

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ONLINE PSEUDO-ZEROTH-ORDER TRAINING OF NEU- ROMORPHIC SPIKING NEURAL NETWORKS

Anonymous authors

Paper under double-blind review

ABSTRACT

Brain-inspired neuromorphic computing with spiking neural networks (SNNs) is a promising energy-efficient computational approach. However, successfully training deep SNNs in a more biologically plausible and neuromorphic-hardware-friendly way is still challenging. Most recent methods leverage spatial and temporal backpropagation (BP), not adhering to neuromorphic properties. Despite the efforts of some online training methods, tackling spatial credit assignments by alternatives with competitive performance as spatial BP remains a significant problem. In this work, we propose a novel method, online pseudo-zeroth-order (OPZO) training. Our method only requires a single forward propagation with noise injection and direct top-down signals for spatial credit assignment, avoiding spatial BP’s problem of symmetric weights and separate phases for layer-by-layer forward-backward propagation. OPZO solves the large variance problem of zeroth-order methods by the pseudo-zeroth-order formulation and momentum feedback connections, while having more guarantees than random feedback. Combining online training, OPZO can pave paths to on-chip SNN training. Experiments on neuromorphic and static datasets with both fully connected and convolutional networks demonstrate the effectiveness of OPZO with competitive performance compared with spatial BP, as well as estimated low training costs.

1 INTRODUCTION

Neuromorphic computing with biologically inspired spiking neural networks (SNNs) is an energy-efficient computational framework with increasing attention recently (Roy et al., 2019; Schuman et al., 2022). Imitating biological neurons to transmit spike trains for sparse event-driven computation as well as parallel in-memory computation, efficient neuromorphic hardware is developed, supporting SNNs with low energy consumption (Davies et al., 2018; Pei et al., 2019; Woźniak et al., 2020; Rao et al., 2022; Davies, 2021).

Nevertheless, supervised training of SNNs is challenging considering neuromorphic properties. While popular surrogate gradient methods can deal with the non-differentiable problem of discrete spikes (Shrestha & Orchard, 2018; Wu et al., 2018; Neftci et al., 2019), they rely on backpropagation (BP) through time and across layers for temporal and spatial credit assignment, which is biologically problematic and would be inefficient on hardware.

Particularly, spatial BP suffers from problems of weight transport and separate forward-backward stages with update locking (Crick, 1989; Frenkel et al., 2021), and temporal BP is further infeasible for spiking neurons with the online property (Bellec et al., 2020). Considering learning in biological systems with unidirectional local synapses, maintaining reciprocal forward-backward connections with symmetric weights and separate phases of signal propagation is often viewed as biologically problematic (Nøkland, 2016), and also poses challenges for efficient on-chip training of SNNs. Methods with only forward passes, or with direct top-down feedback signals acting as modulation in biological three-factor rules (Frémaux & Gerstner, 2016; Roelfsema & Holtmaat, 2018), are more efficient and plausible, e.g., on neuromorphic hardware (Davies, 2021).

Some previous works explore alternatives for temporal and spatial credit assignment. To deal with temporal BP, online training methods are developed for SNNs (Bellec et al., 2020; Xiao et al., 2022). With tracked eligibility traces, they decouple temporal dependency and support forward-in-time learning. However, alternatives to spatial BP still require deeper investigations. Most existing works

mainly rely on random feedback (Nøkland, 2016; Bellec et al., 2020), with limited guarantees and poorer performance than spatial BP. Some works explore forward gradients (Silver et al., 2022; Baydin et al., 2022), but they require an additional stage of heterogeneous signal propagation and perform poorly due to the large variance. Recently, Malladi et al. (2023) show that zeroth-order (ZO) optimization with simultaneous perturbation stochastic approximation (SPSA) can effectively fine-tune pre-trained large language models, but it requires specially designed settings, not suitable for general neural network training due to the large variance. On the other hand, local learning has been studied, e.g., with local readout layers (Kaiser et al., 2020) or forward-forward self-supervised learning (Hinton, 2022; Ororbia, 2023). It is complementary to global learning and can improve some methods (Ren et al., 2023). As a crucial component of machine learning, efficient global learning alternatives with competitive performance remain an important problem.

In this work, we propose a novel online pseudo-zeroth-order (OPZO) training method with only a single forward propagation and direct top-down feedback for global learning. We first propose a pseudo-zeroth-order formulation for neural network training, which decouples the model and loss function and maintains the zeroth-order formulation for neural networks while leveraging the available first-order property of the loss function for more informative feedback error signals. Then we propose momentum feedback connections to directly propagate feedback signals to hidden layers. The connections are updated based on the one-point zeroth-order estimation of the expectation of the Jacobian, with which the large variance of zeroth-order methods can be solved, and more guarantees are maintained compared with random feedback. OPZO only requires a noise injection in the common forward propagation, flexibly applicable to black-box or non-differentiable models. Built upon online training, OPZO enables training in a similar form as the three-factor Hebbian learning based on direct top-down modulations, paving paths to on-chip training of SNNs. Our contributions include:

1. We propose a pseudo-zeroth-order formulation that decouples the model and loss function for neural network training, which enables more informative feedback signals while keeping the zeroth-order formulation of the (black-box) model.
2. We propose the OPZO training method with a single forward propagation and momentum feedback connections, solving the large variance of zeroth-order methods and keeping low costs. Built on online training, OPZO provides a more biologically plausible method friendly for potential on-chip training of SNNs.
3. We conduct extensive experiments on neuromorphic and static datasets with fully connected and convolutional networks, as well as on ImageNet with larger networks fine-tuned under noise. Results show the effectiveness of OPZO in reaching competitive performance compared with spatial BP and its robustness under different noise injections. OPZO is also estimated to have lower computational costs than BP on potential neuromorphic hardware.

2 RELATED WORK

SNN Training Methods A mainstream method is spatio-temporal BP combined with surrogate gradient (SG) (Shrestha & Orchard, 2018; Wu et al., 2018; Neftci et al., 2019), with many efforts on architecture or objective design (Yao et al., 2024; Xiao et al., 2024b; Lv et al., 2024; Deng et al., 2023; Guo et al., 2024; Xing et al., 2025). Another direction is to derive closed-form transformations or implicit equilibria between encodings of spike trains (weighted firing rates or the first time to spike), and convert artificial neural networks (ANNs) to SNNs (Rueckauer et al., 2017; Deng & Gu, 2021; Stöckl & Maass, 2021; Meng et al., 2022b) or directly train SNNs with gradients from the transformations (Zhou et al., 2021; Wu et al., 2021; Meng et al., 2022a) or equilibria (Xiao et al., 2021; Martin et al., 2021; Xiao et al., 2023). To tackle the problem of temporal BP, some online training methods are proposed (Bellec et al., 2020; Xiao et al., 2022; Bohnstingl et al., 2022; Meng et al., 2023; Yin et al., 2023) for forward-in-time learning, but many of them still require spatial BP. Considering alternatives to spatial BP, Neftci et al. (2017); Lee et al. (2020); Bellec et al. (2020) apply random feedback, Kaiser et al. (2020) propose online local learning, and Yang et al. (2022) propose local tandem learning with ANN teachers. Different from them, we propose a new global learning method with similar performance as spatial BP. Li et al. (2021) and Mukhoty et al. (2023) study zeroth-order properties for each parameter or neuron to adjust surrogate functions or leverage a local zeroth-order estimator for the Heaviside step function, lying in the spatio-temporal BP framework. Differently, in this work, zeroth-order training refers to simultaneous perturbation for global network training without BP.

108 **Alternatives to Spatial Backpropagation** For more biologically plausible global learning, al-
 109 ternatives to spatial BP are proposed. Target propagation (Lee et al., 2015), feedback alignment
 110 (FA) (Lillicrap et al., 2016), and sign symmetry (Liao et al., 2016; Xiao et al., 2018) avoid the weight
 111 symmetry problem by propagating targets or using random / only sign-shared backward weights,
 112 and Akrout et al. (2019) improves FA by learning it to be symmetric with forward weights. They,
 113 however, still need an additional stage of sequential layer-by-layer backward propagation. Direct
 114 feedback alignment (DFA) (Nøkland, 2016; Launay et al., 2020) improves FA to directly propagate
 115 errors from the last layer to hidden ones. However, random feedbacks have limited guarantees and
 116 perform much worse than BP. Some recent works study forward gradients (Silver et al., 2022; Baydin
 117 et al., 2022; Ren et al., 2023; Xiao et al., 2024a; Bacho & Chu, 2024), but they require an additional
 118 heterogeneous signal propagation stage, suffering from biological plausibility issues and larger costs.
 119 There are also methods focusing on energy functions (Scellier & Bengio, 2017) or lifted proximal
 120 formulation (Li et al., 2020). Besides global supervision, some works turn to local learning, using
 121 local readout layers (Kaiser et al., 2020), forward-forward contrastive learning (Hinton, 2022), or
 122 Hebbian learning (Journé et al., 2023). This work mainly focuses on global learning and can be
 123 combined with local learning.

124 **Zer0th-Order Optimization** ZO optimization has been widely studied in machine learning, such
 125 as for black-box optimization (Grill et al., 2015), adversarial attacks (Chen et al., 2017), reinforcement
 126 learning (Salimans et al., 2017), etc., at relatively small scales, but its application to direct neural
 127 network training is limited due to the variance caused by a large number of parameters. Recently,
 128 Yue et al. (2023) theoretically shows that the complexity of ZO optimization can exhibit weak
 129 dependencies on dimensionality considering the effective dimension, and Malladi et al. (2023)
 130 proposes zeroth-order SPSA for memory-efficient fine-tuning pre-trained large language models with
 131 a similar theoretical basis. However, it depends on specially designed settings (e.g., fine-tuning under
 132 the prompt setting (Malladi et al., 2023; Gautam et al., 2024)) which are not applicable to general
 133 neural network training, and requires two forward passes. Jiang et al. (2024) proposes a likelihood
 134 ratio method to train neural networks, but it requires multiple forward propagation proportional to
 135 the layer number in practice. Chen et al. (2024) considers the finite difference for each parameter
 136 rather than simultaneous perturbation and proposes pruning methods for improvement, limited in
 137 computational complexity. Differently, we propose a method for neural network training from scratch
 138 with only one forward pass for low costs and comparable performance to spatial BP.

3 PRELIMINARIES

3.1 SPIKING NEURAL NETWORKS

141 Imitating biological neurons, each spiking neuron keeps a membrane potential u , integrates input
 142 spike trains, and generates a spike for information transmission once u exceeds a threshold. u is reset
 143 to the resting potential after a spike. We consider the commonly used leaky integrate and fire (LIF)
 144 model with the dynamics of the membrane potential as: $\tau_m \frac{du}{dt} = -(u - u_{rest}) + R \cdot I(t)$, for $u < V_{th}$,
 145 with input current I , threshold V_{th} , resistance R , and time constant τ_m . When u reaches V_{th} at time
 146 t^f , the neuron generates a spike and resets u to zero. The output spike train is $s(t) = \sum_{t^f} \delta(t - t^f)$.

147 SNNs consist of connected spiking neurons. We consider the simple current model $I_i(t) =$
 148 $\sum_j w_{ij} s_j(t) + b_i$, where i, j represent the neuron index, w_{ij} is the weight and b_i is a bias. The
 149 discrete computational form is:

$$\begin{cases} u_i[t+1] = \lambda(u_i[t] - V_{th}s_i[t]) + \sum_j w_{ij}s_j[t] + b_i, \\ s_i[t+1] = H(u_i[t+1] - V_{th}). \end{cases} \quad (1)$$

154 Here $H(x)$ is the Heaviside step function, $s_i[t]$ is the spike signal at discrete time step t , and
 155 $\lambda < 1$ is a leaky term (taken as $1 - \frac{1}{\tau_m}$). For multi-layer networks, we use $s^{l+1}[t]$ to represent
 156 the $(l+1)$ -th layer's response after receiving signals $s^l[t]$ from the l -th layer, i.e., the expression is
 157 $\mathbf{u}^{l+1}[t+1] = \lambda(\mathbf{u}^{l+1}[t] - V_{th}s^{l+1}[t]) + \mathbf{W}^l s^l[t+1] + \mathbf{b}^l$.

158 **Online Training of SNNs** We build the proposed OPZO on online training methods for forward-in-
 159 time learning. Here online training refers to online through the time dimension of SNNs (Bellec et al.,
 160 2020; Xiao et al., 2022), as opposed to backpropagation through time. We consider OTTT (Xiao
 161 et al., 2022) to online calculate gradients at each time by the tracked presynaptic trace $\hat{\mathbf{a}}^l[t] =$

162 $\sum_{\tau \leq t} \lambda^{t-\tau} \mathbf{s}^l[\tau]$ and instantaneous gradient $\mathbf{g}_{\mathbf{u}^{l+1}}[t] = \left(\frac{\partial \mathcal{L}[t]}{\partial \mathbf{s}^N[t]} \prod_{i=0}^{N-l-2} \frac{\partial \mathbf{s}^{N-i}[t]}{\partial \mathbf{s}^{N-i-1}[t]} \frac{\partial \mathbf{s}^{l+1}[t]}{\partial \mathbf{u}^{l+1}[t]} \right)^\top$ as
 163 $\nabla_{\mathbf{W}^l} \mathcal{L}[t] = \mathbf{g}_{\mathbf{u}^{l+1}}[t] \hat{\mathbf{a}}^l[t]^\top$. In OTTT, the instantaneous gradient requires layer-by-layer spatial
 164 BP with surrogate derivatives for $\frac{\partial \mathbf{s}^l[t]}{\partial \mathbf{u}^l[t]}$. The proposed OPZO, on the other hand, leverages only
 165 one forward propagation across layers and direct feedback to estimate $\mathbf{g}_{\mathbf{u}^{l+1}}[t]$ without spatial BP
 166 combining surrogate gradients.
 167

169 3.2 ZEROTH-ORDER OPTIMIZATION

170 Zeroth-order optimization is a gradient-free method using only function values. A classical ZO
 171 gradient estimator is SPSA (Spall, 1992), which estimates the gradient of parameters θ for $\mathcal{L}(\theta)$ on a
 172 random direction \mathbf{z} as:

$$173 \nabla^{ZO} \mathcal{L}(\theta) = \frac{\mathcal{L}(\theta + \alpha \mathbf{z}) - \mathcal{L}(\theta - \alpha \mathbf{z})}{2\alpha} \mathbf{z} \approx \mathbf{z} \mathbf{z}^\top \nabla \mathcal{L}(\theta), \quad (2)$$

175 where \mathbf{z} is a multivariate variable with zero mean and unit variance, e.g., following the multivariate
 176 Gaussian distribution, and α is a perturbation scale. Alternatively, we can use the one-sided formulation
 177 for this directional gradient $\frac{\mathcal{L}(\theta + \alpha \mathbf{z}) - \mathcal{L}(\theta)}{\alpha} \mathbf{z}$. These two-point estimations are unbiased estimator
 178 of $\nabla \mathcal{L}(\theta)$ in the limit $\alpha \rightarrow 0$ under the common assumptions of L -smoothness of $\mathcal{L}(\theta)$ and i.i.d.
 179 components of \mathbf{z} with zero mean and unit variance (Nesterov & Spokoiny, 2017; Duchi et al., 2015).

180 Considering biological plausibility and efficiency, estimation with a single forward pass is more
 181 appealing. Actually, we can leverage the single-point zeroth-order estimation (ZO_{sp}):
 182

$$183 \nabla^{ZO_{sp}} \mathcal{L}(\theta) = \frac{\mathcal{L}(\theta + \alpha \mathbf{z})}{\alpha} \mathbf{z}. \quad (3)$$

185 For non-zero α in practice, it has the same expectation as the two-point method. Additionally,
 186 when \mathbf{z} is uniformly sampled from the unit sphere, the single-point estimation is an unbiased
 187 estimator of the smooth version of \mathcal{L} : $\mathcal{L}_\alpha(x) = \mathbb{E}_{\mathbf{z} \in \mathbb{S}^n} [\mathcal{L}(\theta + \alpha \mathbf{z})]$, which does not require \mathcal{L} to be
 188 differentiable (Flaxman et al., 2005).

