learning without feedback: Fixed random
learning signals allow for feedforward training of deep neural networks. Frontiers in Neuroscience,
15:629892, 2021.

Tanmay Gautam, Youngsuk Park, Hao Zhou, Parameswaran Raman, and Wooseok Ha. Variance-
reduced zeroth-order methods for fine-tuning language models. In International Conference on
Machine Learning, 2024.

Jean-Bastien Grill, Michal Valko, and Rémi Munos. Black-box optimization of noisy functions with
unknown smoothness. In Advances in Neural Information Processing Systems, 2015.

Yufei Guo, Yuanpei Chen, Zecheng Hao, Weihang Peng, Zhou Jie, Yuhan Zhang, Xiaode Liu, and
Zhe Ma. Take a shortcut back: Mitigating the gradient vanishing for training spiking neural
networks. In Advances in Neural Information Processing Systems, 2024.

Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2022.

Jinyang Jiang, Zeliang Zhang, Chenliang Xu, Zhaofei Yu, and Yijie Peng. One forward is enough
for neural network training via likelihood ratio method. In International Conference on Learning
Representations, 2024.

Adrien Journé, Hector Garcia Rodriguez, Qinghai Guo, and Timoleon Moraitis. Hebbian deep
learning without feedback. In International Conference on Learning Representations, 2023.

Jacques Kaiser, Hesham Mostafa, and Emre Neftci. Synaptic plasticity dynamics for deep continuous
local learning (decolle). Frontiers in Neuroscience, 14:424, 2020.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

Julien Launay, Iacopo Poli, François Boniface, and Florent Krzakala. Direct feedback alignment
scales to modern deep learning tasks and architectures. In Advances in Neural Information
Processing Systems, 2020.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation.
In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in
Databases, 2015.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jeongjun Lee, Renqian Zhang, Wenrui Zhang, Yu Liu, and Peng Li. Spike-train level direct feedback
alignment: sidestepping backpropagation for on-chip training of spiking neural nets. Frontiers in
Neuroscience, 14:143, 2020.

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream
dataset for object classification. Frontiers in Neuroscience, 11:309, 2017.

Jia Li, Mingqing Xiao, Cong Fang, Yue Dai, Chao Xu, and Zhouchen Lin. Training neural networks
by lifted proximal operator machines. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(6):3334–3348, 2020.

Yuhang Li, Yufei Guo, Shanghang Zhang, Shikuang Deng, Yongqing Hai, and Shi Gu. Differentiable
spike: Rethinking gradient-descent for training spiking neural networks. In Advances in Neural
Information Processing Systems, 2021.

Yuhang Li, Tamar Geller, Youngeun Kim, and Priyadarshini Panda. Seenn: Towards temporal spiking
early exit neural networks. In Advances in Neural Information Processing Systems, 2023.

Qianli Liao, Joel Leibo, and Tomaso Poggio. How important is weight symmetry in backpropagation?
In Proceedings of the AAAI Conference on Artificial Intelligence, 2016.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic
feedback weights support error backpropagation for deep learning. Nature Communications, 7(1):
1–10, 2016.

Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J Akerman, and Geoffrey Hinton. Backprop-
agation and the brain. Nature Reviews Neuroscience, 21(6):335–346, 2020.

Changze Lv, Dongqi Han, Yansen Wang, Xiaoqing Zheng, Xuanjing Huang, and Dongsheng Li.
Advancing spiking neural networks for sequential modeling with central pattern generators. In
Advances in Neural Information Processing Systems, 2024.

Gehua Ma, Rui Yan, and Huajin Tang. Exploiting noise as a resource for computation and learning in
spiking neural networks. Patterns, 4(10):100831, 2023.

Wolfgang Maass. Noise as a resource for computation and learning in networks of spiking neurons.
Proceedings of the IEEE, 102(5):860–880, 2014.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. In Advances in Neural Information
Processing Systems, 2023.

Erwann Martin, Maxence Ernoult, Jérémie Laydevant, Shuai Li, Damien Querlioz, Teodora Petrisor,
and Julie Grollier. Eqspike: spike-driven equilibrium propagation for neuromorphic implementa-
tions. Iscience, 24(3):102222, 2021.

Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Training
high-performance low-latency spiking neural networks by differentiation on spike representation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2022a.

Qingyan Meng, Shen Yan, Mingqing Xiao, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Training
much deeper spiking neural networks with a small number of time-steps. Neural Networks, 153:
254–268, 2022b.

Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Towards
memory-and time-efficient backpropagation for training spiking neural networks. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023.

Bhaskar Mukhoty, Velibor Bojkovic, William de Vazelhes, Xiaohan Zhao, Giulia De Masi, Huan
Xiong, and Bin Gu. Direct training of snn using local zeroth order method. In Advances in Neural
Information Processing Systems, 2023.

Emre O Neftci, Charles Augustine, Somnath Paul, and Georgios Detorakis. Event-driven random
back-propagation: Enabling neuromorphic deep learning machines. Frontiers in Neuroscience, 11:
324, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. In Advances in
Neural Information Processing Systems, 2016.

Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static image
datasets to spiking neuromorphic datasets using saccades. Frontiers in Neuroscience, 9:437, 2015.

Alexander Ororbia. Learning spiking neural systems with the event-driven forward-forward process.
arXiv preprint arXiv:2303.18187, 2023.

Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe
Zou, Zhenzhi Wu, Wei He, et al. Towards artificial general intelligence with hybrid Tianjic chip
architecture. Nature, 572(7767):106–111, 2019.

Arjun Rao, Philipp Plank, Andreas Wild, and Wolfgang Maass. A long short-term memory for ai
applications in spike-based neuromorphic hardware. Nature Machine Intelligence, 4(5):467–479,
2022.

Mengye Ren, Simon Kornblith, Renjie Liao, and Geoffrey Hinton. Scaling forward gradient with
local losses. In International Conference on Learning Representations, 2023.

Pieter R Roelfsema and Anthony Holtmaat. Control of synaptic plasticity in deep cortical networks.
Nature Reviews Neuroscience, 19(3):166–180, 2018.

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
with neuromorphic computing. Nature, 575(7784):607–617, 2019.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Conver-
sion of continuous-valued deep networks to efficient event-driven networks for image classification.
Frontiers in Neuroscience, 11:682, 2017.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between energy-
based models and backpropagation. Frontiers in Computational Neuroscience, 11:24, 2017.

Catherine D Schuman, Shruti R Kulkarni, Maryam Parsa, J Parker Mitchell, Prasanna Date, and Bill
Kay. Opportunities for neuromorphic computing algorithms and applications. Nature Computa-
tional Science, 2(1):10–19, 2022.

H Sebastian Seung. Learning in spiking neural networks by reinforcement of stochastic synaptic
transmission. Neuron, 40(6):1063–1073, 2003.

Alexander Shekhovtsov and Viktor Yanush. Reintroducing straight-through estimators as principled
methods for stochastic binary networks. In DAGM German Conference on Pattern Recognition,
2021.