189 The above formulation only requires a noise injection in the forward propagation, and the gradients
 190 can be estimated with a top-down feedback signal, as shown in Fig. 1(d). This is also similar to
 191 REINFORCE (Williams, 1992) and Evolution Strategies (Salimans et al., 2017) in reinforcement
 192 learning, and is considered to be biologically plausible (Fiete & Seung, 2006). It is believed that the
 193 brain is likely to employ perturbation methods for some kinds of learning (Lillicrap et al., 2020).

194 However, zeroth-order methods usually suffer from a large variance, since two-point methods only
 195 estimate gradients in a random direction and the one-point formulation has even larger variances.
 196 Therefore they hardly work for general neural network training. In the following, we propose our
 197 momentum-based pseudo-zeroth-order method to solve the problem, also only based on one forward
 198 propagation with noise injection and top-down feedback signals.

200 4 ONLINE PSEUDO-ZEROTH-ORDER TRAINING

201 In this section, we introduce the proposed online pseudo-zeroth-order method. We first introduce the
 202 pseudo-zeroth-order formulation for neural network training in Section 4.1. Then in Section 4.2, we
 203 introduce momentum feedback connections for error propagation with zeroth-order estimation of the
 204 model. In Section 4.3, we demonstrate the combination with online training and a similar form as the
 205 three-factor Hebbian learning. Finally, we introduce additional details in Section 4.4.

206 4.1 PSEUDO-ZEROTH-ORDER FORMULATION

208 Since zeroth-order methods suffer from large variances, a natural thought is to reduce the variance.
 209 However, ZO methods only rely on a scalar feedback signal to act on the random direction \mathbf{z} , making
 210 it hard to improve gradient estimation. To this end, we introduce a pseudo-zeroth-order formulation.
 211 As we build our work on online training, we first focus on the condition of a single SNN time step.

212 Specifically, we decouple the model function $f(\cdot; \theta)$ and the loss function $\mathcal{L}(\cdot)$. For each input \mathbf{x} , the
 213 model outputs $\mathbf{o} = f(\mathbf{x}; \theta)$, and then the loss is calculated as $\mathcal{L}(\mathbf{o}, \mathbf{y}_\mathbf{x})$, where $\mathbf{y}_\mathbf{x}$ is the label for the
 214 input. Different from ZO methods that only leverage the function value of $\mathcal{L} \circ f$, we assume that the
 215 gradient of $\mathcal{L}(\cdot)$ can be easily calculated, while keeping the zeroth-order formulation for $f(\cdot; \theta)$. This
 is consistent with real settings where gradients of the loss function have easy closed-form formulation,

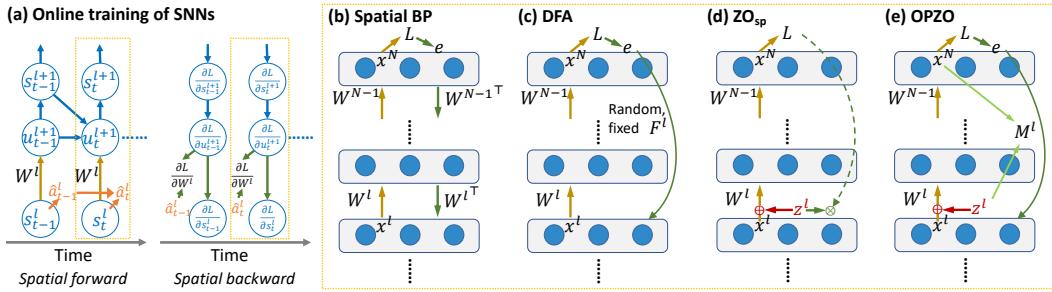


Figure 1: Illustration of different training methods. (a) Online training of SNNs with tracked traces for temporal credit assignment. (b-e) Different spatial credit assignment methods. (b) Spatial BP propagates errors layer-by-layer with symmetric weights. (c) DFA directly propagates error signals from the top layer to the middle ones with fixed random connections. (d) Single-point zeroth-order methods add perturbation during forward propagation, and afterward, the loss signal is passed to the middle layers. (e) The proposed OPZO method leverages momentum feedback connections based on perturbation vectors to directly propagate top-down error signals to neurons.

e.g., for mean-square-error (MSE) loss, $\nabla_{\mathbf{o}} \mathcal{L}(\mathbf{o}, \mathbf{y}_x) = \mathbf{o} - \mathbf{y}_x$, and for cross-entropy (CE) loss with the softmax function σ , $\nabla_{\mathbf{o}} \mathcal{L}(\mathbf{o}, \mathbf{y}_x) = \sigma(\mathbf{o}) - \mathbf{y}_x$, while gradients of $f(\cdot; \theta)$ are hard to compute due to biological plausibility issues or non-differentiability of spikes.

With this formulation, we can consider feedback (error) signals $\mathbf{e} = \nabla_{\mathbf{o}} \mathcal{L}(\mathbf{o}, \mathbf{y}_x)$ that carries more information than a single value of $\mathcal{L} \circ f(\mathbf{x})$, potentially encouraging techniques for variance reduction. In the following, we introduce momentum feedback connections to directly propagate feedback signals to hidden layers for gradient estimation.

4.2 MOMENTUM FEEDBACK CONNECTIONS

We motivate our method by first considering the directional gradient by the two-point estimation in Section 3.2. With decoupled $f(\cdot; \theta)$ and $\mathcal{L}(\cdot)$ as in the pseudo-zeroth-order formulation and Taylor expansion of $\mathcal{L}(\cdot)$, the one-sided formulation turns into:

$$\nabla_{\theta}^{Z_0} \mathcal{L} \approx \frac{\langle \nabla_{\mathbf{o}} \mathcal{L}(\mathbf{o}, \mathbf{y}_x), \tilde{\mathbf{o}} - \mathbf{o} \rangle}{\alpha} \mathbf{z} = \mathbf{z} \frac{\Delta \mathbf{o}^T}{\alpha} \nabla_{\mathbf{o}} \mathcal{L}(\mathbf{o}, \mathbf{y}_x), \quad (4)$$

where $\mathbf{o} = f(\mathbf{x}; \theta)$, $\tilde{\mathbf{o}} = f(\mathbf{x}; \theta + \alpha \mathbf{z})$, and $\Delta \mathbf{o} = \tilde{\mathbf{o}} - \mathbf{o}$. This can be viewed as propagating the error signal with a connection weight $\mathbf{z} \frac{\Delta \mathbf{o}^T}{\alpha}$. To reduce the variance introduced by the random direction \mathbf{z} , we introduce momentum feedback connections across different iterations and propagate errors as:

$$\begin{aligned} \mathbf{M}^k &:= \lambda \mathbf{M}^{k-1} + (1 - \lambda) \mathbf{z} \frac{\Delta \mathbf{o}^T}{\alpha}, \\ \nabla_{\theta}^{PZ_0} \mathcal{L} &= \mathbf{M}^k \nabla_{\mathbf{o}} \mathcal{L}(\mathbf{o}, \mathbf{y}_x), \end{aligned} \quad (5)$$

where **M** is initialized as zero and k denotes the iteration number. The momentum feedback connections can take advantage of different sampled directions \mathbf{z} , largely alleviating the variance caused by random directions.

The above formulation only considers the directional gradient with two-point estimation, while we are more interested in methods with a single forward pass. Actually, $\mathbf{z} \frac{\Delta \mathbf{o}^T}{\alpha}$ can be viewed as a random estimator of $\mathbb{E}_{\mathbf{x}} [\mathbf{J}_f^T(\mathbf{x})]$, where $\mathbf{J}_f(\mathbf{x})$ is the Jacobian of f evaluated at \mathbf{x} , and \mathbf{M} can be viewed as approximating it with moving average. Therefore, we can similarly use a one-point method:

$$\mathbf{M}^k := \lambda \mathbf{M}^{k-1} + (1 - \lambda) \mathbf{z} \frac{\tilde{\mathbf{o}}^T}{\alpha}, \quad (6)$$

where $\mathbf{z} \frac{\tilde{\mathbf{o}}^T}{\alpha}$ is also an estimator of $\mathbb{E}_{\mathbf{x}} [\mathbf{J}_f^T(\mathbf{x})]$, with the same expectation as $\mathbf{z} \frac{\Delta \mathbf{o}^T}{\alpha}$ when α is given in practice. It is also an unbiased estimator of Jacobian of the smoothed version of f , not requiring f to be differentiable (see Appendix A.1 for details).

This leads to our method as shown in Fig. 1(e). During forward propagation, a random noise $\alpha \mathbf{z}$ is injected for each layer, and momentum feedback connections are updated based on \mathbf{z} and the

270 model output \mathbf{o} (information from pre- and post-synaptic neurons). Then errors are propagated
 271 through the connections to each layer. We consider node perturbation which is superior to weight
 272 perturbation¹ (Lillicrap et al., 2020), then it has a similar form as the popular DFA (Nøkland, 2016),
 273 while our feedback weight is not a random matrix but the estimated Jacobian (Fig. 1(c,e)).

274 Then we analyze some properties of momentum feedback connections. We assume that \mathbf{M} can
 275 converge to the estimated $\mathbb{E}_{\mathbf{x}} [\mathbf{J}_f^\top(\mathbf{x})]$ up to small errors ϵ^2 , and we focus on gradient estimation
 276 with $\mathbf{M} = \mathbb{E}_{\mathbf{x}} [\mathbf{J}_f^\top(\mathbf{x})] + \epsilon$. We show that it largely reduces the variance of the zeroth-order method
 277 (the proof and discussions are in Appendix A).

278 **Proposition 4.1.** *Let d denote the dimension of $\boldsymbol{\theta}$, m denote the dimension of \mathbf{o} ($m \ll d$), B denote
 279 the mini-batch size, $\beta = \text{Var}[z_i^2]$, $V_{\boldsymbol{\theta}} = \frac{1}{d} \sum_i \text{Var}[(\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{x}})_i]$, $S_{\boldsymbol{\theta}} = \frac{1}{d} \sum_i \mathbb{E}[(\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{x}})_i]^2$, $V_L =$
 280 $\text{Var}[\mathcal{L}_{\mathbf{x}}]$, $S_L = \mathbb{E}[\mathcal{L}_{\mathbf{x}}]^2$, $V_{\mathbf{o}} = \frac{1}{m} \sum_i \text{Var}[(\nabla_{\mathbf{o}} \mathcal{L}_{\mathbf{x}})_i]$, $S_{\mathbf{o}} = \frac{1}{m} \sum_i \mathbb{E}[(\nabla_{\mathbf{o}} \mathcal{L}_{\mathbf{x}})_i]^2$, where $\mathcal{L}_{\mathbf{x}}$ is the
 281 sample loss for input \mathbf{x} , and $\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{x}}$ and $\nabla_{\mathbf{o}} \mathcal{L}_{\mathbf{x}}$ are the sample gradient for $\boldsymbol{\theta}$ and \mathbf{o} , respectively. We
 282 further assume that the small error ϵ has i.i.d. components with zero mean and variance V_{ϵ} , and
 283 let $V_{\mathbf{o}, \mathbf{M}} = \frac{1}{d} \sum_{i,j} \text{Var}[(\nabla_{\mathbf{o}} \mathcal{L}_{\mathbf{x}})_j] (\mathbb{E}_{\mathbf{x}} [\mathbf{J}_f^\top(\mathbf{x})])_{i,j}$. Then the average variance of the single-point
 284 zeroth-order method is: $\frac{1}{B} ((d + \beta) V_{\boldsymbol{\theta}} + (d + \beta - 1) S_{\boldsymbol{\theta}} + \frac{1}{\alpha^2} V_L + \frac{1}{\alpha^2} S_L) + O(\alpha^2)$, while that of
 285 the pseudo-zeroth-order method is: $\frac{1}{B} (m V_{\epsilon} V_{\mathbf{o}} + m V_{\epsilon} S_{\mathbf{o}} + V_{\mathbf{o}, \mathbf{M}})$.*

286 *Remark 4.2.* $V_{\boldsymbol{\theta}}$ corresponds to the sample variance of spatial BP, and $V_{\mathbf{o}, \mathbf{M}}$ would be at a similar scale
 287 as $V_{\boldsymbol{\theta}}$ (see discussions in Appendix A). Since V_{ϵ} is expected to be very small, the results show that
 288 the zeroth-order estimation has at least d times larger variance than BP, while the pseudo-zeroth-order
 289 method can significantly reduce the variance, which is also verified in experiments.

290 Besides the variance, another question is that momentum connections would take the expectation of
 291 the Jacobian over data \mathbf{x} , which can introduce bias into the gradient estimation. This is due to the
 292 data-dependent non-linearity that leads to a data-dependent Jacobian, which can be a shared problem
 293 for direct error feedback methods without layer-by-layer spatial BP. Despite the bias, we show that
 294 under certain conditions, the estimated gradient can still provide a descent direction (the proof and
 295 discussions are in Appendix A).

296 **Proposition 4.3.** *Suppose that $\mathbf{J}_f^\top(\mathbf{x})$ is L_J -Lipschitz continuous and $\mathbf{e}(\mathbf{x})$ is L_e -Lipschitz con-
 297 tinuous, \mathbf{x}_i is uniformly distributed, when $\left\| \mathbb{E}_{\mathbf{x}_i} [\mathbf{J}_f^\top(\mathbf{x}_i) \mathbf{e}(\mathbf{x}_i)] \right\| > \frac{1}{2} L_J L_e \Delta_{\mathbf{x}} + e_{\epsilon}$, where $\Delta_{\mathbf{x}} =$
 298 $\mathbb{E}_{\mathbf{x}_i, \mathbf{x}_j} [\|\mathbf{x}_i - \mathbf{x}_j\|^2]$ and $e_{\epsilon} = \|\epsilon \mathbb{E}_{\mathbf{x}_i} [\mathbf{e}(\mathbf{x}_i)]\|$, we have $\left\langle \mathbb{E}_{\mathbf{x}_i} [\mathbf{J}_f^\top(\mathbf{x}_i) \mathbf{e}(\mathbf{x}_i)], \mathbb{E}_{\mathbf{x}_i} [\mathbf{M} \mathbf{e}(\mathbf{x}_i)] \right\rangle > 0$.*

299 Note that our analysis also holds for non-differentiable spiking neural networks. The single-point
 300 estimation is actually an unbiased estimator for the smoothed f_{α} with expectation over noise injection
 301 (Appendix A.1), where f can be non-differentiable. This is similar to the stochastic setting where
 302 spiking neurons can be differentiable and gradients can be defined (see Appendix B for details). By
 303 treating f in the analysis as f_{α} , the analysis is effective.

304 4.3 ONLINE PSEUDO-ZEROOTH-ORDER TRAINING

305 We build the above pseudo-zeroth-order approach on online training methods to deal with spatial and
 306 temporal credit assignments. As introduced in Section 3.1, we consider OTTT (Xiao et al., 2022)
 307 and replace its backpropagated instantaneous gradient with our estimated gradient based on direct
 308 top-down feedback. Then the update for synaptic weights has a similar form as the three-factor
 309 Hebbian learning (Frémaux & Gerstner, 2016), and the global modulator is a direct top-down signal
 310 without layer-by-layer BP:

$$311 \Delta W_{i,j} \propto \hat{a}_i[t] \psi(u_j[t]) (-g_j^t), \quad (7)$$

312 where $W_{i,j}$ is the weight from neuron i to j , $\hat{a}_i[t]$ is the presynaptic activity trace, $\psi(u_j[t])$ is a local
 313 surrogate derivative for the change rate of the postsynaptic activity (Xiao et al., 2022), and g_j^t is the

314 ¹For $\mathbf{x}^{l+1} = \phi(\mathbf{W}^l \mathbf{x}^l)$, node perturbation estimates gradients for \mathbf{x}^{l+1} and calculates gradients as $\nabla_{\mathbf{W}^l} \mathcal{L} =$
 315 $(\nabla_{\mathbf{x}^{l+1}} \mathcal{L} \odot \phi'(\mathbf{W}^l \mathbf{x}^l)) \mathbf{x}^{l+1}$, which has a smaller variance than directly estimating gradients for weights.