Sumit Bam Shrestha and Garrick Orchard. Slayer: spike layer error reassignment in time. In Advances
in Neural Information Processing Systems, 2018.

David Silver, Anirudh Goyal, Ivo Danihelka, Matteo Hessel, and Hado van Hasselt. Learning by
directional gradient descent. In International Conference on Learning Representations, 2022.

James C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE Transactions on Automatic Control, 37(3):332–341, 1992.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Christoph Stöckl and Wolfgang Maass. Optimized spiking neurons can classify images with high
accuracy through temporal coding with two spikes. Nature Machine Intelligence, 3(3):230–238,
2021.

Matthew Bailey Webster, Jonghyun Choi, et al. Learning the connections in direct feedback alignment.
2020.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992.

Stanisław Woźniak, Angeliki Pantazi, Thomas Bohnstingl, and Evangelos Eleftheriou. Deep learning
incorporating biologically inspired neural dynamics and in-memory computing. Nature Machine
Intelligence, 2(6):325–336, 2020.

Jibin Wu, Yansong Chua, Malu Zhang, Guoqi Li, Haizhou Li, and Kay Chen Tan. A tandem learning
rule for effective training and rapid inference of deep spiking neural networks. IEEE Transactions
on Neural Networks and Learning Systems, 2021.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in Neuroscience, 12:331, 2018.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Yisen Wang, and Zhouchen Lin. Training feedback
spiking neural networks by implicit differentiation on the equilibrium state. In Advances in Neural
Information Processing Systems, 2021.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Online training through
time for spiking neural networks. In Advances in Neural Information Processing Systems, 2022.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Yisen Wang, and Zhouchen Lin. Spide: A purely
spike-based method for training feedback spiking neural networks. Neural Networks, 161:9–24,
2023.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Forward gradient
training of spiking neural networks, 2024a. URL https://openreview.net/forum?id=
yBP36xQhZl.

Mingqing Xiao, Yixin Zhu, Di He, and Zhouchen Lin. Temporal spiking neural networks with
synaptic delay for graph reasoning. In International Conference on Machine Learning, 2024b.

Will Xiao, Honglin Chen, Qianli Liao, and Tomaso Poggio. Biologically-plausible learning algorithms
can scale to large datasets. In International Conference on Learning Representations, 2018.

Xingrun Xing, Boyan Gao, Zheng Zhang, David A Clifton, Shitao Xiao, Li Du, Guoqi Li, and Jiajun
Zhang. Spikellm: Scaling up spiking neural network to large language models via saliency-based
spiking. In International Conference on Learning Representations, 2025.

Qu Yang, Jibin Wu, Malu Zhang, Yansong Chua, Xinchao Wang, and Haizhou Li. Training spiking
neural networks with local tandem learning. In Advances in Neural Information Processing
Systems, 2022.

Man Yao, JiaKui Hu, Tianxiang Hu, Yifan Xu, Zhaokun Zhou, Yonghong Tian, XU Bo, and Guoqi
Li. Spike-driven transformer v2: Meta spiking neural network architecture inspiring the design of
next-generation neuromorphic chips. In International Conference on Learning Representations,
2024.

Bojian Yin, Federico Corradi, and Sander M Bohté. Accurate online training of dynamical spiking
neural networks through forward propagation through time. Nature Machine Intelligence, pp. 1–10,
2023.

Pengyun Yue, Long Yang, Cong Fang, and Zhouchen Lin. Zeroth-order optimization with weak
dimension dependency. In Conference on Learning Theory, 2023.

Wenrui Zhang and Peng Li. Temporal spike sequence learning via backpropagation for deep spiking
neural networks. In Advances in Neural Information Processing Systems, 2020.

14

https://openreview.net/forum?id=yBP36xQhZl
https://openreview.net/forum?id=yBP36xQhZl

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Shibo Zhou, Xiaohua Li, Ying Chen, Sanjeev T Chandrasekaran, and Arindam Sanyal. Temporal-
coded deep spiking neural network with easy training and robust performance. In Proceedings of
the AAAI Conference on Artificial Intelligence, 2021.

Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, YAN Shuicheng, Yonghong Tian, and
Li Yuan. Spikformer: When spiking neural network meets transformer. In International Conference
on Learning Representations, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A DETAILED EXPLANATIONS AND PROOFS

In this section, we provide more explanations and proofs for propositions in the main text.

A.1 EXPLANATION OF THE SMOOTHED FUNCTION

For the neural network function f with node perturbation given scale α, the smoothed version of f
is defined as fα(·; θ) = Ez[f̂(·; θ, αz)], where f̂ refers to injecting noise αz for node perturbation.
Similar to Flaxman et al. (2005), by extending the gradient to the Jacobian, we can show that the
one-point formulation of z õ⊤

α is an unbiased estimator of the Jacobian of fα.

Lemma A.1. When z is uniformly sampled from the unit sphere, z õ⊤

α is an unbiased estimator of

J⊤
fα
(x) given x, and further, are unbiased estimators of Ex

[
J⊤
fα
(x)
]
.

A.2 PROOF OF PROPOSITION 4.1

Proof. We first consider the average variance of the two-point ZO estimation ∇ZO
θ L = zz⊤∇θL+

O(α). Since Var(xy) = Var(x)Var(y) + Var(x)E(y)2 + Var(y)E(x)2 for independent x and y,
and E[z2i] = Var[zi] + E[zi]2 = 1, for each element of the gradient under sample x, we have:

Var
[(
∇ZO

θ Lx

)
i

]
= Var

 d∑
j=1

zizj (∇θLx)j

+O(α2)

= Var
[
z2i (∇θLx)i

]
+
∑
j ̸=i

Var
[
zizj (∇θLx)j

]
+O(α2)

= Var
[
z2i
]
Var [(∇θLx)i] + Var

[
z2i
]
E [(∇θLx)i]

2
+Var [(∇θLx)i]E

[
z2i
]2

+
∑
j ̸=i

(
Var [zizj] Var

[
(∇θLx)j

]
+Var [zizj]E

[
(∇θLx)j

]2
+Var

[
(∇θLx)j

]
E [zizj]

2

)
+O(α2)

= (β + 1)Var [(∇θLx)i] + βE [(∇θLx)i]
2
+
∑
j ̸=i

(
Var

[
(∇θLx)j

]
+ E

[
(∇θLx)j

]2)
+O(α2)

= βVar [(∇θLx)i] + (β − 1)E [(∇θLx)i]
2
+

d∑
j=1

(
Var

[
(∇θLx)j

]
+ E

[
(∇θLx)j

]2)
+O(α2).

(8)

Taking the average of all elements, we obtain the average variance for each sample (denoted as
mVar):

mVar
[
∇ZO

θ Lx

]
=

1

d

d∑
i=1

Var
[(
∇ZO

θ Lx

)
i

]
=
β

d

d∑
i=1

Var [(∇θLx)i] +
β − 1

d

d∑
i=1

E [(∇θLx)i]
2
+

d∑
j=1

(
Var

[
(∇θLx)j

]
+ E

[
(∇θLx)j

]2)
+O(α2)

= (d+ β)Vθ + (d+ β − 1)Sθ +O(α2).
(9)

For gradient calculation with batch size B, the sample variance can be reduced by B times, resulting
in the average variance 1

B ((d+ β)Vθ + (d+ β − 1)Sθ) +O(α2).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Then we can derive the average variance of the single-point ZO estimation ∇ZOsp

θ L = ∇ZO
θ L+ Lx

α z
for each sample:

mVar
[
∇ZOsp

θ Lx

]
= mVar

[
∇ZO

θ Lx

]
+mVar

[
Lx

α
z

]
= (d+ β)Vθ + (d+ β − 1)Sθ +O(α2) +

1

α2

(
Var [Lx] Var [zi] + Var [Lx]E [zi]

2
+Var [zi]E [Lx]

2
)

= (d+ β)Vθ + (d+ β − 1)Sθ +
1

α2
VL +

1

α2
SL +O(α2).

(10)

For batch size B, the average variance is 1
B

(
(d+ β)Vθ + (d+ β − 1)Sθ + 1

α2VL + 1
α2SL

)
+

O(α2).

Next, we turn to the average variance of the pseudo-zeroth-order method ∇PZO
θ L = M∇oLx =(

Ex

[
J⊤
f (x)

]
) + ϵ

)
∇oLx. For each element, we have:

Var
[(
∇PZO

θ Lx

)
i

]
= Var

 m∑
j=1

(
Ex

[
J⊤
f (x)

]
)
)
i,j

(∇oLx)j

+Var

 m∑
j=1

ϵi,j (∇oLx)j


=

m∑
j=1

(
Ex

[
J⊤
f (x)

]
)
)
i,j

Var
[
(∇oLx)j

]
+

m∑
j=1

(
VϵVar

[
(∇oLx)j

]
+ VϵE

[
(∇oLx)j

]2)
.

(11)

Taking the average of all elements, we have the average variance for each sample:

mVar
[
∇PZO

θ Lx

]
=

1

d

d∑
i=1

m∑
j=1

(
Ex

[
J⊤
f (x)

]
)
)
i,j

Var
[
(∇oLx)j

]
+

m∑
j=1

(
VϵVar

[
(∇oLx)j

]
+ VϵE

[
(∇oLx)j

]2)
= mVϵVo +mVϵSo + Vo,M.

(12)

Then for batch size B, the average variance is 1
B (mVϵVo +mVϵSo + Vo,M).

Remark A.2. β = Var
[
z2i
]
= E(z4i)−E(z2i)

2
= E(z4i)−1 depends on the distribution of zi. For the

Gaussian distribution, E(z4i) = 3 and therefore β = 2. For the Rademacher distribution, E(z4i) = 1
and therefore β = 0.

Remark A.3. The zero mean assumption on the small error ϵ is reasonable, when we actually consider
fα and z õ⊤

α is an unbiased estimator for Ex

[
J⊤
fα
(x)
]

(Lemma A.1), so the expectation of the error
can be expected to be zero.

Remark A.4. Vθ and Vo,M may not be directly compared considering the complex network function,

but we may make a brief analysis under some simplifications. For (∇θLx)i =
(
J⊤
f (x)∇oLx

)
i
, let

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Ji,j and ∇j denote
(
J⊤
f (x)

)
i,j

and (∇oLx)j for short, we have

Var [(∇θLx)i] = Var

 m∑
j=1

Ji,j∇j

 =
∑
j

Var [Ji,j∇j] +
∑
j1,j2

Cov [Ji,j1∇j1 ,Ji,j2∇j2]

=
∑
j

[
Var [∇j]E

[
J2
i,j

]
+Var [Ji,j]E [∇j]

2
+ 2Cov [Ji,j ,∇j]E [Ji,j]E [∇j]

]
+
∑
j1,j2

Cov [Ji,j1∇j1 ,Ji,j2∇j2] .

(13)
If we ignore covariance terms and assume E [∇j] = 0, this is simplified to

∑
j Var [∇j]E

[
J2
i,j

]
,

and then Vθ is approximated as 1
d

∑
i,j Var [∇j]E

[
J2
i,j

]
, which has a similar form as Vo,M =

1
d

∑
i,j Var [(∇oLx)j] (Ex

[
J⊤
f (x)

]
)i,j except that the second moment is considered. Under this

condition, the scales of Vo,M and Vθ may slightly differ considering the scale of elements of J⊤
f (x),

but overall, Vo,M would be at a similar scale as Vθ compared with the variances of the zeroth-order
methods that are at least d times larger which is proportional to the number of intermediate neurons.

A.3 PROOF OF PROPOSITION 4.3

Proof. Since J⊤
f (x) is LJ -Liptschitz continuous and e(x) is Le-Liptschitz continuous, we have∥∥∥J⊤

f (xi)− J⊤
f (xj)

∥∥∥ ≤ LJ ∥xi − xj∥, ∥e(xi)− e(xj)∥ ≤ Le ∥xi − xj∥. Then with the equation

that 1
2n2

∑
i,j(ai − aj)(bi − bj) =

1
n

∑
i aibi −

1
n2

∑
i,j aibj , we have∥∥Exi

[
J⊤
f (xi)e(xi)

]
− Exi

[(
Exj

[
J⊤
f (xj)

]
+ ϵ
)
e(xi)

]∥∥
=

∥∥∥∥∥ 1n∑
xi

J̃f (xi)e(xi)−

(
1

n

∑
xi

J̃f (xi)

)(
1

n

∑
xi

e(xi)

)
− ϵExi

[e(xi)]

∥∥∥∥∥
=

∥∥∥∥∥∥ 1

2n2

∑
xi,xj

(
J̃f (xi)− J̃f (xj)

)
(e(xi)− e(xj))− ϵExi [e(xi)]

∥∥∥∥∥∥
≤ 1

2n2

∑
xi,xj

∥∥∥(J̃f (xi)− J̃f (xj)
)∥∥∥ ∥(e(xi)− e(xj))∥+ ∥ϵExi

[e(xi)]∥

≤ 1

2n2

∑
xi,xj

LJLe∥xi − xj∥2 + ∥ϵExi [e(xi)]∥

=
1

2
LJLe∆x + eϵ

<
∥∥Exi

[
J⊤
f (xi)e(xi)

]∥∥ .

(14)

Therefore,〈
Exi

[
J⊤
f (xi)e(xi)

]
,Exi [Me(xi)]

〉
=

∥∥Exi

[
J⊤
f (xi)e(xi)

]∥∥2 − 〈Exi

[
J⊤
f (xi)e(xi)

]
,Exi

[
J⊤
f (xi)e(xi)

]
− Exi [Me(xi)]

〉
≥

∥∥Exi

[
J⊤
f (xi)e(xi)

]∥∥2 − ∥∥Exi

[
J⊤
f (xi)e(xi)

]∥∥ ∥∥Exi

[
J⊤
f (xi)e(xi)

]
− Exi

[(
Exj

[
J⊤
f (xj)

]
+ ϵ
)
e(xi)

]∥∥
> 0.