316 ²If the parameters of the model are fixed, \mathbf{M} is approximating a static matrix with projection to different
 317 directions, which can converge quickly. For the gradually evolving parameters, the expectation of the Jacobian
 318 over all samples may change slowly, and we can also expect \mathbf{M} to track this expectation at a slow time scale.

324 global top-down error (gradient) modulator. Here we leverage the local surrogate derivative because
 325 it can be well-defined under the stochastic setting (see Appendix B) and better fits the biological rule.
 326

327 For potentially asynchronous neuromorphic computing, there may be a delay in the propagation of
 328 error signals. Xiao et al. (2022) show that with convergent inputs and certain surrogate derivatives,
 329 the gradient is still theoretically effective under the delay Δt , i.e., the update is based on $\hat{a}_i[t + \Delta t]\psi(u_j[t + \Delta t])g_j^t$. Alternatively, more eligibility traces can be used to store the local information,
 330 e.g., $\hat{a}_i[t]\psi(u_j[t])$, and induce weight updates when the top-down signal arrives (Bellec et al., 2020).
 331 Our method shares these properties and we do not model delays in experiments for efficiency.
 332

333 Moreover, the direct error propagations to different layers as well as the update of feedback con-
 334 nections in our method can be parallel, which can better take advantage of parallel neuromorphic
 335 computing than layer-by-layer spatial BP.

336 4.4 ADDITIONAL DETAILS

337 **Combination with Local Learning** There can be both global and local signals for learning in
 338 biological systems, and local learning (LL) can improve global learning approximation methods (Ren
 339 et al., 2023). Our proposed method can be combined with LL as well. We consider introducing
 340 local readout layers, where a fully connected readout is added for each layer with supervised loss.
 341 Additionally, we can also introduce intermediate global learning (IGL) that propagates global signals
 342 from a middle layer to previous ones with OPZO. More details can be found in Appendix C.
 343

344 **About Noise Injection** By default, we sample \mathbf{z} from the Gaussian distribution. As sampling
 345 from the Gaussian distribution may pose computational requirements for hardware, we can also
 346 consider easier distributions such as the Rademacher distribution, which takes 1 and -1 both with the
 347 probability 0.5. Sampling from unit spheres is also feasible. Additionally, \mathbf{z} is by default added to the
 348 neural activities for gradient estimation based on node perturbation. To further prevent perturbation
 349 from interfering with sparse spike-driven forward propagation, we may empirically change the noise
 350 injection as perturbation before neurons (i.e., perturb on membrane potentials), while maintaining
 351 local surrogate derivatives for the spiking function. We will show in experiments that OPZO is robust
 352 to these noise injection settings. Additionally, we can leverage antithetic \mathbf{z} , i.e., \mathbf{z} and $-\mathbf{z}$, for every
 353 two time steps of SNNs to further reduce the variance. More details can be found in Appendix C.

354 5 EXPERIMENTS

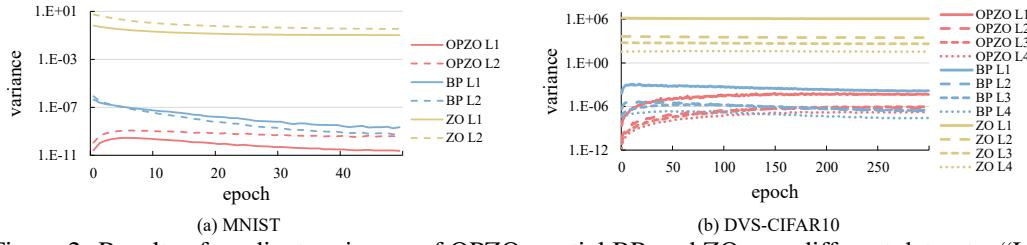
355 In this section, we conduct experiments on both neuromorphic and static datasets with fully connected
 356 (FC) and convolutional (Conv) neural networks to demonstrate the effectiveness of the proposed
 357 OPZO method. For N-MNIST and MNIST, we leverage FC networks with two hidden layers
 358 composed of 800 neurons, and for DVS-CIFAR10, DVS-Gesture, CIFAR-10, and CIFAR-100, we
 359 leverage 5-layer convolutional networks. We will also consider a deeper 9-layer convolutional
 360 network, as well as fine-tuning ResNet-34 on ImageNet under noise. We take $T = 30$ time steps for
 361 N-MNIST, $T = 20$ for DVS-Gesture, $T = 10$ for DVS-CIFAR10, and $T = 6$ time steps for static
 362 datasets, following previous works (Xiao et al., 2022; Zhang & Li, 2020). More training details can
 363 be found in Appendix C.

364 5.1 COMPARISON ON VARIOUS DATASETS

365 We first compare the proposed OPZO with other spatial credit assignment methods on various datasets
 366 in Table 1, and all methods are based on the online training method OTTT (Xiao et al., 2022) under
 367 the same settings. The compared methods include spatial BP, DFA (Nøkland, 2016), DKP (Webster
 368 et al., 2020) that learns feedback connections in DFA, single-point zeroth-order method, and the
 369 combination with local learning. We do not consider local learning settings for FC networks since
 370 there are only two hidden layers. As shown in the results, the ZO_{sp} method fails to effectively
 371 optimize neural networks, while OPZO significantly improves the results, achieving performance at a
 372 similar level as spatial BP. DFA with random feedback has a large gap with spatial BP, especially
 373 on convolutional networks, while OPZO can achieve much better results. DKP improves DFA
 374 on static datasets, but it performs poorly on neuromorphic datasets and has significant gaps with
 375 OPZO on all datasets. When combined with local learning, OPZO (w/ LL) has about the same
 376 performance as BP (w/ LL) and even outperforms BP (w/ LL) on neuromorphic datasets. These
 377 results demonstrate the effectiveness of OPZO for promising performance in a more biologically
 378 plausible and neuromorphic-friendly approach, paving paths for direct on-chip training of SNNs.

378
379 Table 1: Accuracy (%) of different spatial credit assignment methods with online training on various
380 datasets.

Method	N-MNIST	DVS-Gesture	DVS-CIFAR10	MNIST	CIFAR-10	CIFAR-100
BP (Xiao et al., 2022)	98.15 \pm 0.05	95.72 \pm 0.33	75.43 \pm 0.39	98.38\pm0.02	90.00\pm0.06	64.82 \pm 0.09
BP (w/ LL)	/	95.72 \pm 0.71	76.07 \pm 0.41	/	89.82 \pm 0.16	64.88\pm0.08
DFA (Nøkland, 2016)	97.98 \pm 0.03	91.67 \pm 0.75	60.60 \pm 0.67	98.05 \pm 0.04	79.90 \pm 0.15	49.50 \pm 0.13
DFA (w/ LL)	/	91.43 \pm 0.59	61.77 \pm 0.62	/	82.38 \pm 0.22	54.76 \pm 0.21
DKP (Webster et al., 2020)	97.87 \pm 0.05	60.53 \pm 7.82	37.70 \pm 1.21	98.15 \pm 0.03	81.84 \pm 0.96	53.27 \pm 0.34
ZO _{sp}	72.90 \pm 1.14	23.73 \pm 2.38	31.67 \pm 0.24	86.53 \pm 0.11	49.04 \pm 0.63	22.26 \pm 0.51
OPZO	98.27\pm0.04	94.33 \pm 0.16	72.77 \pm 0.82	98.34 \pm 0.10	85.74 \pm 0.15	60.93 \pm 0.16
OPZO (w/ LL)	/	96.06\pm0.33	77.47\pm0.12	/	89.42 \pm 0.16	64.77 \pm 0.16

398 Figure 2: Results of gradient variances of OPZO, spatial BP, and ZO_{sp} on different datasets. “Li”
399 denotes the i -th layer.400
401 Table 2: Accuracy (%) of OPZO on CIFAR-10
402 with different kinds of noise injection.

Distribution	Pert. after neuron	Pert. before neuron
Gaussian	85.73 \pm 0.15	84.37 \pm 0.13
Unit Sphere	86.01 \pm 0.28	84.50 \pm 0.13
Rademacher	85.69 \pm 0.17	84.03 \pm 0.23

400
401 Table 3: Accuracy (%) of different methods
402 with a deeper network.

Method	DVS-Gesture	CIFAR-100
Spatial BP	94.10 \pm 1.02	65.96 \pm 0.52
DFA (w/ LL)	93.40 \pm 0.49	52.94 \pm 0.20
DFA (w/ LL&IGL)	93.29 \pm 0.33	54.17 \pm 0.54
OPZO (w/ LL)	95.83 \pm 0.85	65.87 \pm 0.13
OPZO (w/ LL&IGL)	96.88\pm0.28	66.13\pm0.15

410 Note that our method is a different line from most recent works with state-of-the-art performance (Li
411 et al., 2023; Zhou et al., 2023; Guo et al., 2024; Yao et al., 2024), which are based on spatio-temporal
412 BP and focus on architecture or training objective improvement. We aim to develop alternatives to
413 BP, focusing on more biologically plausible and hardware-friendly training algorithms. So we mainly
414 compare different spatial credit assignment methods under the same settings.

415
416

5.2 GRADIENT VARIANCE

417 We analyze the gradient variance of different methods to verify that our method can effectively reduce
418 variance for effective training. As shown in Fig. 2, the variance of ZO_{sp} is several orders larger than
419 spatial BP, leading to the failure of effective training. OPZO can largely reduce the variance to have a
420 similar scale as BP, which is consistent with our theoretical analysis.

421
422

5.3 EFFECTIVENESS FOR DIFFERENT NOISE INJECTION

423 Then we verify the effectiveness of OPZO for different noise injection settings as introduced in
424 Section 4.4. As shown in Table 2, the results under different noise distributions and injection positions
425 are similar, demonstrating the robustness of OPZO for different settings.

426
427

5.4 DEEPER NETWORKS

428 We further consider deeper and larger networks. We first perform experiments with a deeper 9-layer
429 convolutional network. We leverage local learning and intermediate global learning (Section 4.4).
430 As shown in Table 3, OPZO can also achieve similar performance as or outperform spatial BP and
431 significantly outperform DFA combined with these techniques. We also analyze pure OPZO without
auxiliary techniques and its scalability to deeper networks with residual connections in Section D.5,

432 showing that pure OPZO has more reliance on the proper network structure (residual connections)
 433 than BP for depth scalability.

435
 436 Table 4: Accuracy (%) of different meth-
 437 ods for fine-tuning ResNet-34 on Image-
 438 Net under different noise scale (n.s.).
 439 “Test” refers to the direct test of the orig-
 440 inal model. “BP” refers to spatial BP.

ImageNet					
n.s.	Test	BP	DFA	ZO _{sp}	OPZO
0.1	61.13	63.91	61.20	52.42	63.39
0.15	54.01	62.13	54.59	30.32	60.96

Table 5: Estimation of training costs on potential neuro-morphic hardware for N -hidden-layer neural networks (n neurons for hidden layers, m neurons for the output, $m \ll n$). The costs focus on the error backward procedure. “*” denotes parallelizable for different layers.

Method	Memory	Operations
BP (if possible)	$O((N-1)n^2 + mn)$	$O((N-1)n^2 + mn)$
DFA*	$O(Nmn)$	$O(Nmn)$
ZO _{sp} *	$O(Nn)$	$O(Nn)$
OPZO*	$O(Nmn)$	$O(Nmn)$

447 We also conduct experiments for fine-tuning ResNet-34 on ImageNet under noise. This task is
 448 on the ground that there can be hardware mismatch, e.g., hardware noise, for deploying SNNs to
 449 neuromorphic hardware (Yang et al., 2022; Cramer et al., 2022), and we may expect direct on-chip
 450 fine-tuning to better deal with the problem. Our method is more plausible and efficient for on-chip
 451 learning than spatial BP and may be combined with other works aiming at high-performance training
 452 on common devices in this scenario. We fine-tune a pre-trained NF-ResNet-34 model released by
 453 Xiao et al. (2022) (original test accuracy 65.15%) under the noise injection setting with different
 454 scales. As shown in Table 4, OPZO can successfully fine-tune the model, while DFA and ZO_{sp} fail.
 455 Spatial BP is neuromorphic-unfriendly, so its results are only for reference. The results show that
 456 OPZO can scale to large-scale settings.

457 5.5 TRAINING COSTS AND FIRING SPARSITY

459 Finally, we analyze and compare the computational costs of different methods. We mainly consider
 460 the estimated costs on potential neuromorphic hardware, which is the target of SNNs. Since bio-
 461 logical systems leverage unidirectional local synapses, spatial BP (if assuming possible for weight
 462 transport and separate forward-backward stage) should maintain additional backward layer-by-layer
 463 connections for error backpropagation, leading to high memory and operation costs, as shown in
 464 Table 5. Differently, DFA and OPZO maintain direct top-down feedback with much smaller costs,
 465 which are also parallelizable for different layers. ZO_{sp} may have even lower costs by propagating only
 466 a scalar signal, but it is ineffective in practice. Also note that, different from previous zeroth-order
 467 methods that require multiple forward propagations, our method only needs one common forward
 468 propagation with noise injection and direct top-down feedback, keeping lower operation costs similar
 469 to DFA. We also provide training costs on GPU in Appendix D, and our method is comparable to
 470 spatial BP and DFA, since GPUs do not follow neuromorphic properties. It is interesting future work
 471 to consider applications to neuromorphic hardware that is still under development (Davies, 2021;
 472 Schuman et al., 2022).

473 We further study the firing rate and synaptic operations of the trained models in Appendix D.2,
 474 showing that models trained by OPZO combined with local learning achieve the lowest operations, i.e.,
 475 the most energy efficient. Additionally, we perform more analysis experiments of hyperparameters in
 476 Section D.4. Please refer to Appendix D for more details and results.

477 6 CONCLUSION

479 In this work, we propose the online pseudo-zeroth-order method for training spiking neural networks
 480 in a more biologically plausible and neuromorphic-hardware-friendly way, with low estimated costs
 481 and competitive performance compared with spatial BP. OPZO performs spatial credit assignment
 482 by a single forward propagation with noise injection and direct top-down feedback with momentum
 483 feedback connections, avoiding drawbacks of spatial BP, solving the large variance problem of zeroth-
 484 order methods, and significantly outperforming random feedback methods. With online training,
 485 OPZO has a similar form as three-factor Hebbian learning with direct top-down modulations, taking
 a step forward towards on-chip SNN training. Extensive experiments demonstrate the effectiveness

486 and robustness of OPZO for both fully connected and convolutional networks on neuromorphic and
 487 static datasets.
 488

489 **REFERENCES**
 490

491 Mohamed Akrout, Collin Wilson, Peter Humphreys, Timothy Lillicrap, and Douglas B Tweed. Deep
 492 learning without weight transport. In *Advances in Neural Information Processing Systems*, 2019.

493 Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo, Tapan
 494 Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al. A low power, fully
 495 event-based gesture recognition system. In *Proceedings of the IEEE Conference on Computer
 496 Vision and Pattern Recognition*, 2017.

497 Florian Bacho and Dominique Chu. Low-variance forward gradients using direct feedback alignment
 498 and momentum. *Neural Networks*, 169:572–583, 2024.

499 Attilim Güneş Baydin, Barak A Pearlmutter, Don Syme, Frank Wood, and Philip Torr. Gradients
 500 without backpropagation. *arXiv preprint arXiv:2202.08587*, 2022.