(15)

Remark A.5. LJ will depend on the smoothness of the network, for example, LJ = 0 for linear
networks. This will influence the condition of effective descent direction considering the gradient
scale as in the proposition. Note that these assumptions are not necessary premises, and we have
verified the effectiveness of the method in experiments.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B INTRODUCTION TO LOCAL SURROGATE DERIVATIVES UNDER THE
STOCHASTIC SPIKING SETTING

In this section, we provide more introduction to the stochastic spiking setting, under which spiking
neurons can be locally differentiable and there exist local surrogate derivatives.

Biological spiking neurons can be stochastic, where a neuron generates spikes following a Bernoulli
distribution with the probability as the c.d.f. of a distribution w.r.t u[t] − Vth, indicating a higher
probability for a spike with larger u[t] − Vth. That is, si[t] is a random variable following a
{0, 1} valued Bernoulli distribution with the probability of 1 as p(si[t] = 1) = F (ui[t] − Vth).
With reparameterization, this can be formulated as si[t] = H(ui [t] − Vth − zi) with a random
noise variable zi that follows the distribution specified by F . Different F corresponds to different
distributions and noises. For example, the sigmoid function corresponds to a logistic noise, while
the erf function corresponds to a Gaussian noise. Under the stochastic setting, the local surrogate
derivatives can be introduced for the spiking function (Shekhovtsov & Yanush, 2021; Ma et al., 2023).

Specifically, consider the objective function which should turn to the expectation over random
variables under the stochastic model. Considering a one-hidden-layer network with one time step,
with the input x connecting to n spiking neurons by the weight W and the neurons connecting to
an output readout layer by the weight O. Different from deterministic models with the objective
function Ex[L(s)], where s = H(u− Vth),u = Wx, under the stochastic setting, the objective is to
minimize:

Ex[Es∼p(s|x,W)[L(s)]]. (16)

For this objective, the model can be differentiable and gradients can be derived (Shekhovtsov &
Yanush, 2021; Ma et al., 2023). We focus on the gradients of u, which can be expressed as:

∂

∂u
Es∼p(s|W)[L(s)] =

∂

∂u

∑
s

(∏
i

p(si|W)

)
L(s)

=
∑
s

∑
i

∏
i′ ̸=i

p(si′ |W)

(∂

∂u
p(si|W)

)
L(s).

(17)

Then consider derandomization to perform summation over si while keeping other random variables
fixed (Shekhovtsov & Yanush, 2021). Let s¬i denote other variables except si. Since si is {0, 1}
valued, given s¬i, we have∑

si∈{0,1}

∂p(si|W)

∂u
L([s¬i, si]) =

∂p(si|W)

∂u
L(s) + ∂(1− p(si|W))

∂u
L(s↓i)

=
∂p(si|W)

∂u
(L(s)− L(s↓i)) ,

(18)

where s is a random sample considering si (the RHS is invariant of si), and s↓i denotes taking si as
the other state for s. Given that

∑
si
p(si|W) = 1, Eq. (17) is equivalent to

∂

∂u
Es∼p(s|W)[L(s)] =

∑
i

∑
s¬i

∏
i′ ̸=i

p(si′ |W)

∑
si

(
∂

∂u
p(si|W)

)
L([s¬i, si])

=
∑
i

∑
s¬i

∏
i′ ̸=i

p(si′ |W)

∑
si

p(si|W)
∂p(si|W)

∂u
(L(s)− L(s↓i))

=
∑
s

(∏
i

p(si|W)

)∑
i

∂p(si|W)

∂u
(L(s)− L(s↓i))

= Es∼p(s|W)

∑
i

∂p(si|W)

∂u
(L(s)− L(s↓i)) .

(19)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Taking one sample of s in each forward procedure allows the unbiased gradient estimation as the
Monte Carlo method. In this equation, considering the probability distribution, we have:

∂p(si|W)

∂u
= F ′(u, Vth), (20)

where F ′ is the derivative of F , corresponding to a local surrogate gradient, e.g., the derivative of the
sigmoid function, triangular function, etc.

The term L(s)− L(s↓i) corresponds to the error, and the above derivation is also similar to REIN-
FORCE (Williams, 1992). However, since it relies on derandomization, simultaneous perturbation
is infeasible in this formulation, and for efficient simultaneous calculation of all components, we
may follow previous works (Shekhovtsov & Yanush, 2021) to tackle it by linear approximation:
L(s)−L(s↓i) ≈ ∂L(s)

∂si
, enabling simultaneous calculation given a gradient ∂L(s)

∂s . This approxima-
tion may introduce bias, while it can be small for over-parameterized neural networks with weights at
the scale of 1√

dn
, where dn is the neuron number. This means that for the elements of the readout

o = Os, flipping the state of si only has O(1√
dn

) influence.

The deterministic model may be viewed as a special case, e.g., with noise always as zero, and
Shekhovtsov & Yanush (2021) show that the gradients under the deterministic setting can provide a
similar ascent direction under certain conditions. Also, the noise injection in our method is similar to
introducing the randomness in stochastic neuron model.

Therefore, spiking neurons can be differentiable under the stochastic setting and local surrogate
derivatives can be well-defined, supporting our formulation as introduced in the main text. Our
pseudo-zeroth-order method approximates ∂L(s)

∂s , fitting the above formulation. Also note that the
above derivation of surrogate derivatives is local for one hidden layer – for multi-layer networks, while
we may iteratively perform the above analysis to obtain the commonly used global surrogate gradients,
there can be expanding errors through layer-by-layer propagation due to the linear approximation
error. Differently, our OPZO performs direct error feedback, which may reduce such errors.

C MORE IMPLEMENTATION DETAILS

C.1 LOCAL LEARNING

For experiments with local learning, we consider local supervision with a fully connected readout
for each layer. Specifically, for the output sl of each layer, we calculate the local loss based on the
readout rl = Rlsl as L(rl,y). Then the gradient for sl is calculated by the local loss and added to the
global gradient based on our OPZO method, which will update synaptic weights directly connected
to the neurons. We assume the weight symmetry of local learning for propagating errors, i.e., using a
feedback weight Pl = Rl to propagate errors as Pl⊤ ∂L(rl,y)

∂rl
. This is because for the single linear

layer that directly connects to the output, the weight Pl can be learned to be symmetric to Rl through
symmetric local Hebbian-like update rule, i.e., both of them are updated by ∂L(rl,y)

∂rl
sl

⊤ based on

pre- and post-synaptic information (e.g., ∂L(rl,y)
∂rl

= rl − y for MSE loss and ∂L(rl,y)
∂rl

= σ(rl)− y
for CE loss). This mechanism does not require global error information and is compatible with the
intended constraints, while it is only applicable to the single (linear) layer condition. Kaiser et al.
(2020) also show that a fixed random matrix can be effective for such kind of local learning.

We also consider intermediate global learning (IGL) as a kind of local learning. That is, we choose
a middle layer to perform readout for loss calculation, just as the last layer, and its direct feedback
signal will be propagated to previous layers. For the experiments with a 9-layer network, we choose
the middle layer as the fourth convolutional layer.

C.2 NOISE INJECTION

For each time step of SNNs, we sample a z and add it to the network after or before the neural
activities (see Section 4.4). Compared with the two-point zeroth-order estimation, the considered
one-point method can have a much larger variance. To further reduce the variance, we can leverage
antithetic z, i.e., z and −z, for every two time steps of SNNs. Since SNNs naturally have multiple

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

time steps and the inputs for different time steps usually belong to the same object with similar
distributions, this approach may roughly approximate the two-point formulation without additional
costs.

C.3 TRAINING SETTINGS

C.3.1 DATASETS

We conduct experiments on N-MNIST (Orchard et al., 2015), DVS-Gesture (Amir et al., 2017), DVS-
CIFAR10 (Li et al., 2017), MNIST (LeCun et al., 1998), CIFAR-10 and CIFAR-100 (Krizhevsky &
Hinton, 2009), as well as ImageNet (Deng et al., 2009).

N-MNIST N-MNIST is a neuromorphic dataset converted from MNIST by a Dynamic Version
Sensor (DVS), with the same number of training and testing samples as MNIST. Each sample consists
of spike trains triggered by the intensity change of pixels when DVS scans a static MNIST image.
There are two channels corresponding to ON- and OFF-event spikes, and the pixel dimension is
expanded to 34× 34 due to the relative shift of images. Therefore, the size of the spike trains for each
sample is 34× 34× 2× T , where T is the temporal length. The original data record 300ms with the
resolution of 1µs. We follow Zhang & Li (2020) to reduce the time resolution by accumulating the
spike train within every 3ms and use the first 30 time steps. The license of N-MNIST is the Creative
Commons Attribution-ShareAlike 4.0 license.

DVS-Gesture DVS-Gesture is a neuromorphic dataset recording 11 classes of hand gestures by
a DVS camera. It consists of 1,176 training samples and 288 testing samples. Following Fang
et al. (2021), we pre-possess the data to integrate event data into 20 frames, and we reduce the
spatial resolution to 48× 48 by interpolation. The license of DVS-Gesture is the Creative Commons
Attribution 4.0 license.

DVS-CIFAR10 DVS-CIFAR10 is the neuromorphic dataset converted from CIFAR-10 by DVS,
which is composed of 10,000 samples, one-sixth of the original CIFAR-10. It consists of spike trains
with two channels corresponding to ON- and OFF-event spikes. We split the dataset into 9000 training
samples and 1000 testing samples as the common practice, and we reduce the temporal resolution by
accumulating the spike events (Fang et al., 2021) into 10 time steps as well as the spatial resolution
into 48× 48 by interpolation. We apply the random cropping augmentation similar to CIFAR-10 to
the input data and normalize the inputs based on the global mean and standard deviation of all time
steps. The license of DVS-CIFAR10 is CC BY 4.0.

MNIST MNIST consists of 10-class handwritten digits with 60,000 training samples and 10,000
testing samples. Each sample is a 28× 28 grayscale image. We normalize the inputs based on the
global mean and standard deviation, and convert the pixel value into a real-valued input current at
every time step. The license of MNIST is the MIT License.

CIFAR-10 CIFAR-10 consists of 10-class color images of objects with 50,000 training samples
and 10,000 testing samples. Each sample is a 32 × 32 × 3 color image. We normalize the inputs
based on the global mean and standard deviation, and apply random cropping, horizontal flipping,
and cutout (DeVries & Taylor, 2017) for data augmentation. The inputs to the first layer of SNNs at
each time step are directly the pixel values, which can be viewed as a real-valued input current.

CIFAR-100 CIFAR-100 is a dataset similar to CIFAR-10 except that there are 100 classes of
objects. It also consists of 50,000 training samples and 10,000 testing samples. We use the same
pre-processing as CIFAR-10.

The license of CIFAR-10 and CIFAR-100 is the MIT License.

ImageNet ImageNet-1K is a dataset of color images with 1,000 classes of objects, containing
1,281,167 training samples and 50,000 validation images. We adopt the common pre-possessing
strategies to first randomly resize and crop the input image to 224 × 224, and then normalize it
after the random horizontal flipping data augmentation, while the testing images are first resized to

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

256× 256 and center-cropped to 224× 224, and then normalized. The inputs are also converted to a
real-valued input current at each time step. The license of ImageNet is Custom (non-commercial).

C.3.2 TRAINING DETAILS AND HYPERPARAMETERS

For SNN models, following the common practice, we leverage the accumulated membrane potential
of the neurons at the last classification layer (which will not spike or reset) for classification, i.e.,
the classification during inference is based on the accumulated uN [T] =

∑T
t=1 o[t], where o[t] =

WN−1sN−1[t] + bN which can be viewed as an output at each time step. The loss during training is
calculated for each time step as L(o[t],y) following the instantaneous loss in online training with the
loss function as a combination of cross-entropy (CE) loss and mean-square-error (MSE) loss (Xiao
et al., 2022). For spiking neurons, Vth = 1 and λ = 0.5. We leverage the sigmoid-like local surrogate
derivative, i.e., ψ(u) = 1

a1

e(Vth−u)/a1

(1+e(Vth−u)/a1)2
with a1 = 0.25. For convolutional networks, we apply

the scaled weight standardization (Brock et al., 2021) as in Xiao et al. (2022).

For our OPZO method, as well as the ZO method in experiments, α is by default set as 0.2 initially
and linearly decays to 0.01 through the epochs, in order to reduce the influence of stochasticness
for forward propagation. In practice, this schedule is not critical (see analysis in Section D.4). For
fine-tuning on ImageNet under noise, α is set as the noise scale, and we do not apply antithetic
variables across time steps, in order to better fit the noisy test setting (perturbation noise is before the
neuron). In practice, we remove the factor 1/α for the calculation of M, because in the single-point
setting, the scale of õ is larger than and not proportional to α. This only influences the estimated
gradient with a scale α, and may be offset by the adaptive optimizer. Analysis experiments show that
this factor is also not critical (see Section D.4). For gradient variance analysis, we keep this factor in
order to have a comparable gradient scale.