501 Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj, Robert Legenstein,
 502 and Wolfgang Maass. A solution to the learning dilemma for recurrent networks of spiking neurons.
 503 *Nature Communications*, 11(1):1–15, 2020.

504 Thomas Bohnstingl, Stanisław Woźniak, Angeliki Pantazi, and Evangelos Eleftheriou. Online spatio-
 505 temporal learning in deep neural networks. *IEEE Transactions on Neural Networks and Learning
 506 Systems*, 2022.

507 Andrew Brock, Soham De, and Samuel L Smith. Characterizing signal propagation to close the per-
 508 formance gap in unnormalized resnets. In *International Conference on Learning Representations*,
 509 2021.

510 Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Diffenderfer, Jiancheng Liu, Konstantinos
 511 Parasyris, Yihua Zhang, Zheng Zhang, Bhavya Kailkhura, and Sijia Liu. Deepzero: Scaling
 512 up zeroth-order optimization for deep model training. In *International Conference on Learning
 513 Representations*, 2024.

514 Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
 515 optimization based black-box attacks to deep neural networks without training substitute models.
 516 In *Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security*, pp. 15–26, 2017.

517 Benjamin Cramer, Sebastian Billaudelle, Simeon Kanya, Aron Leibfried, Andreas Grübl, Vitali
 518 Karasenko, Christian Pehle, Korbinian Schreiber, Yannik Stradmann, Johannes Weis, et al. Sur-
 519 rogate gradients for analog neuromorphic computing. *Proceedings of the National Academy of
 520 Sciences*, 119(4):e2109194119, 2022.

521 Francis Crick. The recent excitement about neural networks. *Nature*, 337(6203):129–132, 1989.

522 Mike Davies. Taking neuromorphic computing to the next level with loihi2. Technical report, Intel
 523 Labs’ Loihi, 2021.

524 Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
 525 Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
 526 manycore processor with on-chip learning. *IEEE Micro*, 38(1):82–99, 2018.

527 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 528 hierarchical image database. In *Proceedings of the IEEE Conference on Computer Vision and
 529 Pattern Recognition*, 2009.

530 Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to spiking
 531 neural networks. In *International Conference on Learning Representations*, 2021.

532 Shikuang Deng, Hao Lin, Yuhang Li, and Shi Gu. Surrogate module learning: reduce the gradient
 533 error accumulation in training spiking neural networks. In *International Conference on Machine
 534 Learning*, 2023.

540 Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
 541 with cutout. *arXiv preprint arXiv:1708.04552*, 2017.

542

543 John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for
 544 zero-order convex optimization: The power of two function evaluations. *IEEE Transactions on
 545 Information Theory*, 61(5):2788–2806, 2015.

546 Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian.
 547 Incorporating learnable membrane time constant to enhance learning of spiking neural networks.
 548 In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, 2021.

549

550 Ila R Fiete and H Sebastian Seung. Gradient learning in spiking neural networks by dynamic
 551 perturbation of conductances. *Physical Review Letters*, 97(4):048104, 2006.

552

553 Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex optimization
 554 in the bandit setting: gradient descent without a gradient. In *Proceedings of the sixteenth annual
 555 ACM-SIAM symposium on Discrete algorithms*, pp. 385–394, 2005.

556

557 Nicolas Frémaux and Wulfram Gerstner. Neuromodulated spike-timing-dependent plasticity, and
 558 theory of three-factor learning rules. *Frontiers in Neural Circuits*, 9:85, 2016.

559

560 Charlotte Frenkel, Martin Lefebvre, and David Bol. Learning without feedback: Fixed random
 561 learning signals allow for feedforward training of deep neural networks. *Frontiers in Neuroscience*,
 15:629892, 2021.

562

563 Tanmay Gautam, Youngsuk Park, Hao Zhou, Parameswaran Raman, and Wooseok Ha. Variance-
 564 reduced zeroth-order methods for fine-tuning language models. In *International Conference on
 565 Machine Learning*, 2024.

566

567 Jean-Bastien Grill, Michal Valko, and Rémi Munos. Black-box optimization of noisy functions with
 568 unknown smoothness. In *Advances in Neural Information Processing Systems*, 2015.

569

570 Yufei Guo, Yuanpei Chen, Zecheng Hao, Weihang Peng, Zhou Jie, Yuhan Zhang, Xiaode Liu, and
 571 Zhe Ma. Take a shortcut back: Mitigating the gradient vanishing for training spiking neural
 572 networks. In *Advances in Neural Information Processing Systems*, 2024.

573

574 Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. *arXiv preprint
 575 arXiv:2212.13345*, 2022.

576

577 Jinyang Jiang, Zeliang Zhang, Chenliang Xu, Zhaofei Yu, and Yijie Peng. One forward is enough
 578 for neural network training via likelihood ratio method. In *International Conference on Learning
 579 Representations*, 2024.

580

581 Adrien Journé, Hector Garcia Rodriguez, Qinghai Guo, and Timoleon Moraitis. Hebbian deep
 582 learning without feedback. In *International Conference on Learning Representations*, 2023.

583

584 Jacques Kaiser, Hesham Mostafa, and Emre Neftci. Synaptic plasticity dynamics for deep continuous
 585 local learning (decolle). *Frontiers in Neuroscience*, 14:424, 2020.

586

587 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
 588 Technical report, University of Toronto, 2009.

589

590 Julien Launay, Iacopo Poli, François Boniface, and Florent Krzakala. Direct feedback alignment
 591 scales to modern deep learning tasks and architectures. In *Advances in Neural Information
 592 Processing Systems*, 2020.

593

594 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 595 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

596

597 Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation.
 598 In *Proceedings of the European Conference on Machine Learning and Knowledge Discovery in
 599 Databases*, 2015.

594 Jeongjun Lee, Renqian Zhang, Wenrui Zhang, Yu Liu, and Peng Li. Spike-train level direct feedback
 595 alignment: sidestepping backpropagation for on-chip training of spiking neural nets. *Frontiers in*
 596 *Neuroscience*, 14:143, 2020.

597 Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream
 598 dataset for object classification. *Frontiers in Neuroscience*, 11:309, 2017.

600 Jia Li, Mingqing Xiao, Cong Fang, Yue Dai, Chao Xu, and Zhouchen Lin. Training neural networks
 601 by lifted proximal operator machines. *IEEE Transactions on Pattern Analysis and Machine*
 602 *Intelligence*, 44(6):3334–3348, 2020.

603 Yuhang Li, Yufei Guo, Shanghang Zhang, Shikuang Deng, Yongqing Hai, and Shi Gu. Differentiable
 604 spike: Rethinking gradient-descent for training spiking neural networks. In *Advances in Neural*
 605 *Information Processing Systems*, 2021.

606 Yuhang Li, Tamar Geller, Youngeun Kim, and Priyadarshini Panda. Seenn: Towards temporal spiking
 607 early exit neural networks. In *Advances in Neural Information Processing Systems*, 2023.

609 Qianli Liao, Joel Leibo, and Tomaso Poggio. How important is weight symmetry in backpropagation?
 610 In *Proceedings of the AAAI Conference on Artificial Intelligence*, 2016.

612 Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic
 613 feedback weights support error backpropagation for deep learning. *Nature Communications*, 7(1):
 614 1–10, 2016.

615 Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J Akerman, and Geoffrey Hinton. Backprop-
 616 agation and the brain. *Nature Reviews Neuroscience*, 21(6):335–346, 2020.

617 Changze Lv, Dongqi Han, Yansen Wang, Xiaoqing Zheng, Xuanjing Huang, and Dongsheng Li.
 618 Advancing spiking neural networks for sequential modeling with central pattern generators. In
 619 *Advances in Neural Information Processing Systems*, 2024.

621 Gehua Ma, Rui Yan, and Huajin Tang. Exploiting noise as a resource for computation and learning in
 622 spiking neural networks. *Patterns*, 4(10):100831, 2023.

623 Wolfgang Maass. Noise as a resource for computation and learning in networks of spiking neurons.
 624 *Proceedings of the IEEE*, 102(5):860–880, 2014.

626 Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
 627 Arora. Fine-tuning language models with just forward passes. In *Advances in Neural Information*
 628 *Processing Systems*, 2023.

629 Erwann Martin, Maxence Ernoult, Jérémie Laydevant, Shuai Li, Damien Querlioz, Teodora Petrisor,
 630 and Julie Grollier. Eqspike: spike-driven equilibrium propagation for neuromorphic implemen-
 631 tations. *Iscience*, 24(3):102222, 2021.

632 Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Training
 633 high-performance low-latency spiking neural networks by differentiation on spike representation.
 634 In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2022a.

636 Qingyan Meng, Shen Yan, Mingqing Xiao, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Training
 637 much deeper spiking neural networks with a small number of time-steps. *Neural Networks*, 153:
 638 254–268, 2022b.

639 Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Towards
 640 memory-and time-efficient backpropagation for training spiking neural networks. In *Proceedings*
 641 *of the IEEE/CVF International Conference on Computer Vision (ICCV)*, 2023.

642 Bhaskar Mukhoty, Velibor Bojkovic, William de Vazelhes, Xiaohan Zhao, Giulia De Masi, Huan
 643 Xiong, and Bin Gu. Direct training of snn using local zeroth order method. In *Advances in Neural*
 644 *Information Processing Systems*, 2023.

646 Emre O Neftci, Charles Augustine, Somnath Paul, and Georgios Detorakis. Event-driven random
 647 back-propagation: Enabling neuromorphic deep learning machines. *Frontiers in Neuroscience*, 11:
 324, 2017.

648 Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
 649 neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
 650 *IEEE Signal Processing Magazine*, 36(6):51–63, 2019.

651

652 Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
 653 *Foundations of Computational Mathematics*, 17(2):527–566, 2017.

654 Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. In *Advances in*
 655 *Neural Information Processing Systems*, 2016.

656

657 Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static image
 658 datasets to spiking neuromorphic datasets using saccades. *Frontiers in Neuroscience*, 9:437, 2015.

659

660 Alexander Ororbia. Learning spiking neural systems with the event-driven forward-forward process.
 661 *arXiv preprint arXiv:2303.18187*, 2023.

662

663 Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe
 664 Zou, Zhenzhi Wu, Wei He, et al. Towards artificial general intelligence with hybrid Tianjic chip
 665 architecture. *Nature*, 572(7767):106–111, 2019.

666

667 Arjun Rao, Philipp Plank, Andreas Wild, and Wolfgang Maass. A long short-term memory for ai
 668 applications in spike-based neuromorphic hardware. *Nature Machine Intelligence*, 4(5):467–479,
 2022.

669

670 Mengye Ren, Simon Kornblith, Renjie Liao, and Geoffrey Hinton. Scaling forward gradient with
 671 local losses. In *International Conference on Learning Representations*, 2023.

672

673 Pieter R Roelfsema and Anthony Holtmaat. Control of synaptic plasticity in deep cortical networks.
 674 *Nature Reviews Neuroscience*, 19(3):166–180, 2018.

675

676 Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
 677 with neuromorphic computing. *Nature*, 575(7784):607–617, 2019.

678

679 Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Conver-
 680 sion of continuous-valued deep networks to efficient event-driven networks for image classification.
 681 *Frontiers in Neuroscience*, 11:682, 2017.

682

683 Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
 684 scalable alternative to reinforcement learning. *arXiv preprint arXiv:1703.03864*, 2017.

685

686 Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between energy-
 687 based models and backpropagation. *Frontiers in Computational Neuroscience*, 11:24, 2017.

688

689 Catherine D Schuman, Shruti R Kulkarni, Maryam Parsa, J Parker Mitchell, Prasanna Date, and Bill
 690 Kay. Opportunities for neuromorphic computing algorithms and applications. *Nature Compu-
 691 tational Science*, 2(1):10–19, 2022.

692

693 H Sebastian Seung. Learning in spiking neural networks by reinforcement of stochastic synaptic
 694 transmission. *Neuron*, 40(6):1063–1073, 2003.

695

696 Alexander Shekhovtsov and Viktor Yanush. Reintroducing straight-through estimators as principled
 697 methods for stochastic binary networks. In *DAGM German Conference on Pattern Recognition*,
 2021.

698

699 Sumit Bam Shrestha and Garrick Orchard. Slayer: spike layer error reassignment in time. In *Advances*
 700 *in Neural Information Processing Systems*, 2018.

701

702 David Silver, Anirudh Goyal, Ivo Danihelka, Matteo Hessel, and Hado van Hasselt. Learning by
 703 directional gradient descent. In *International Conference on Learning Representations*, 2022.

704

705 James C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
 706 approximation. *IEEE Transactions on Automatic Control*, 37(3):332–341, 1992.

702 Christoph Stöckl and Wolfgang Maass. Optimized spiking neurons can classify images with high
 703 accuracy through temporal coding with two spikes. *Nature Machine Intelligence*, 3(3):230–238,
 704 2021.

705 Matthew Bailey Webster, Jonghyun Choi, et al. Learning the connections in direct feedback alignment.
 706 2020.

708 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
 709 learning. *Machine Learning*, 8:229–256, 1992.

710 Stanisław Woźniak, Angeliki Pantazi, Thomas Bohnstingl, and Evangelos Eleftheriou. Deep learning
 711 incorporating biologically inspired neural dynamics and in-memory computing. *Nature Machine
 712 Intelligence*, 2(6):325–336, 2020.

713 Jibin Wu, Yansong Chua, Malu Zhang, Guoqi Li, Haizhou Li, and Kay Chen Tan. A tandem learning
 714 rule for effective training and rapid inference of deep spiking neural networks. *IEEE Transactions
 715 on Neural Networks and Learning Systems*, 2021.

716 Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
 717 training high-performance spiking neural networks. *Frontiers in Neuroscience*, 12:331, 2018.

718 Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Yisen Wang, and Zhouchen Lin. Training feedback
 719 spiking neural networks by implicit differentiation on the equilibrium state. In *Advances in Neural
 720 Information Processing Systems*, 2021.

721 Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Online training through
 722 time for spiking neural networks. In *Advances in Neural Information Processing Systems*, 2022.

723 Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Yisen Wang, and Zhouchen Lin. Spide: A purely
 724 spike-based method for training feedback spiking neural networks. *Neural Networks*, 161:9–24,
 725 2023.

726 Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Forward gradient
 727 training of spiking neural networks, 2024a. URL <https://openreview.net/forum?id=yBP36xQhZ1>.

728 Mingqing Xiao, Yixin Zhu, Di He, and Zhouchen Lin. Temporal spiking neural networks with
 729 synaptic delay for graph reasoning. In *International Conference on Machine Learning*, 2024b.

730 Will Xiao, Honglin Chen, Qianli Liao, and Tomaso Poggio. Biologically-plausible learning algorithms
 731 can scale to large datasets. In *International Conference on Learning Representations*, 2018.

732 Xingrun Xing, Boyan Gao, Zheng Zhang, David A Clifton, Shitao Xiao, Li Du, Guoqi Li, and Jiajun
 733 Zhang. Spikellm: Scaling up spiking neural network to large language models via saliency-based
 734 spiking. In *International Conference on Learning Representations*, 2025.

735 Qu Yang, Jibin Wu, Malu Zhang, Yansong Chua, Xinchao Wang, and Haizhou Li. Training spiking
 736 neural networks with local tandem learning. In *Advances in Neural Information Processing
 737 Systems*, 2022.

738 Man Yao, JiaKui Hu, Tianxiang Hu, Yifan Xu, Zhaokun Zhou, Yonghong Tian, XU Bo, and Guoqi
 739 Li. Spike-driven transformer v2: Meta spiking neural network architecture inspiring the design of
 740 next-generation neuromorphic chips. In *International Conference on Learning Representations*,
 741 2024.

742 Bojian Yin, Federico Corradi, and Sander M Bohté. Accurate online training of dynamical spiking
 743 neural networks through forward propagation through time. *Nature Machine Intelligence*, pp. 1–10,
 744 2023.