For N-MNIST and MNIST, we consider FC networks with two hidden layers composed of 800 neu-
rons, and for DVS-CIFAR10, DVS-Gesture, CIFAR-10, and CIFAR-100, we consider 5-layer Conv
networks (128C3-AP2-256C3-AP2-512C3-AP2-512C3-FC), or 9-layer Conv networks under the
deeper network setting (64C3-128C3-AP2-256C3-256C3-AP2-512C3-512C3-AP2-512C3-512C3-
FC). We train our models on common datasets by the AdamW optimizer with learning rate 2e-4
and weight decay 2e-4 (except for ZO, the learning rate is set as 2e-5 on DVS-CIFAR10, MNIST,
CIFAR-10, and CIFAR-100 for better results). The batch size is set as 128 for most datasets and
16 for DVS-Gesture, and the learning rate is cosine annealing to 0. For N-MNIST and MNIST, we
train models by 50 epochs and we apply dropout with the rate 0.2 (except for ZO). For DVS-Gesture,
DVS-CIFAR10, CIFAR-10, and CIFAR-100, we train models by 300 epochs. For DVS-CIFAR10,
we apply dropout with the rate 0.1 (except for ZO). We set the momentum coefficient for momentum
feedback connections as λ = 0.99999 (except for DVS-Gesture, it is set as λ = 0.999999 due to a
smaller batch size), and for the combination with local learning, the local loss is scaled by 0.01.

For fine-tuning ImageNet, the learning rate is set as 2e-6 (and 2e-7 for ZO) without weight decay, and
the batch size is set as 64. The perturbation noise is before the neuron, i.e., added to the results after
convolutional operations. For BP, we train 1 epoch. For DFA, ZO, and OPZO, we train 5 epochs.
We observe that DFA and ZO fail after 1 epoch, so we only report the results after 1 epoch, and for
OPZO, the results can continually improve, so we report the results after 5 epochs. The 1-epoch and
5-epoch results for OPZO are 63.04 and 63.39 under the noise scale of 0.1, and 59.50 and 60.96
under the noise scale of 0.15.

The code implementation is based on the PyTorch framework, and experiments are carried out on one
NVIDIA GeForce RTX 3090 GPU (each experiment takes several hours). Experiments are based
on 3 runs of experiments with the same random seeds 2022, 0, and 1. Note that the results hardly
change for more runs of experiments: for OPZO results on DVS-CIFAR10 with the largest standard
deviation, 10 runs have almost the same results (72.69± 0.62 vs. 72.77± 0.82).

For gradient variance experiments, the variances are calculated by the batch gradients in one epoch,
i.e., var =

∑
∥gi−g∥2

n , where gi is the batch gradient, g is the average of batch gradients, and n is
the number of batches multiplied by the number of elements in the gradient vector.

DFA and DKP For DFA, the direct error feedback weight is randomly initialized following the
Kaiming initialization strategy. DKP (Webster et al., 2020) is based on the formulation of DFA

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 6: Brief comparison of training costs on GPU for CIFAR-10 with convolutional networks.
† means manual implementation of spatial BP with layer-by-layer backpropagation, which is in a
similar fashion as other methods. ‡ means using automatic differentiation implemented by PyTorch
with low-level code optimizations.

Method Memory Time per epoch

Spatial BP 2.8G† / 2.9G‡ 49s† / 45s‡
DFA 2.8G 44s
ZOsp 2.8G 46s

OPZO 2.9G 46s

DFA (w/ LL) 3.0G 50s
OPZO (w/ LL) 3.1G 51s

and updates feedback weights similar to Kolen-Pollack learning, which calculates gradients for
feedback weights by the product of the middle layer’s activation and the error from the top layer.
The feedback weights are initialized as zero, and we treat them as parameters to be optimized by the
Adam optimizer. Its basic thought is trying to keep the update direction of feedback and feedforward
weights the same, but it may lack sufficient theoretical grounding. As DKP is designed for ANN, we
implement it for SNN with the adaptation of activations to pre-synaptic traces for feedback weight
learning (similar to the update of feedforward weight). As shown in the results, compared with DFA,
DKP can have around 2-3% performance improvement on CIFAR-10 and CIFAR-100, which is
similar to the improvement in its paper. However, DKP cannot work well for neuromorphic datasets.
And OPZO significantly outperforms both DKP and DFA on all datasets.

D ADDITIONAL RESULTS

D.1 TRAINING COSTS ON GPU

We provide a brief comparison of memory and time costs of different methods on GPU in Table 6.
Our proposed OPZO has about the same costs as spatial BP and DFA. If we exclude some code-level
optimization and implement all methods in a similar fashion, DFA and OPZO are faster than spatial
BP, which is consistent with the theoretical analysis of operation numbers. Note that this is only a
brief comparison, as we do not perform low-level code optimization for OPZO and DFA, for example,
the direct feedback of OPZO and DFA to different layers can be parallel, and local learning for
different layers can also theoretically be parallel, to further reduce the time. As described in the main
text, the target of neuromorphic computing with SNNs would be potential neuromorphic hardware,
and OPZO and DFA can have lower costs, while GPUs generally do not follow the properties. Since
neuromorphic hardware is still under development and we have limited access, we mainly simulate
the experiments on GPUs, and it can be future work to consider the combination with neuromorphic
hardware implementation.

Also please note that these methods are all based on online training, so the memory costs (agnostic to
time steps) are already largely reduced compared with BPTT (proportional to time steps) (Xiao et al.,
2022).

D.2 FIRING RATE AND SYNAPTIC OPERATIONS

For event-driven SNNs, the energy costs on neuromorphic hardware are proportional to the spike
count, or more precisely, synaptic operations induced by spikes. Therefore, we also compare the
firing rate (i.e., average spike count per neuron per time step) and synaptic operations of the models
trained by different methods. As shown in Table 7, on both DVS-CIFAR10 and CIFAR-10, OPZO
(w/ LL) achieves the lowest average total firing rate and synaptic operations, indicating the most
energy efficiency. The results also demonstrate different spike patterns for models trained by different
methods, and show that LL can significantly improve OPZO, while it can hardly improve DFA and
spatial BP. It may indicate OPZO as a better, more biologically plausible global learning method to
be combined with local learning.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 7: The firing rate (fr) and synaptic operations (SynOp) induced by spikes for models trained by
different methods on DVS-CIFAR10 and CIFAR-10.

DVS-CIFAR10
Method Layer1 fr Layer2 fr Layer3 fr Layer4 fr Total fr SynOp

Spatial BP 0.1763 0.1733 0.2394 0.3575 0.1904 1.42× 109

Spatial BP (w/ LL) 0.2272 0.1618 0.2199 0.3439 0.2122 1.51× 109

DFA 0.2693 0.4564 0.4783 0.4930 0.3574 2.91× 109

DFA (w/ LL) 0.2433 0.4531 0.4848 0.4919 0.3430 2.84× 109

OPZO 0.2435 0.3446 0.4212 0.4222 0.3021 2.41× 109

OPZO (w/ LL) 0.0406 0.0614 0.1451 0.2838 0.0691 0.53× 109

CIFAR-10
Method Layer1 fr Layer2 fr Layer3 fr Layer4 fr Total fr SynOp

Spatial BP 0.2005 0.1679 0.1067 0.0493 0.1734 0.76× 109

Spatial BP (w/ LL) 0.1870 0.1474 0.0978 0.0470 0.1589 0.69× 109

DFA 0.1769 0.3787 0.4314 0.4149 0.2759 1.40× 109

DFA (w/ LL) 0.1196 0.3180 0.4089 0.3878 0.2235 1.16× 109

OPZO 0.1563 0.2861 0.3496 0.2754 0.2229 1.12× 109

OPZO (w/ LL) 0.0400 0.0670 0.1159 0.2157 0.0640 0.30× 109

(a) N-MNIST, FC, train (b) N-MNIST, FC, test (c) DVS-CIFAR10, Conv, train (d) DVS-CIFAR10, Conv, test

0.1

0.3

0.5

0.7

0.9

0 50 100 150 200 250 300

BP
DFA
DFA (w/ LL)
ZO
OPZO
OPZO (w/ LL)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250 300

BP
DFA
DFA (w/ LL)
ZO
OPZO
OPZO (w/ LL)

0.85

0.9

0.95

1

0 10 20 30 40 50

BP

DFA

ZO

OPZO

0.85

0.9

0.95

1

0 10 20 30 40 50

BP

DFA

ZO

OPZO

Figure 3: Training dynamics of different methods on N-MNIST and DVS-CIFAR10.