745 Pengyun Yue, Long Yang, Cong Fang, and Zhouchen Lin. Zeroth-order optimization with weak
 746 dimension dependency. In *Conference on Learning Theory*, 2023.

747 Wenrui Zhang and Peng Li. Temporal spike sequence learning via backpropagation for deep spiking
 748 neural networks. In *Advances in Neural Information Processing Systems*, 2020.

756 Shibo Zhou, Xiaohua Li, Ying Chen, Sanjeev T Chandrasekaran, and Arindam Sanyal. Temporal-
757 coded deep spiking neural network with easy training and robust performance. In *Proceedings of*
758 *the AAAI Conference on Artificial Intelligence*, 2021.

759
760 Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, YAN Shuicheng, Yonghong Tian, and
761 Li Yuan. Spikformer: When spiking neural network meets transformer. In *International Conference*
762 *on Learning Representations*, 2023.

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A DETAILED EXPLANATIONS AND PROOFS 811

812 In this section, we provide more explanations and proofs for propositions in the main text.
813

814 A.1 EXPLANATION OF THE SMOOTHED FUNCTION 815

816 For the neural network function f with node perturbation given scale α , the smoothed version of f
817 is defined as $f_\alpha(\cdot; \theta) = \mathbb{E}_{\mathbf{z}}[\hat{f}(\cdot; \theta, \alpha\mathbf{z})]$, where \hat{f} refers to injecting noise $\alpha\mathbf{z}$ for node perturbation.
818 Similar to Flaxman et al. (2005), by extending the gradient to the Jacobian, we can show that the
819 one-point formulation of $\mathbf{z} \frac{\partial^\top}{\partial \alpha}$ is an unbiased estimator of the Jacobian of f_α .
820

821 **Lemma A.1.** *When \mathbf{z} is uniformly sampled from the unit sphere, $\mathbf{z} \frac{\partial^\top}{\partial \alpha}$ is an unbiased estimator of
822 $\mathbf{J}_{f_\alpha}^\top(\mathbf{x})$ given \mathbf{x} , and further, are unbiased estimators of $\mathbb{E}_{\mathbf{x}}[\mathbf{J}_{f_\alpha}^\top(\mathbf{x})]$.
823*

824 A.2 PROOF OF PROPOSITION 4.1 825

826 *Proof.* We first consider the average variance of the two-point ZO estimation $\nabla_{\theta}^{ZO} \mathcal{L} = \mathbf{z} \mathbf{z}^\top \nabla_{\theta} \mathcal{L} + O(\alpha)$. Since $\text{Var}(xy) = \text{Var}(x)\text{Var}(y) + \text{Var}(x)\mathbb{E}(y)^2 + \text{Var}(y)\mathbb{E}(x)^2$ for independent x and y ,
827 and $\mathbb{E}[z_i^2] = \text{Var}[z_i] + \mathbb{E}[z_i]^2 = 1$, for each element of the gradient under sample \mathbf{x} , we have:
828

$$\begin{aligned}
 & \text{Var}[(\nabla_{\theta}^{ZO} \mathcal{L}_{\mathbf{x}})_i] \\
 &= \text{Var}\left[\sum_{j=1}^d z_i z_j (\nabla_{\theta} \mathcal{L}_{\mathbf{x}})_j\right] + O(\alpha^2) \\
 &= \text{Var}[z_i^2 (\nabla_{\theta} \mathcal{L}_{\mathbf{x}})_i] + \sum_{j \neq i} \text{Var}[z_i z_j (\nabla_{\theta} \mathcal{L}_{\mathbf{x}})_j] + O(\alpha^2) \\
 &= \text{Var}[z_i^2] \text{Var}[(\nabla_{\theta} \mathcal{L}_{\mathbf{x}})_i] + \text{Var}[z_i^2] \mathbb{E}[(\nabla_{\theta} \mathcal{L}_{\mathbf{x}})_i]^2 + \text{Var}[(\nabla_{\theta} \mathcal{L}_{\mathbf{x}})_i] \mathbb{E}[z_i^2]^2 \\
 &\quad + \sum_{j \neq i} \left(\text{Var}[z_i z_j] \text{Var}[(\nabla_{\theta} \mathcal{L}_{\mathbf{x}})_j] + \text{Var}[z_i z_j] \mathbb{E}[(\nabla_{\theta} \mathcal{L}_{\mathbf{x}})_j]^2 + \text{Var}[(\nabla_{\theta} \mathcal{L}_{\mathbf{x}})_j] \mathbb{E}[z_i z_j]^2 \right) + O(\alpha^2) \\
 &= (\beta + 1) \text{Var}[(\nabla_{\theta} \mathcal{L}_{\mathbf{x}})_i] + \beta \mathbb{E}[(\nabla_{\theta} \mathcal{L}_{\mathbf{x}})_i]^2 + \sum_{j \neq i} \left(\text{Var}[(\nabla_{\theta} \mathcal{L}_{\mathbf{x}})_j] + \mathbb{E}[(\nabla_{\theta} \mathcal{L}_{\mathbf{x}})_j]^2 \right) + O(\alpha^2) \\
 &= \beta \text{Var}[(\nabla_{\theta} \mathcal{L}_{\mathbf{x}})_i] + (\beta - 1) \mathbb{E}[(\nabla_{\theta} \mathcal{L}_{\mathbf{x}})_i]^2 + \sum_{j=1}^d \left(\text{Var}[(\nabla_{\theta} \mathcal{L}_{\mathbf{x}})_j] + \mathbb{E}[(\nabla_{\theta} \mathcal{L}_{\mathbf{x}})_j]^2 \right) + O(\alpha^2).
 \end{aligned} \tag{8}$$

829 Taking the average of all elements, we obtain the average variance for each sample (denoted as
830 mVar):
831

$$\begin{aligned}
 & \text{mVar}[\nabla_{\theta}^{ZO} \mathcal{L}_{\mathbf{x}}] \\
 &= \frac{1}{d} \sum_{i=1}^d \text{Var}[(\nabla_{\theta}^{ZO} \mathcal{L}_{\mathbf{x}})_i] \\
 &= \frac{\beta}{d} \sum_{i=1}^d \text{Var}[(\nabla_{\theta} \mathcal{L}_{\mathbf{x}})_i] + \frac{\beta - 1}{d} \sum_{i=1}^d \mathbb{E}[(\nabla_{\theta} \mathcal{L}_{\mathbf{x}})_i]^2 + \sum_{j=1}^d \left(\text{Var}[(\nabla_{\theta} \mathcal{L}_{\mathbf{x}})_j] + \mathbb{E}[(\nabla_{\theta} \mathcal{L}_{\mathbf{x}})_j]^2 \right) + O(\alpha^2) \\
 &= (d + \beta) V_{\theta} + (d + \beta - 1) S_{\theta} + O(\alpha^2).
 \end{aligned} \tag{9}$$

863 For gradient calculation with batch size B , the sample variance can be reduced by B times, resulting
864 in the average variance $\frac{1}{B} ((d + \beta) V_{\theta} + (d + \beta - 1) S_{\theta}) + O(\alpha^2)$.
865

864 Then we can derive the average variance of the single-point ZO estimation $\nabla_{\theta}^{ZO_{sp}} \mathcal{L} = \nabla_{\theta}^{ZO} \mathcal{L} + \frac{\mathcal{L}_{\mathbf{x}}}{\alpha} \mathbf{z}$
 865 for each sample:
 866

$$\begin{aligned}
 867 \text{mVar} & \left[\nabla_{\theta}^{ZO_{sp}} \mathcal{L}_{\mathbf{x}} \right] \\
 868 & = \text{mVar} \left[\nabla_{\theta}^{ZO} \mathcal{L}_{\mathbf{x}} \right] + \text{mVar} \left[\frac{\mathcal{L}_{\mathbf{x}}}{\alpha} \mathbf{z} \right] \\
 869 & = (d + \beta) V_{\theta} + (d + \beta - 1) S_{\theta} + O(\alpha^2) + \frac{1}{\alpha^2} \left(\text{Var} [\mathcal{L}_{\mathbf{x}}] \text{Var} [z_i] + \text{Var} [\mathcal{L}_{\mathbf{x}}] \mathbb{E} [z_i]^2 + \text{Var} [z_i] \mathbb{E} [\mathcal{L}_{\mathbf{x}}]^2 \right) \\
 870 & = (d + \beta) V_{\theta} + (d + \beta - 1) S_{\theta} + \frac{1}{\alpha^2} V_L + \frac{1}{\alpha^2} S_L + O(\alpha^2).
 \end{aligned} \tag{10}$$

871 For batch size B , the average variance is $\frac{1}{B} ((d + \beta) V_{\theta} + (d + \beta - 1) S_{\theta} + \frac{1}{\alpha^2} V_L + \frac{1}{\alpha^2} S_L) + O(\alpha^2)$.
 872

873 Next, we turn to the average variance of the pseudo-zeroth-order method $\nabla_{\theta}^{PZO} \mathcal{L} = \mathbf{M} \nabla_{\mathbf{o}} \mathcal{L}_{\mathbf{x}} =$
 874 $(\mathbb{E}_{\mathbf{x}} [\mathbf{J}_f^{\top}(\mathbf{x})]) + \epsilon \nabla_{\mathbf{o}} \mathcal{L}_{\mathbf{x}}$. For each element, we have:
 875

$$\begin{aligned}
 876 \text{Var} & \left[(\nabla_{\theta}^{PZO} \mathcal{L}_{\mathbf{x}})_i \right] \\
 877 & = \text{Var} \left[\sum_{j=1}^m (\mathbb{E}_{\mathbf{x}} [\mathbf{J}_f^{\top}(\mathbf{x})])_{i,j} (\nabla_{\mathbf{o}} \mathcal{L}_{\mathbf{x}})_j \right] + \text{Var} \left[\sum_{j=1}^m \epsilon_{i,j} (\nabla_{\mathbf{o}} \mathcal{L}_{\mathbf{x}})_j \right] \\
 878 & = \sum_{j=1}^m (\mathbb{E}_{\mathbf{x}} [\mathbf{J}_f^{\top}(\mathbf{x})])_{i,j} \text{Var} \left[(\nabla_{\mathbf{o}} \mathcal{L}_{\mathbf{x}})_j \right] + \sum_{j=1}^m \left(V_{\epsilon} \text{Var} \left[(\nabla_{\mathbf{o}} \mathcal{L}_{\mathbf{x}})_j \right] + V_{\epsilon} \mathbb{E} \left[(\nabla_{\mathbf{o}} \mathcal{L}_{\mathbf{x}})_j \right]^2 \right).
 \end{aligned} \tag{11}$$

894 Taking the average of all elements, we have the average variance for each sample:
 895

$$\begin{aligned}
 896 \text{mVar} & \left[\nabla_{\theta}^{PZO} \mathcal{L}_{\mathbf{x}} \right] \\
 897 & = \frac{1}{d} \sum_{i=1}^d \sum_{j=1}^m (\mathbb{E}_{\mathbf{x}} [\mathbf{J}_f^{\top}(\mathbf{x})])_{i,j} \text{Var} \left[(\nabla_{\mathbf{o}} \mathcal{L}_{\mathbf{x}})_j \right] + \sum_{j=1}^m \left(V_{\epsilon} \text{Var} \left[(\nabla_{\mathbf{o}} \mathcal{L}_{\mathbf{x}})_j \right] + V_{\epsilon} \mathbb{E} \left[(\nabla_{\mathbf{o}} \mathcal{L}_{\mathbf{x}})_j \right]^2 \right) \\
 898 & = m V_{\epsilon} V_{\mathbf{o}} + m V_{\epsilon} S_{\mathbf{o}} + V_{\mathbf{o}, \mathbf{M}}.
 \end{aligned} \tag{12}$$

900 Then for batch size B , the average variance is $\frac{1}{B} (m V_{\epsilon} V_{\mathbf{o}} + m V_{\epsilon} S_{\mathbf{o}} + V_{\mathbf{o}, \mathbf{M}})$. \square
 901

902 *Remark A.2.* $\beta = \text{Var} [z_i^2] = \mathbb{E}(z_i^4) - \mathbb{E}(z_i^2)^2 = \mathbb{E}(z_i^4) - 1$ depends on the distribution of z_i . For the
 903 Gaussian distribution, $\mathbb{E}(z_i^4) = 3$ and therefore $\beta = 2$. For the Rademacher distribution, $\mathbb{E}(z_i^4) = 1$
 904 and therefore $\beta = 0$.

905 *Remark A.3.* The zero mean assumption on the small error ϵ is reasonable, when we actually consider
 906 f_{α} and $\mathbf{z} \frac{\tilde{\mathbf{o}}^{\top}}{\alpha}$ is an unbiased estimator for $\mathbb{E}_{\mathbf{x}} [\mathbf{J}_{f_{\alpha}}^{\top}(\mathbf{x})]$ (Lemma A.1), so the expectation of the error
 907 can be expected to be zero.

908 *Remark A.4.* V_{θ} and $V_{\mathbf{o}, \mathbf{M}}$ may not be directly compared considering the complex network function,
 909 but we may make a brief analysis under some simplifications. For $(\nabla_{\theta} \mathcal{L}_{\mathbf{x}})_i = (\mathbf{J}_f^{\top}(\mathbf{x}) \nabla_{\mathbf{o}} \mathcal{L}_{\mathbf{x}})_i$, let

918 $\mathbf{J}_{i,j}$ and ∇_j denote $(\mathbf{J}_f^\top(\mathbf{x}))_{i,j}$ and $(\nabla_{\mathbf{o}}\mathcal{L}_{\mathbf{x}})_j$ for short, we have
 919
 920

$$\begin{aligned} 921 \quad \text{Var}[(\nabla_{\boldsymbol{\theta}}\mathcal{L}_{\mathbf{x}})_i] &= \text{Var}\left[\sum_{j=1}^m \mathbf{J}_{i,j} \nabla_j\right] = \sum_j \text{Var}[\mathbf{J}_{i,j} \nabla_j] + \sum_{j_1, j_2} \text{Cov}[\mathbf{J}_{i,j_1} \nabla_{j_1}, \mathbf{J}_{i,j_2} \nabla_{j_2}] \\ 922 \quad &= \sum_j \left[\text{Var}[\nabla_j] \mathbb{E}[\mathbf{J}_{i,j}^2] + \text{Var}[\mathbf{J}_{i,j}] \mathbb{E}[\nabla_j]^2 + 2\text{Cov}[\mathbf{J}_{i,j}, \nabla_j] \mathbb{E}[\mathbf{J}_{i,j}] \mathbb{E}[\nabla_j] \right] + \sum_{j_1, j_2} \text{Cov}[\mathbf{J}_{i,j_1} \nabla_{j_1}, \mathbf{J}_{i,j_2} \nabla_{j_2}] . \end{aligned} \quad (13)$$

923
 924 If we ignore covariance terms and assume $\mathbb{E}[\nabla_j] = 0$, this is simplified to $\sum_j \text{Var}[\nabla_j] \mathbb{E}[\mathbf{J}_{i,j}^2]$,
 925 and then $V_{\boldsymbol{\theta}}$ is approximated as $\frac{1}{d} \sum_{i,j} \text{Var}[\nabla_j] \mathbb{E}[\mathbf{J}_{i,j}^2]$, which has a similar form as $V_{\mathbf{o}, \mathbf{M}} =$
 926 $\frac{1}{d} \sum_{i,j} \text{Var}[(\nabla_{\mathbf{o}}\mathcal{L}_{\mathbf{x}})_j] (\mathbb{E}_{\mathbf{x}}[\mathbf{J}_f^\top(\mathbf{x})])_{i,j}$ except that the second moment is considered. Under this
 927 condition, the scales of $V_{\mathbf{o}, \mathbf{M}}$ and $V_{\boldsymbol{\theta}}$ may slightly differ considering the scale of elements of $\mathbf{J}_f^\top(\mathbf{x})$,
 928 but overall, $V_{\mathbf{o}, \mathbf{M}}$ would be at a similar scale as $V_{\boldsymbol{\theta}}$ compared with the variances of the zeroth-order
 929 methods that are at least d times larger which is proportional to the number of intermediate neurons.
 930
 931