D.3 TRAINING DYNAMICS AND GRADIENT SIMILARITY

We present the training dynamics of different methods in Fig. 3. For the fully connected network
on N-MNIST, OPZO achieves a similar convergence speed as spatial BP, which is better than DFA
and much better than ZO. For the convolutional network on DVS-CIFAR10, OPZO itself is slower
than spatial BP while still performing much better than DFA and ZO, and when combined with local
learning, OPZO (w/ LL) achieves a similar training convergence speed as spatial BP as well as a
better testing performance.

We further present the cosine similarity between estimated gradients and backpropagated gradients
with surrogate derivatives in Fig. 4. The results show that the cosine similarity of different layers
between OPZO and BP remains in the range of 0.5-0.9 throughout training, whereas DFA and BP is
typically below 0.1 for most layers. This indicates that the bias introduced by momentum feedback
does not significantly distort the gradient direction compared to DFA, and the training can converge
with effective descent directions.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

C
o

s
in

e
 s

im
ila

ri
ty

epoch

Layer 1

Layer 2

Layer 3

Layer 4

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

C
o

s
in

e
 s

im
ila

ri
ty

epoch

Layer 1

Layer 2

Layer 3

Layer 4

OPZO vs. BP DFA vs. BP

Figure 4: Cosine similarity between OPZO and BP with surrogate derivatives as well as between
DFA and BP on CIFAR-100.

Table 8: Analysis results of different λ on CIFAR-100.

λ = 0 (w/o momentum) λ = 0.9 λ = 0.99 λ = 0.999 λ = 0.9999 λ = 0.99999

16.08±0.37 39.05±0.69 50.65±0.05 58.25±0.33 60.92±0.11 60.93±0.16

Table 9: Analysis results of updating M throughout training on CIFAR-100.

stop updating M after 10 epochs OPZO

57.17 60.93±0.16

Table 10: Analysis results of settings with initial perturbation scale α = 0.2 on CIFAR-100.

w/ schedule w/o schedule w/o schedule and w/ 1
α factor

60.93±0.16 61.85±0.09 61.65±0.40

Table 11: Analysis results of different perturbation scale α without scheduling on CIFAR-100.

α = 1. α = 0.2 α = 0.02 α = 0.002

58.34 61.85±0.09 58.33 49.97

D.4 ANALYSIS OF HYPERPARAMETERS

We first study the influence of the momentum coefficient λ in Table 8. As shown in the results,
OPZO requires a large λ in our scenario. This is due to the large variance of single-point zeroth-order
approximation, so we require a relatively small 1−λ for smoothing M to approximate the expectation
Ex

[
J⊤
f (x)

]
(more precisely, Ex

[
J⊤
fα
(x)
]
). A smaller λ cannot properly deal with the large variance,

leading to inferior performance. While λ is large, this does not mean M is quasi-static, because the
objective of the expectation of Jacobian is slowly changing throughout training. To validate this in
experiments, we stop updating M after 10 epochs, and the performance drops as shown in Table 9.

We then analyze the influence of the perturbation scale α. We first evaluate the effect of the scheduling
of α and removing the factor 1

α (Section C.3.2). As shown in Table 10, the scheduling has slightly
negative influence on the performance while the 1

α factor has negligible impact. We further analyze
different perturbation scales without scheduling in Table 11. As shown in the results, the scale around
0.2 works best. This is likely due to the property of spiking neural networks, where we set the spiking
threshold as 1: if the perturbation scale is too small, the perturbation hardly influences the spiking
generation, leading to imprecise estimation. Therefore, for spiking neural networks, a good scale
choice would be fixed α = 0.2 throughout the training.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 12: Analysis results of deeper networks without auxilary techniques on CIFAR-100.

Network structure Spatial BP DFA ZOsp OPZO

5-layer network 64.82±0.09 49.50±0.13 22.26±0.51 60.93±0.16

9-layer network 65.96±0.52 48.14±0.49 4.85±0.21 56.89±0.37
9-layer network (w/ residual) 69.5 48.5 / 63.4

18-layer residual network (smaller channels) 66.78 46.83 / 61.86
34-layer residual network (smaller channels) 67.36 45.06 / 61.17

D.5 ANALYSIS OF PURE OPZO FOR TRAINING DEEPER NETWORKS FROM SCRATCH

In this section, we provide more analysis on the pure OPZO for training deeper networks from scratch
without auxiliary techniques, as shown in Table 12.

First, for the plain 9-layer network, OPZO has degraded performance compared with 5-layer network,
but still significantly outperforming DFA and ZO. This is related to our theoretical analysis of the
bias of average Jacobian, which shows that the smoothness will influence the condition of effective
descent direction (Remark A.5). The plain deeper networks’ unsmoothness tightens the condition,
leading to inferior performance. So some auxiliary mechansims may be required to alleviate the
problem.

Then, we further show that residual connections can largely alleviate the problem, in consistent
with our theoritical analysis and experiments that pure OPZO can effectively fine-tune ResNet-34
on ImageNet. As shown in Table 12, with residual connections, OPZO does not degrade as depth
grows and can scale to 34-layer networks in the train from scratch setting as well, while DFA still
has degraded performance. This is because residual connections can make the network function
smoother, so the problem is largely alleviated. While there is still some performance gap with BP,
OPZO significantly outperforms DFA and can be further enhanced with auxiliary techniques.

Therefore, pure OPZO also has the ability to train deeper networks from scratch, while it has more
reliance on the proper network structure (residual connections) than BP.