A.3 PROOF OF PROPOSITION 4.3

932
 933 *Proof.* Since $\mathbf{J}_f^\top(\mathbf{x})$ is L_J -Lipschitz continuous and $\mathbf{e}(\mathbf{x})$ is L_e -Lipschitz continuous, we have
 934 $\|\mathbf{J}_f^\top(\mathbf{x}_i) - \mathbf{J}_f^\top(\mathbf{x}_j)\| \leq L_J \|\mathbf{x}_i - \mathbf{x}_j\|$, $\|\mathbf{e}(\mathbf{x}_i) - \mathbf{e}(\mathbf{x}_j)\| \leq L_e \|\mathbf{x}_i - \mathbf{x}_j\|$. Then with the equation
 935 that $\frac{1}{2n^2} \sum_{i,j} (a_i - a_j)(b_i - b_j) = \frac{1}{n} \sum_i a_i b_i - \frac{1}{n^2} \sum_{i,j} a_i b_j$, we have
 936

$$\begin{aligned} 937 \quad & \left\| \mathbb{E}_{\mathbf{x}_i} [\mathbf{J}_f^\top(\mathbf{x}_i) \mathbf{e}(\mathbf{x}_i)] - \mathbb{E}_{\mathbf{x}_i} [(\mathbb{E}_{\mathbf{x}_j} [\mathbf{J}_f^\top(\mathbf{x}_j)] + \epsilon) \mathbf{e}(\mathbf{x}_i)] \right\| \\ 938 \quad &= \left\| \frac{1}{n} \sum_{\mathbf{x}_i} \widetilde{\mathbf{J}_f}(\mathbf{x}_i) \mathbf{e}(\mathbf{x}_i) - \left(\frac{1}{n} \sum_{\mathbf{x}_i} \widetilde{\mathbf{J}_f}(\mathbf{x}_i) \right) \left(\frac{1}{n} \sum_{\mathbf{x}_i} \mathbf{e}(\mathbf{x}_i) \right) - \epsilon \mathbb{E}_{\mathbf{x}_i} [\mathbf{e}(\mathbf{x}_i)] \right\| \\ 939 \quad &= \left\| \frac{1}{2n^2} \sum_{\mathbf{x}_i, \mathbf{x}_j} (\widetilde{\mathbf{J}_f}(\mathbf{x}_i) - \widetilde{\mathbf{J}_f}(\mathbf{x}_j)) (\mathbf{e}(\mathbf{x}_i) - \mathbf{e}(\mathbf{x}_j)) - \epsilon \mathbb{E}_{\mathbf{x}_i} [\mathbf{e}(\mathbf{x}_i)] \right\| \\ 940 \quad &\leq \frac{1}{2n^2} \sum_{\mathbf{x}_i, \mathbf{x}_j} \|(\widetilde{\mathbf{J}_f}(\mathbf{x}_i) - \widetilde{\mathbf{J}_f}(\mathbf{x}_j))\| \|(\mathbf{e}(\mathbf{x}_i) - \mathbf{e}(\mathbf{x}_j))\| + \|\epsilon \mathbb{E}_{\mathbf{x}_i} [\mathbf{e}(\mathbf{x}_i)]\| \\ 941 \quad &\leq \frac{1}{2n^2} \sum_{\mathbf{x}_i, \mathbf{x}_j} L_J L_e \|\mathbf{x}_i - \mathbf{x}_j\|^2 + \|\epsilon \mathbb{E}_{\mathbf{x}_i} [\mathbf{e}(\mathbf{x}_i)]\| \\ 942 \quad &= \frac{1}{2} L_J L_e \Delta_{\mathbf{x}} + e_{\epsilon} \\ 943 \quad &< \|\mathbb{E}_{\mathbf{x}_i} [\mathbf{J}_f^\top(\mathbf{x}_i) \mathbf{e}(\mathbf{x}_i)]\|. \end{aligned} \quad (14)$$

944 Therefore,

$$\begin{aligned} 945 \quad & \langle \mathbb{E}_{\mathbf{x}_i} [\mathbf{J}_f^\top(\mathbf{x}_i) \mathbf{e}(\mathbf{x}_i)], \mathbb{E}_{\mathbf{x}_i} [\mathbf{M} \mathbf{e}(\mathbf{x}_i)] \rangle \\ 946 \quad &= \|\mathbb{E}_{\mathbf{x}_i} [\mathbf{J}_f^\top(\mathbf{x}_i) \mathbf{e}(\mathbf{x}_i)]\|^2 - \langle \mathbb{E}_{\mathbf{x}_i} [\mathbf{J}_f^\top(\mathbf{x}_i) \mathbf{e}(\mathbf{x}_i)], \mathbb{E}_{\mathbf{x}_i} [\mathbf{J}_f^\top(\mathbf{x}_i) \mathbf{e}(\mathbf{x}_i)] - \mathbb{E}_{\mathbf{x}_i} [\mathbf{M} \mathbf{e}(\mathbf{x}_i)] \rangle \\ 947 \quad &\geq \|\mathbb{E}_{\mathbf{x}_i} [\mathbf{J}_f^\top(\mathbf{x}_i) \mathbf{e}(\mathbf{x}_i)]\|^2 - \|\mathbb{E}_{\mathbf{x}_i} [\mathbf{J}_f^\top(\mathbf{x}_i) \mathbf{e}(\mathbf{x}_i)]\| \|\mathbb{E}_{\mathbf{x}_i} [\mathbf{J}_f^\top(\mathbf{x}_i) \mathbf{e}(\mathbf{x}_i)] - \mathbb{E}_{\mathbf{x}_i} [(\mathbb{E}_{\mathbf{x}_j} [\mathbf{J}_f^\top(\mathbf{x}_j)] + \epsilon) \mathbf{e}(\mathbf{x}_i)]\| \\ 948 \quad &> 0. \end{aligned} \quad (15)$$

949 \square

950
 951 *Remark A.5.* L_J will depend on the smoothness of the network, for example, $L_J = 0$ for linear
 952 networks. This will influence the condition of effective descent direction considering the gradient
 953 scale as in the proposition. Note that these assumptions are not necessary premises, and we have
 954 verified the effectiveness of the method in experiments.
 955

972 **B INTRODUCTION TO LOCAL SURROGATE DERIVATIVES UNDER THE**
 973 **STOCHASTIC SPIKING SETTING**
 974

975 In this section, we provide more introduction to the stochastic spiking setting, under which spiking
 976 neurons can be *locally* differentiable and there exist *local* surrogate derivatives.
 977

978 Biological spiking neurons can be stochastic, where a neuron generates spikes following a Bernoulli
 979 distribution with the probability as the c.d.f. of a distribution w.r.t $u[t] - V_{th}$, indicating a higher
 980 probability for a spike with larger $u[t] - V_{th}$. That is, $s_i[t]$ is a random variable following a
 981 $\{0, 1\}$ valued Bernoulli distribution with the probability of 1 as $p(s_i[t] = 1) = F(u_i[t] - V_{th})$.
 982 With reparameterization, this can be formulated as $s_i[t] = H(u_i[t] - V_{th} - z_i)$ with a random
 983 noise variable z_i that follows the distribution specified by F . Different F corresponds to different
 984 distributions and noises. For example, the sigmoid function corresponds to a logistic noise, while
 985 the erf function corresponds to a Gaussian noise. Under the stochastic setting, the local surrogate
 986 derivatives can be introduced for the spiking function (Shekhovtsov & Yanush, 2021; Ma et al., 2023).
 987

988 Specifically, consider the objective function which should turn to the expectation over random
 989 variables under the stochastic model. Considering a one-hidden-layer network with one time step,
 990 with the input \mathbf{x} connecting to n spiking neurons by the weight \mathbf{W} and the neurons connecting to
 991 an output readout layer by the weight \mathbf{O} . Different from deterministic models with the objective
 992 function $\mathbb{E}_{\mathbf{x}}[\mathcal{L}(\mathbf{s})]$, where $\mathbf{s} = H(\mathbf{u} - V_{th})$, $\mathbf{u} = \mathbf{W}\mathbf{x}$, under the stochastic setting, the objective is to
 993 minimize:

$$\mathbb{E}_{\mathbf{x}}[\mathbb{E}_{\mathbf{s} \sim p(\mathbf{s}|\mathbf{x}, \mathbf{W})}[\mathcal{L}(\mathbf{s})]]. \quad (16)$$

994 For this objective, the model can be differentiable and gradients can be derived (Shekhovtsov &
 995 Yanush, 2021; Ma et al., 2023). We focus on the gradients of \mathbf{u} , which can be expressed as:
 996

$$\begin{aligned} \frac{\partial}{\partial \mathbf{u}} \mathbb{E}_{\mathbf{s} \sim p(\mathbf{s}|\mathbf{W})}[\mathcal{L}(\mathbf{s})] &= \frac{\partial}{\partial \mathbf{u}} \sum_{\mathbf{s}} \left(\prod_i p(\mathbf{s}_i|\mathbf{W}) \right) \mathcal{L}(\mathbf{s}) \\ &= \sum_{\mathbf{s}} \sum_i \left(\prod_{i' \neq i} p(\mathbf{s}_{i'}|\mathbf{W}) \right) \left(\frac{\partial}{\partial \mathbf{u}} p(\mathbf{s}_i|\mathbf{W}) \right) \mathcal{L}(\mathbf{s}). \end{aligned} \quad (17)$$

1003 Then consider derandomization to perform summation over s_i while keeping other random variables
 1004 fixed (Shekhovtsov & Yanush, 2021). Let \mathbf{s}_{-i} denote other variables except s_i . Since s_i is $\{0, 1\}$
 1005 valued, given \mathbf{s}_{-i} , we have
 1006

$$\begin{aligned} \sum_{s_i \in \{0, 1\}} \frac{\partial p(s_i|\mathbf{W})}{\partial \mathbf{u}} \mathcal{L}([\mathbf{s}_{-i}, s_i]) &= \frac{\partial p(s_i|\mathbf{W})}{\partial \mathbf{u}} \mathcal{L}(\mathbf{s}) + \frac{\partial(1 - p(s_i|\mathbf{W}))}{\partial \mathbf{u}} \mathcal{L}(\mathbf{s}_{\downarrow i}) \\ &= \frac{\partial p(s_i|\mathbf{W})}{\partial \mathbf{u}} (\mathcal{L}(\mathbf{s}) - \mathcal{L}(\mathbf{s}_{\downarrow i})), \end{aligned} \quad (18)$$

1012 where \mathbf{s} is a random sample considering s_i (the RHS is invariant of s_i), and $\mathbf{s}_{\downarrow i}$ denotes taking s_i as
 1013 the other state for \mathbf{s} . Given that $\sum_{s_i} p(s_i|\mathbf{W}) = 1$, Eq. (17) is equivalent to
 1014

$$\begin{aligned} \frac{\partial}{\partial \mathbf{u}} \mathbb{E}_{\mathbf{s} \sim p(\mathbf{s}|\mathbf{W})}[\mathcal{L}(\mathbf{s})] &= \sum_i \sum_{\mathbf{s}_{-i}} \left(\prod_{i' \neq i} p(\mathbf{s}_{i'}|\mathbf{W}) \right) \sum_{s_i} \left(\frac{\partial}{\partial \mathbf{u}} p(s_i|\mathbf{W}) \right) \mathcal{L}([\mathbf{s}_{-i}, s_i]) \\ &= \sum_i \sum_{\mathbf{s}_{-i}} \left(\prod_{i' \neq i} p(\mathbf{s}_{i'}|\mathbf{W}) \right) \sum_{s_i} p(s_i|\mathbf{W}) \frac{\partial p(s_i|\mathbf{W})}{\partial \mathbf{u}} (\mathcal{L}(\mathbf{s}) - \mathcal{L}(\mathbf{s}_{\downarrow i})) \\ &= \sum_{\mathbf{s}} \left(\prod_i p(\mathbf{s}_i|\mathbf{W}) \right) \sum_i \frac{\partial p(s_i|\mathbf{W})}{\partial \mathbf{u}} (\mathcal{L}(\mathbf{s}) - \mathcal{L}(\mathbf{s}_{\downarrow i})) \\ &= \mathbb{E}_{\mathbf{s} \sim p(\mathbf{s}|\mathbf{W})} \sum_i \frac{\partial p(s_i|\mathbf{W})}{\partial \mathbf{u}} (\mathcal{L}(\mathbf{s}) - \mathcal{L}(\mathbf{s}_{\downarrow i})). \end{aligned} \quad (19)$$

1026 Taking one sample of \mathbf{s} in each forward procedure allows the unbiased gradient estimation as the
 1027 Monte Carlo method. In this equation, considering the probability distribution, we have:
 1028

$$\frac{\partial p(\mathbf{s}_i | \mathbf{W})}{\partial \mathbf{u}} = F'(\mathbf{u}, V_{th}), \quad (20)$$

1031 where F' is the derivative of F , corresponding to a *local* surrogate gradient, e.g., the derivative of the
 1032 sigmoid function, triangular function, etc.

1033 The term $\mathcal{L}(\mathbf{s}) - \mathcal{L}(\mathbf{s}_{\downarrow i})$ corresponds to the error, and the above derivation is also similar to REIN-
 1034 FORCE (Williams, 1992). However, since it relies on derandomization, simultaneous perturbation
 1035 is infeasible in this formulation, and for efficient simultaneous calculation of all components, we
 1036 may follow previous works (Shekhovtsov & Yanush, 2021) to tackle it by linear approximation:
 1037 $\mathcal{L}(\mathbf{s}) - \mathcal{L}(\mathbf{s}_{\downarrow i}) \approx \frac{\partial \mathcal{L}(\mathbf{s})}{\partial \mathbf{s}_i}$, enabling simultaneous calculation given a gradient $\frac{\partial \mathcal{L}(\mathbf{s})}{\partial \mathbf{s}}$. This approxima-
 1038 tion may introduce bias, while it can be small for over-parameterized neural networks with weights at
 1039 the scale of $\frac{1}{\sqrt{d_n}}$, where d_n is the neuron number. This means that for the elements of the readout
 1040 $\mathbf{o} = \mathbf{O}\mathbf{s}$, flipping the state of \mathbf{s}_i only has $O(\frac{1}{\sqrt{d_n}})$ influence.
 1041

1042 The deterministic model may be viewed as a special case, e.g., with noise always as zero, and
 1043 Shekhovtsov & Yanush (2021) show that the gradients under the deterministic setting can provide a
 1044 similar ascent direction under certain conditions. Also, the noise injection in our method is similar to
 1045 introducing the randomness in stochastic neuron model.

1046 Therefore, spiking neurons can be differentiable under the stochastic setting and *local* surrogate
 1047 derivatives can be well-defined, supporting our formulation as introduced in the main text. Our
 1048 pseudo-zeroth-order method approximates $\frac{\partial \mathcal{L}(\mathbf{s})}{\partial \mathbf{s}}$, fitting the above formulation. Also note that the
 1049 above derivation of surrogate derivatives is *local* for one hidden layer – for multi-layer networks, while
 1050 we may iteratively perform the above analysis to obtain the commonly used global surrogate gradients,
 1051 there can be expanding errors through layer-by-layer propagation due to the linear approximation
 1052 error. Differently, our OPZO performs direct error feedback, which may reduce such errors.
 1053

C MORE IMPLEMENTATION DETAILS

C.1 LOCAL LEARNING

1058 For experiments with local learning, we consider local supervision with a fully connected readout
 1059 for each layer. Specifically, for the output \mathbf{s}^l of each layer, we calculate the local loss based on the
 1060 readout $\mathbf{r}^l = \mathbf{R}^l \mathbf{s}^l$ as $\mathcal{L}(\mathbf{r}^l, \mathbf{y})$. Then the gradient for \mathbf{s}^l is calculated by the local loss and added to the
 1061 global gradient based on our OPZO method, which will update synaptic weights directly connected
 1062 to the neurons. We assume the weight symmetry of local learning for propagating errors, i.e., using a
 1063 feedback weight $\mathbf{P}^l = \mathbf{R}^l$ to propagate errors as $\mathbf{P}^{l \top} \frac{\partial \mathcal{L}(\mathbf{r}^l, \mathbf{y})}{\partial \mathbf{r}^l}$. This is because for the single linear
 1064 layer that directly connects to the output, the weight \mathbf{P}^l can be learned to be symmetric to \mathbf{R}^l through
 1065 symmetric local Hebbian-like update rule, i.e., both of them are updated by $\frac{\partial \mathcal{L}(\mathbf{r}^l, \mathbf{y})}{\partial \mathbf{r}^l} \mathbf{s}^{l \top}$ based on
 1066 pre- and post-synaptic information (e.g., $\frac{\partial \mathcal{L}(\mathbf{r}^l, \mathbf{y})}{\partial \mathbf{r}^l} = \mathbf{r}^l - \mathbf{y}$ for MSE loss and $\frac{\partial \mathcal{L}(\mathbf{r}^l, \mathbf{y})}{\partial \mathbf{r}^l} = \sigma(\mathbf{r}^l) - \mathbf{y}$
 1067 for CE loss). This mechanism does not require global error information and is compatible with the
 1068 intended constraints, while it is only applicable to the single (linear) layer condition. Kaiser et al.
 1069 (2020) also show that a fixed random matrix can be effective for such kind of local learning.

1070 We also consider intermediate global learning (IGL) as a kind of local learning. That is, we choose
 1071 a middle layer to perform readout for loss calculation, just as the last layer, and its direct feedback
 1072 signal will be propagated to previous layers. For the experiments with a 9-layer network, we choose
 1073 the middle layer as the fourth convolutional layer.

C.2 NOISE INJECTION

1077 For each time step of SNNs, we sample a z and add it to the network after or before the neural
 1078 activities (see Section 4.4). Compared with the two-point zeroth-order estimation, the considered
 1079 one-point method can have a much larger variance. To further reduce the variance, we can leverage
 antithetic z , i.e., z and $-z$, for every two time steps of SNNs. Since SNNs naturally have multiple

1080 time steps and the inputs for different time steps usually belong to the same object with similar
 1081 distributions, this approach may roughly approximate the two-point formulation without additional
 1082 costs.

1083

1084 C.3 TRAINING SETTINGS

1085

1086 C.3.1 DATASETS

1087

1088 We conduct experiments on N-MNIST (Orchard et al., 2015), DVS-Gesture (Amir et al., 2017), DVS-
 1089 CIFAR10 (Li et al., 2017), MNIST (LeCun et al., 1998), CIFAR-10 and CIFAR-100 (Krizhevsky &
 1090 Hinton, 2009), as well as ImageNet (Deng et al., 2009).

1091

1092 N-MNIST N-MNIST is a neuromorphic dataset converted from MNIST by a Dynamic Version
 1093 Sensor (DVS), with the same number of training and testing samples as MNIST. Each sample consists
 1094 of spike trains triggered by the intensity change of pixels when DVS scans a static MNIST image.
 1095 There are two channels corresponding to ON- and OFF-event spikes, and the pixel dimension is
 1096 expanded to 34×34 due to the relative shift of images. Therefore, the size of the spike trains for each
 1097 sample is $34 \times 34 \times 2 \times T$, where T is the temporal length. The original data record 300ms with the
 1098 resolution of $1\mu\text{s}$. We follow Zhang & Li (2020) to reduce the time resolution by accumulating the
 1099 spike train within every 3ms and use the first 30 time steps. The license of N-MNIST is the Creative
 1100 Commons Attribution-ShareAlike 4.0 license.

1100

1101 DVS-Gesture DVS-Gesture is a neuromorphic dataset recording 11 classes of hand gestures by
 1102 a DVS camera. It consists of 1,176 training samples and 288 testing samples. Following Fang
 1103 et al. (2021), we pre-possess the data to integrate event data into 20 frames, and we reduce the
 1104 spatial resolution to 48×48 by interpolation. The license of DVS-Gesture is the Creative Commons
 1105 Attribution 4.0 license.

1106

1107 DVS-CIFAR10 DVS-CIFAR10 is the neuromorphic dataset converted from CIFAR-10 by DVS,
 1108 which is composed of 10,000 samples, one-sixth of the original CIFAR-10. It consists of spike trains
 1109 with two channels corresponding to ON- and OFF-event spikes. We split the dataset into 9000 training
 1110 samples and 1000 testing samples as the common practice, and we reduce the temporal resolution by
 1111 accumulating the spike events (Fang et al., 2021) into 10 time steps as well as the spatial resolution
 1112 into 48×48 by interpolation. We apply the random cropping augmentation similar to CIFAR-10 to
 1113 the input data and normalize the inputs based on the global mean and standard deviation of all time
 1114 steps. The license of DVS-CIFAR10 is CC BY 4.0.

1114

1115 MNIST MNIST consists of 10-class handwritten digits with 60,000 training samples and 10,000
 1116 testing samples. Each sample is a 28×28 grayscale image. We normalize the inputs based on the
 1117 global mean and standard deviation, and convert the pixel value into a real-valued input current at
 1118 every time step. The license of MNIST is the MIT License.

1119

1120 CIFAR-10 CIFAR-10 consists of 10-class color images of objects with 50,000 training samples
 1121 and 10,000 testing samples. Each sample is a $32 \times 32 \times 3$ color image. We normalize the inputs
 1122 based on the global mean and standard deviation, and apply random cropping, horizontal flipping,
 1123 and cutout (DeVries & Taylor, 2017) for data augmentation. The inputs to the first layer of SNNs at
 1124 each time step are directly the pixel values, which can be viewed as a real-valued input current.

1125

1126 CIFAR-100 CIFAR-100 is a dataset similar to CIFAR-10 except that there are 100 classes of
 1127 objects. It also consists of 50,000 training samples and 10,000 testing samples. We use the same
 1128 pre-processing as CIFAR-10.

1129

The license of CIFAR-10 and CIFAR-100 is the MIT License.

1130

1131 ImageNet ImageNet-1K is a dataset of color images with 1,000 classes of objects, containing
 1132 1,281,167 training samples and 50,000 validation images. We adopt the common pre-possessing
 1133 strategies to first randomly resize and crop the input image to 224×224 , and then normalize it
 after the random horizontal flipping data augmentation, while the testing images are first resized to

1134 256 × 256 and center-cropped to 224 × 224, and then normalized. The inputs are also converted to a
 1135 real-valued input current at each time step. The license of ImageNet is Custom (non-commercial).
 1136

1137 C.3.2 TRAINING DETAILS AND HYPERPARAMETERS

1139 For SNN models, following the common practice, we leverage the accumulated membrane potential
 1140 of the neurons at the last classification layer (which will not spike or reset) for classification, i.e.,
 1141 the classification during inference is based on the accumulated $\mathbf{u}^N[T] = \sum_{t=1}^T \mathbf{o}[t]$, where $\mathbf{o}[t] =$
 1142 $\mathbf{W}^{N-1} \mathbf{s}^{N-1}[t] + \mathbf{b}^N$ which can be viewed as an output at each time step. The loss during training is
 1143 calculated for each time step as $\mathcal{L}(\mathbf{o}[t], \mathbf{y})$ following the instantaneous loss in online training with the
 1144 loss function as a combination of cross-entropy (CE) loss and mean-square-error (MSE) loss (Xiao
 1145 et al., 2022). For spiking neurons, $V_{th} = 1$ and $\lambda = 0.5$. We leverage the sigmoid-like local surrogate
 1146 derivative, i.e., $\psi(u) = \frac{1}{a_1} \frac{e^{(V_{th}-u)/a_1}}{(1+e^{(V_{th}-u)/a_1})^2}$ with $a_1 = 0.25$. For convolutional networks, we apply
 1147 the scaled weight standardization (Brock et al., 2021) as in Xiao et al. (2022).
 1148

1149 For our OPZO method, as well as the ZO method in experiments, α is by default set as 0.2 initially
 1150 and linearly decays to 0.01 through the epochs, in order to reduce the influence of stochasticness
 1151 for forward propagation. In practice, this schedule is not critical (see analysis in Section D.4). For
 1152 fine-tuning on ImageNet under noise, α is set as the noise scale, and we do not apply antithetic
 1153 variables across time steps, in order to better fit the noisy test setting (perturbation noise is before the
 1154 neuron). In practice, we remove the factor $1/\alpha$ for the calculation of \mathbf{M} , because in the single-point
 1155 setting, the scale of $\tilde{\mathbf{o}}$ is larger than and not proportional to α . This only influences the estimated
 1156 gradient with a scale α , and may be offset by the adaptive optimizer. Analysis experiments show that
 1157 this factor is also not critical (see Section D.4). For gradient variance analysis, we keep this factor in
 1158 order to have a comparable gradient scale.

1159 For N-MNIST and MNIST, we consider FC networks with two hidden layers composed of 800 neu-
 1160 rons, and for DVS-CIFAR10, DVS-Gesture, CIFAR-10, and CIFAR-100, we consider 5-layer Conv
 1161 networks (128C3-AP2-256C3-AP2-512C3-AP2-512C3-FC), or 9-layer Conv networks under the
 1162 deeper network setting (64C3-128C3-AP2-256C3-256C3-AP2-512C3-512C3-AP2-512C3-512C3-
 1163 FC). We train our models on common datasets by the AdamW optimizer with learning rate 2e-4
 1164 and weight decay 2e-4 (except for ZO, the learning rate is set as 2e-5 on DVS-CIFAR10, MNIST,
 1165 CIFAR-10, and CIFAR-100 for better results). The batch size is set as 128 for most datasets and
 1166 16 for DVS-Gesture, and the learning rate is cosine annealing to 0. For N-MNIST and MNIST, we
 1167 train models by 50 epochs and we apply dropout with the rate 0.2 (except for ZO). For DVS-Gesture,
 1168 DVS-CIFAR10, CIFAR-10, and CIFAR-100, we train models by 300 epochs. For DVS-CIFAR10,
 1169 we apply dropout with the rate 0.1 (except for ZO). We set the momentum coefficient for momentum
 1170 feedback connections as $\lambda = 0.99999$ (except for DVS-Gesture, it is set as $\lambda = 0.999999$ due to a
 1171 smaller batch size), and for the combination with local learning, the local loss is scaled by 0.01.

1172 For fine-tuning ImageNet, the learning rate is set as 2e-6 (and 2e-7 for ZO) without weight decay, and
 1173 the batch size is set as 64. The perturbation noise is before the neuron, i.e., added to the results after
 1174 convolutional operations. For BP, we train 1 epoch. For DFA, ZO, and OPZO, we train 5 epochs.
 1175 We observe that DFA and ZO fail after 1 epoch, so we only report the results after 1 epoch, and for
 1176 OPZO, the results can continually improve, so we report the results after 5 epochs. The 1-epoch and
 1177 5-epoch results for OPZO are 63.04 and 63.39 under the noise scale of 0.1, and 59.50 and 60.96
 1178 under the noise scale of 0.15.

1179 The code implementation is based on the PyTorch framework, and experiments are carried out on one
 1180 NVIDIA GeForce RTX 3090 GPU (each experiment takes several hours). Experiments are based
 1181 on 3 runs of experiments with the same random seeds 2022, 0, and 1. Note that the results hardly
 1182 change for more runs of experiments: for OPZO results on DVS-CIFAR10 with the largest standard
 1183 deviation, 10 runs have almost the same results (72.69 ± 0.62 vs. 72.77 ± 0.82).

1184 For gradient variance experiments, the variances are calculated by the batch gradients in one epoch,
 1185 i.e., $var = \frac{\sum \|\mathbf{g}_i - \bar{\mathbf{g}}\|^2}{n}$, where \mathbf{g}_i is the batch gradient, $\bar{\mathbf{g}}$ is the average of batch gradients, and n is
 1186 the number of batches multiplied by the number of elements in the gradient vector.

1187 **DFA and DKP** For DFA, the direct error feedback weight is randomly initialized following the
 1188 Kaiming initialization strategy. DKP (Webster et al., 2020) is based on the formulation of DFA

1188 Table 6: Brief comparison of training costs on GPU for CIFAR-10 with convolutional networks.
 1189 \dagger means manual implementation of spatial BP with layer-by-layer backpropagation, which is in a
 1190 similar fashion as other methods. \ddagger means using automatic differentiation implemented by PyTorch
 1191 with low-level code optimizations.

Method	Memory	Time per epoch
Spatial BP	2.8G \dagger / 2.9G \ddagger	49s \dagger / 45s \ddagger
DFA	2.8G	44s
ZO _{sp}	2.8G	46s
OPZO	2.9G	46s
DFA (w/ LL)	3.0G	50s
OPZO (w/ LL)	3.1G	51s

1201
 1202 and updates feedback weights similar to Kolen-Pollack learning, which calculates gradients for
 1203 feedback weights by the product of the middle layer’s activation and the error from the top layer.
 1204 The feedback weights are initialized as zero, and we treat them as parameters to be optimized by the
 1205 Adam optimizer. Its basic thought is trying to keep the update direction of feedback and feedforward
 1206 weights the same, but it may lack sufficient theoretical grounding. As DKP is designed for ANN, we
 1207 implement it for SNN with the adaptation of activations to pre-synaptic traces for feedback weight
 1208 learning (similar to the update of feedforward weight). As shown in the results, compared with DFA,
 1209 DKP can have around 2-3% performance improvement on CIFAR-10 and CIFAR-100, which is
 1210 similar to the improvement in its paper. However, DKP cannot work well for neuromorphic datasets.
 1211 And OPZO significantly outperforms both DKP and DFA on all datasets.

D ADDITIONAL RESULTS

D.1 TRAINING COSTS ON GPU

1217 We provide a brief comparison of memory and time costs of different methods on GPU in Table 6.
 1218 Our proposed OPZO has about the same costs as spatial BP and DFA. If we exclude some code-level
 1219 optimization and implement all methods in a similar fashion, DFA and OPZO are faster than spatial
 1220 BP, which is consistent with the theoretical analysis of operation numbers. Note that this is only a
 1221 brief comparison, as we do not perform low-level code optimization for OPZO and DFA, for example,
 1222 the direct feedback of OPZO and DFA to different layers can be parallel, and local learning for
 1223 different layers can also theoretically be parallel, to further reduce the time. As described in the main
 1224 text, the target of neuromorphic computing with SNNs would be potential neuromorphic hardware,
 1225 and OPZO and DFA can have lower costs, while GPUs generally do not follow the properties. Since
 1226 neuromorphic hardware is still under development and we have limited access, we mainly simulate
 1227 the experiments on GPUs, and it can be future work to consider the combination with neuromorphic
 1228 hardware implementation.

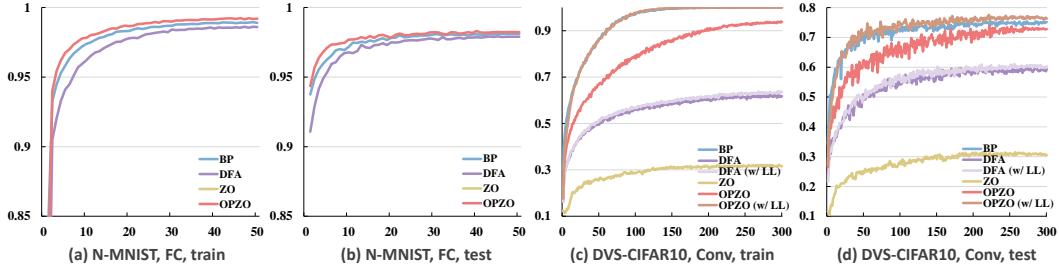
1229 Also please note that these methods are all based on online training, so the memory costs (agnostic to
 1230 time steps) are already largely reduced compared with BPTT (proportional to time steps) (Xiao et al.,
 1231 2022).