Additionally, we report results for training a NF-ResNet18 model (T=4) from scracth on ImageNet
for 100 epochs using the Adam optimizer (lr=1e − 4). The performance of pure OPZO, DFA,
and BP is 19.0%, 5.6%, and 52.9%, respectively. The results show that while OPZO significantly
outperforms DFA, it still has much room for improvement compared with BP in this large-scale offline
training, likely due to a more non-smooth optimization landscape as indicated by our theoretical
analysis. This suggests that OPZO may require additional techniques such as local learning for this
large-scale training-from-scratch scenario. However, we emphasize that OPZO is not intended to
replace BP for high-compute offline training, which is orthogonal to our neuromorphic objective. Our
goal is hardware-friendly, on-chip learning for neuromorphic SNNs, where starting from scratch is
rarely necessary (similar to our brains that adapt rather than relearn entirely), and post-deployment
adaptation and continual learning are key scenarios. Our ImageNet fine-tuning experiments show
that pure OPZO can scale to large networks without auxiliary techniques, validating its effectiveness
in this setting. This demonstrates OPZO’s complementary role to offline BP methods.

E MORE DISCUSSIONS

E.1 LIMITATIONS

This paper mainly focuses on theoretical groundings and simulation experiments with GPUs for the
proposed method, while no implementation on neuromorphic hardware is included due to our limited
access to it. Future work can consider the implementation on those hardware with more engineering
efforts, e.g., on Loihi2 (Davies, 2021) that can support three-factor learning rules as described in their
technical report.

As discussed in Section 5, our method is a different line from many recent SNN works with state-
of-the-art performance, focusing on more biologically plausible and hardware-friendly training

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 13: Results of different methods without truncating temporal gradients on DVS-CIFAR10.

Network structure STBP DFA PZO

5-layer CNN (sWS) 76.17±0.21 60.00±0.22 73.20±0.08

5-layer CNN (BN) 77.23±0.46 60.77±0.69 74.13±0.52

algorithms. So we mainly evaluate the effectiveness of the method with comparisons under various
settings, not pursuing the state-of-the-art performance. On the other hand, as discussed in the
experiments of fine-tuning ResNet-34 on ImageNet, our method may be combined with those works
aiming at state-of-the-art performance through the potential on-chip fine-tuning after deployment.

E.2 DISCUSSION OF THE METHOD

The proposed OPZO is built on online training methods to deal with the spatio-temporal locality
problem of BP(TT) for neuromorphic computing and pave the path to on-chip SNN training. While
the pseudo-zeroth-order formulation can be applied to non-online scenarios, e.g., BPTT, we do not
focus on it because this is not our target (friendly for neuromorphic hardware and more biologically
plausible) and it requires larger memory costs to maintain intermediate states through time for direct
error propagation. Nevertheless, to further validate the feasibility of applying PZO to the setting
without truncating the temporal gradient flow, we provide more results under this setting. Specifically,
we leverage PZO to estimate gradients from the network output at time step ti to intermediate layers
at time steps tj (tj ≤ ti). To reduce the momentum costs, we share the momentum for the same
interval between ti and tj , i.e., there will be T feedback momentum representing the feedback matrix
from ti-output to (ti − k)-features (k = 0, 1, · · · , T − 1). We perform noise injection to all time
steps and update the momentum feedback matrices based on noises and network outputs. Without the
requirement for memory-efficient online training, we can also adopt BN (along all time steps) for
networks. As shown in Table 13, PZO can be effectively applied to this setting.

We consider node perturbation instead of weight perturbation because it improves the latter with
smaller variance (Lillicrap et al., 2020) and is more biologically plausible with a better analog to
three-factor Hebbian learning (Frémaux & Gerstner, 2016) as discussed in Section 4.3. This is
friendly for neuromorphic hardware that supports three-factor rules (Davies, 2021). While weight
perturbation may be conceptually easier, it is less effective to optimize neural networks and has hardly
been adopted in zeroth-order methods for neural networks (Jiang et al., 2024) except in specially
designed fine-tuning settings (Malladi et al., 2023).

While this paper mainly considers SNNs, the proposed pseudo-zeroth-order formulation can also
be applied to ANNs. If we consider the general computer, there can be techniques to reduce the
memory overhead of the momentum feedback, such as low-rank approximation, only saving some
output vectors and recomputing the matrix by re-drawing the perturbation with random seeds, etc.
This paper mainly focuses on neuromorphic computing, and we leave the extension to more settings
as future work.

E.3 RELATION TO NEUROSCIENTIFIC EVIDENCE

In this section, we discuss more on the neuroscientific evidence for noise injection and top-down
signals in our method.

Noise injection. The biological systems are inherently noisy and it has long been recognized that
noise can be utilized as a resource for computation and learning (Seung, 2003; Fiete & Seung, 2006;
Maass, 2014; Lillicrap et al., 2020). Considering the perturbation with noise injection, it can be
related to stochastic synaptic transmission (Seung, 2003) or “empiric” synapses carrying perturbing
input from another part of the brain (Fiete & Seung, 2006). Such mechanisms provide the biological
basis for perturbation learning, which is believed to be employed by the brain for some kinds of
learning (Lillicrap et al., 2020). Our work builds on this zeroth-order perturbation, while introducing
momentum feedback to solve the large variance problem of it.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Top-down feedback. In the three-factor Hebbian learning, synaptic updates are modulated by
reward-prediction errors (RPE) and can be gated by feedback (FB) from higher brain regions through
top-down feedback connections, leading to the update rule ∆wi,j = β · fi(ai) · fj(aj) · RPE ·
FBj (Roelfsema & Holtmaat, 2018). Anatomically, feedback projections originate from higher
cortical areas and mostly provide input to superficial (L1–L3) and deep (L5) layers of lower sensory
areas, targeting apical dendrites of pyramidal neurons and specific microcircuits (Roelfsema &
Holtmaat, 2018). These feedback pathways are thought to play a key role in gating plasticity, credit
assignment, and context-dependent modulation. The momentum feedback connections in our method
are analogous to these top-down feedback pathways that modulate prediction errors, providing a basis
for rules similar to three-factor Hebbian learning. Notably, the update of our feedback connections
depends only on local pre- and post-synaptic, maintaining the simplicity and biological plausibility
of the learning process.

28

	Introduction
	Related Work
	Preliminaries
	Spiking Neural Networks
	Zeroth-Order Optimization

	Online Pseudo-Zeroth-Order Training
	Pseudo-Zeroth-Order Formulation
	Momentum Feedback Connections
	Online Pseudo-Zeroth-Order Training
	Additional Details

	Experiments
	Comparison on Various Datasets
	Gradient Variance
	Effectiveness for Different Noise Injection
	Deeper Networks
	Training Costs and Firing Sparsity

	Conclusion
	Detailed Explanations and Proofs
	Explanation of the smoothed function
	Proof of Proposition 4.1
	Proof of Proposition 4.3

	Introduction to Local Surrogate Derivatives under the Stochastic Spiking Setting
	More Implementation Details
	Local Learning
	Noise Injection
	Training Settings
	Datasets
	Training Details and Hyperparameters

	Additional Results
	Training Costs on GPU
	Firing Rate and Synaptic Operations
	Training Dynamics blueand Gradient Similarity
	Analysis of hyperparameters
	Analysis of Pure OPZO for Training Deeper Networks from Scratch

	More Discussions
	Limitations
	Discussion of the Method
	Relation to Neuroscientific Evidence