D.2 FIRING RATE AND SYNAPTIC OPERATIONS

1234 For event-driven SNNs, the energy costs on neuromorphic hardware are proportional to the spike
 1235 count, or more precisely, synaptic operations induced by spikes. Therefore, we also compare the
 1236 firing rate (i.e., average spike count per neuron per time step) and synaptic operations of the models
 1237 trained by different methods. As shown in Table 7, on both DVS-CIFAR10 and CIFAR-10, OPZO
 1238 (w/ LL) achieves the lowest average total firing rate and synaptic operations, indicating the most
 1239 energy efficiency. The results also demonstrate different spike patterns for models trained by different
 1240 methods, and show that LL can significantly improve OPZO, while it can hardly improve DFA and
 1241 spatial BP. It may indicate OPZO as a better, more biologically plausible global learning method to
 be combined with local learning.

1242 Table 7: The firing rate (fr) and synaptic operations (SynOp) induced by spikes for models trained by
 1243 different methods on DVS-CIFAR10 and CIFAR-10.

DVS-CIFAR10						
Method	Layer1 fr	Layer2 fr	Layer3 fr	Layer4 fr	Total fr	SynOp
Spatial BP	0.1763	0.1733	0.2394	0.3575	0.1904	1.42×10^9
Spatial BP (w/ LL)	0.2272	0.1618	0.2199	0.3439	0.2122	1.51×10^9
DFA	0.2693	0.4564	0.4783	0.4930	0.3574	2.91×10^9
DFA (w/ LL)	0.2433	0.4531	0.4848	0.4919	0.3430	2.84×10^9
OPZO	0.2435	0.3446	0.4212	0.4222	0.3021	2.41×10^9
OPZO (w/ LL)	0.0406	0.0614	0.1451	0.2838	0.0691	0.53×10^9
CIFAR-10						
Method	Layer1 fr	Layer2 fr	Layer3 fr	Layer4 fr	Total fr	SynOp
Spatial BP	0.2005	0.1679	0.1067	0.0493	0.1734	0.76×10^9
Spatial BP (w/ LL)	0.1870	0.1474	0.0978	0.0470	0.1589	0.69×10^9
DFA	0.1769	0.3787	0.4314	0.4149	0.2759	1.40×10^9
DFA (w/ LL)	0.1196	0.3180	0.4089	0.3878	0.2235	1.16×10^9
OPZO	0.1563	0.2861	0.3496	0.2754	0.2229	1.12×10^9
OPZO (w/ LL)	0.0400	0.0670	0.1159	0.2157	0.0640	0.30×10^9



1278 Figure 3: Training dynamics of different methods on N-MNIST and DVS-CIFAR10.
 1279
 1280
 1281

1282 D.3 TRAINING DYNAMICS AND GRADIENT SIMILARITY

1285 We present the training dynamics of different methods in Fig. 3. For the fully connected network
 1286 on N-MNIST, OPZO achieves a similar convergence speed as spatial BP, which is better than DFA
 1287 and much better than ZO. For the convolutional network on DVS-CIFAR10, OPZO itself is slower
 1288 than spatial BP while still performing much better than DFA and ZO, and when combined with local
 1289 learning, OPZO (w/ LL) achieves a similar training convergence speed as spatial BP as well as a
 1290 better testing performance.

1291 We further present the cosine similarity between estimated gradients and backpropagated gradients
 1292 with surrogate derivatives in Fig. 4. The results show that the cosine similarity of different layers
 1293 between OPZO and BP remains in the range of 0.5-0.9 throughout training, whereas DFA and BP is
 1294 typically below 0.1 for most layers. This indicates that the bias introduced by momentum feedback
 1295 does not significantly distort the gradient direction compared to DFA, and the training can converge
 1296 with effective descent directions.

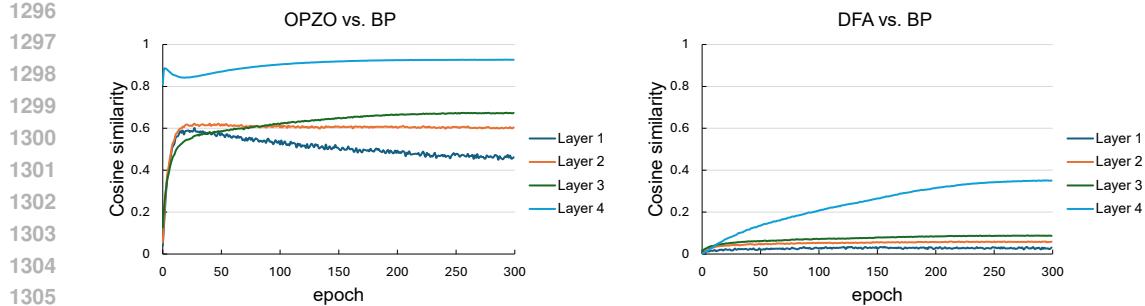


Figure 4: Cosine similarity between OPZO and BP with surrogate derivatives as well as between DFA and BP on CIFAR-100.

Table 8: Analysis results of different λ on CIFAR-100.

$\lambda = 0$ (w/o momentum)	$\lambda = 0.9$	$\lambda = 0.99$	$\lambda = 0.999$	$\lambda = 0.9999$	$\lambda = 0.99999$
16.08 ± 0.37	39.05 ± 0.69	50.65 ± 0.05	58.25 ± 0.33	60.92 ± 0.11	60.93 ± 0.16

Table 9: Analysis results of updating \mathbf{M} throughout training on CIFAR-100.

stop updating \mathbf{M} after 10 epochs	OPZO
57.17	60.93 ± 0.16

Table 10: Analysis results of settings with initial perturbation scale $\alpha = 0.2$ on CIFAR-100.

w/ schedule	w/o schedule	w/o schedule and w/ $\frac{1}{\alpha}$ factor
60.93 ± 0.16	61.85 ± 0.09	61.65 ± 0.40

Table 11: Analysis results of different perturbation scale α without scheduling on CIFAR-100.

$\alpha = 1.$	$\alpha = 0.2$	$\alpha = 0.02$	$\alpha = 0.002$
58.34	61.85 ± 0.09	58.33	49.97

D.4 ANALYSIS OF HYPERPARAMETERS

We first study the influence of the momentum coefficient λ in Table 8. As shown in the results, OPZO requires a large λ in our scenario. This is due to the large variance of single-point zeroth-order approximation, so we require a relatively small $1 - \lambda$ for smoothing \mathbf{M} to approximate the expectation $\mathbb{E}_{\mathbf{x}} [\mathbf{J}_f^\top(\mathbf{x})]$ (more precisely, $\mathbb{E}_{\mathbf{x}} [\mathbf{J}_{f_\alpha}^\top(\mathbf{x})]$). A smaller λ cannot properly deal with the large variance, leading to inferior performance. While λ is large, this does not mean \mathbf{M} is quasi-static, because the objective of the expectation of Jacobian is slowly changing throughout training. To validate this in experiments, we stop updating \mathbf{M} after 10 epochs, and the performance drops as shown in Table 9.

We then analyze the influence of the perturbation scale α . We first evaluate the effect of the scheduling of α and removing the factor $\frac{1}{\alpha}$ (Section C.3.2). As shown in Table 10, the scheduling has slightly negative influence on the performance while the $\frac{1}{\alpha}$ factor has negligible impact. We further analyze different perturbation scales without scheduling in Table 11. As shown in the results, the scale around 0.2 works best. This is likely due to the property of spiking neural networks, where we set the spiking threshold as 1: if the perturbation scale is too small, the perturbation hardly influences the spiking generation, leading to imprecise estimation. Therefore, for spiking neural networks, a good scale choice would be fixed $\alpha = 0.2$ throughout the training.

1350

Table 12: Analysis results of deeper networks without auxiliary techniques on CIFAR-100.

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

D.5 ANALYSIS OF PURE OPZO FOR TRAINING DEEPER NETWORKS FROM SCRATCH

In this section, we provide more analysis on the pure OPZO for training deeper networks from scratch without auxiliary techniques, as shown in Table 12.

First, for the plain 9-layer network, OPZO has degraded performance compared with 5-layer network, but still significantly outperforming DFA and ZO. This is related to our theoretical analysis of the bias of average Jacobian, which shows that the smoothness will influence the condition of effective descent direction (Remark A.5). The plain deeper networks’ unsmoothness tightens the condition, leading to inferior performance. So some auxiliary mechanisms may be required to alleviate the problem.

Then, we further show that residual connections can largely alleviate the problem, in consistent with our theoretical analysis and experiments that pure OPZO can effectively fine-tune ResNet-34 on ImageNet. As shown in Table 12, with residual connections, OPZO does not degrade as depth grows and can scale to 34-layer networks in the train from scratch setting as well, while DFA still has degraded performance. This is because residual connections can make the network function smoother, so the problem is largely alleviated. While there is still some performance gap with BP, OPZO significantly outperforms DFA and can be further enhanced with auxiliary techniques.

Therefore, pure OPZO also has the ability to train deeper networks from scratch, while it has more reliance on the proper network structure (residual connections) than BP.

Additionally, we report results for training a NF-ResNet18 model ($T=4$) from scratch on ImageNet for 100 epochs using the Adam optimizer ($lr=1e-4$). The performance of pure OPZO, DFA, and BP is 19.0%, 5.6%, and 52.9%, respectively. The results show that while OPZO significantly outperforms DFA, it still has much room for improvement compared with BP in this large-scale offline training, likely due to a more non-smooth optimization landscape as indicated by our theoretical analysis. This suggests that OPZO may require additional techniques such as local learning for this large-scale training-from-scratch scenario. However, we emphasize that OPZO is not intended to replace BP for high-compute offline training, which is orthogonal to our neuromorphic objective. Our goal is hardware-friendly, on-chip learning for neuromorphic SNNs, where starting from scratch is rarely necessary (similar to our brains that adapt rather than relearn entirely), and post-deployment adaptation and continual learning are key scenarios. Our ImageNet fine-tuning experiments show that pure OPZO can scale to large networks without auxiliary techniques, validating its effectiveness in this setting. This demonstrates OPZO’s complementary role to offline BP methods.

E MORE DISCUSSIONS

E.1 LIMITATIONS

This paper mainly focuses on theoretical groundings and simulation experiments with GPUs for the proposed method, while no implementation on neuromorphic hardware is included due to our limited access to it. Future work can consider the implementation on those hardware with more engineering efforts, e.g., on Loihi2 (Davies, 2021) that can support three-factor learning rules as described in their technical report.

As discussed in Section 5, our method is a different line from many recent SNN works with state-of-the-art performance, focusing on more biologically plausible and hardware-friendly training

1404 Table 13: Results of different methods without truncating temporal gradients on DVS-CIFAR10.
1405

Network structure	STBP	DFA	PZO
5-layer CNN (sWS)	76.17 \pm 0.21	60.00 \pm 0.22	73.20 \pm 0.08
5-layer CNN (BN)	77.23 \pm 0.46	60.77 \pm 0.69	74.13 \pm 0.52

1412 algorithms. So we mainly evaluate the effectiveness of the method with comparisons under various
1413 settings, not pursuing the state-of-the-art performance. On the other hand, as discussed in the
1414 experiments of fine-tuning ResNet-34 on ImageNet, our method may be combined with those works
1415 aiming at state-of-the-art performance through the potential on-chip fine-tuning after deployment.

1417 E.2 DISCUSSION OF THE METHOD

1419 The proposed OPZO is built on online training methods to deal with the spatio-temporal locality
1420 problem of BP(TT) for neuromorphic computing and pave the path to on-chip SNN training. While
1421 the pseudo-zeroth-order formulation can be applied to non-online scenarios, e.g., BPTT, we do not
1422 focus on it because this is not our target (friendly for neuromorphic hardware and more biologically
1423 plausible) and it requires larger memory costs to maintain intermediate states through time for direct
1424 error propagation. [Nevertheless, to further validate the feasibility of applying PZO to the setting without truncating the temporal gradient flow, we provide more results under this setting.](#) Specifically,
1425 we leverage PZO to estimate gradients from the network output at time step t_i to intermediate layers
1426 at time steps t_j ($t_j \leq t_i$). To reduce the momentum costs, we share the momentum for the same
1427 interval between t_i and t_j , i.e., there will be T feedback momentum representing the feedback matrix
1428 from t_i -output to $(t_i - k)$ -features ($k = 0, 1, \dots, T - 1$). We perform noise injection to all time
1429 steps and update the momentum feedback matrices based on noises and network outputs. Without the
1430 requirement for memory-efficient online training, we can also adopt BN (along all time steps) for
1431 networks. As shown in Table 13, PZO can be effectively applied to this setting.

1432 We consider node perturbation instead of weight perturbation because it improves the latter with
1433 smaller variance (Lillicrap et al., 2020) and is more biologically plausible with a better analog to
1434 three-factor Hebbian learning (Frémaux & Gerstner, 2016) as discussed in Section 4.3. This is
1435 friendly for neuromorphic hardware that supports three-factor rules (Davies, 2021). While weight
1436 perturbation may be conceptually easier, it is less effective to optimize neural networks and has hardly
1437 been adopted in zeroth-order methods for neural networks (Jiang et al., 2024) except in specially
1438 designed fine-tuning settings (Malladi et al., 2023).

1439 While this paper mainly considers SNNs, the proposed pseudo-zeroth-order formulation can also
1440 be applied to ANNs. If we consider the general computer, there can be techniques to reduce the
1441 memory overhead of the momentum feedback, such as low-rank approximation, only saving some
1442 output vectors and recomputing the matrix by re-drawing the perturbation with random seeds, etc.
1443 This paper mainly focuses on neuromorphic computing, and we leave the extension to more settings
1444 as future work.

1446 E.3 RELATION TO NEUROSCIENTIFIC EVIDENCE

1448 In this section, we discuss more on the neuroscientific evidence for noise injection and top-down
1449 signals in our method.

1451 **Noise injection.** The biological systems are inherently noisy and it has long been recognized that
1452 noise can be utilized as a resource for computation and learning (Seung, 2003; Fiete & Seung, 2006;
1453 Maass, 2014; Lillicrap et al., 2020). Considering the perturbation with noise injection, it can be
1454 related to stochastic synaptic transmission (Seung, 2003) or “empiric” synapses carrying perturbing
1455 input from another part of the brain (Fiete & Seung, 2006). Such mechanisms provide the biological
1456 basis for perturbation learning, which is believed to be employed by the brain for some kinds of
1457 learning (Lillicrap et al., 2020). Our work builds on this zeroth-order perturbation, while introducing
1458 momentum feedback to solve the large variance problem of it.

1458
1459 **Top-down feedback.** In the three-factor Hebbian learning, synaptic updates are modulated by
1460 reward-prediction errors (RPE) and can be gated by feedback (FB) from higher brain regions through
1461 top-down feedback connections, leading to the update rule $\Delta w_{i,j} = \beta \cdot f_i(a_i) \cdot f_j(a_j) \cdot RPE \cdot$
1462 FB_j (Roelfsema & Holtmaat, 2018). Anatomically, feedback projections originate from higher
1463 cortical areas and mostly provide input to superficial (L1–L3) and deep (L5) layers of lower sensory
1464 areas, targeting apical dendrites of pyramidal neurons and specific microcircuits (Roelfsema &
1465 Holtmaat, 2018). These feedback pathways are thought to play a key role in gating plasticity, credit
1466 assignment, and context-dependent modulation. The momentum feedback connections in our method
1467 are analogous to these top-down feedback pathways that modulate prediction errors, providing a basis
1468 for rules similar to three-factor Hebbian learning. Notably, the update of our feedback connections
1469 depends only on local pre- and post-synaptic, maintaining the simplicity and biological plausibility
1470 of the learning process.
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511