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ABSTRACT

The design of learning objectives is central to training time-series forecasting
models. Existing learning objectives such as mean squared error mostly treat
each future step as an independent, equally weighted task, which leads to the
following two challenges: (1) they overlook the label autocorrelation effect among
future steps, leading to biased learning objectives; (2) they fail to set heteroge-
neous task weights for different forecasting tasks corresponding to varying future
steps, limiting the forecasting performance. To fill this gap, we propose a novel
quadratic-form weighted learning objective, addressing both issues simultaneously.
Specifically, the off-diagonal elements of the weighting matrix account for the label
autocorrelation effect, whereas the non-uniform diagonals are expected to match
the preferred weights of the forecasting tasks with varying future steps. To achieve
this, we propose a Quadratic Direct Forecast (QDF) learning algorithm, which
trains the forecast model using the adaptively updated quadratic-form weighting
matrix. Experiments show that our QDF effectively improves the performance
of various forecast models, achieving state-of-the-art results. Code is available
at https://anonymous.4open.science/r/QDF-8937.

1 INTRODUCTION

Time-series forecasting, which involves predicting future values from past observations, is founda-
tional to a wide range of applications, including meteorological prediction (Bi et al., 2023), financial
stock forecasting (Li et al., 2025a), and robotic trajectory forecasting (Fan et al., 2023). In the
context of deep learning, the development of robust forecasting models relies on two crucial com-
ponents (Wang et al., 2025d): (1) the design of neural architectures for forecasting and (2) the
formulation of suitable learning objectives for model training. Both present distinct challenges.

Recent research has focused intensively on the first aspect, namely, neural architecture design. The
principal challenge lies in efficiently capturing the autocorrelation structures in the history sequence.
A variety of architectures have been proposed (Wu et al., 2023; Luo and Wang, 2024; Gu et al., 2021).
One exemplar would be Transformer models that employ self-attention to model autocorrelation and
scale effectively (Liu et al., 2024; Nie et al., 2023; Piao et al., 2024). Another rapidly developing
direction would be linear models, which use linear projections to model autocorrelation and demon-
strate competitive performance (Lin et al., 2024; Zeng et al., 2023; Yue et al., 2025). These advances
showcase the fast-paced evolution of model architectures for time-series forecasting.

In contrast, the formulation of learning objectives remains relatively underexplored (Li et al., 2025b;
Qiu et al., 2025; Kudrat et al., 2025). Most recent studies resort to mean squared error (MSE)
as the learning objective (Lin et al., 2025; 2024; Liu et al., 2024). However, MSE overlooks the
autocorrelation effect present in label sequences, which renders it a biased objective (Wang et al.,
2025e;d). Additionally, it assigns equal weights to all forecasting tasks with varying future steps,
ignoring the potential of a heterogeneous weighting scheme. As a result, the learning objective design
of forecast models is challenged by the label autocorrelation effect and heterogeneous task weights,
which are not fully addressed by existing methods.

In this work, we first propose a novel quadratic-form weighted learning objective that simultaneously
tackles both issues. Specifically, the off-diagonal elements of the weighting matrix model the
label autocorrelation effect, while the non-uniform diagonal elements enable the assignment of
heterogeneous task weights to different future steps. Building on this, we introduce the Quadratic
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Direct Forecast (QDF) learning algorithm, which trains the forecasting model using an adaptively
updated quadratic-form weighting matrix. Our main contributions are summarized as follows:

* We identify two fundamental challenges in designing learning objectives for time-series forecast
models: the label autocorrelation effect and the heterogeneous task weights.

* We propose a quadratic-form weighted learning objective that tackles both challenges. The QDF
learning algorithm is proposed to apply the objective for training time-series forecast models.

* We perform comprehensive empirical evaluations to demonstrate the effectiveness of QDF, which
enhances the performance of state-of-the-art forecast models across diverse datasets.

2 PRELIMINARIES

2.1 PROBLEM DEFINITION

This work investigates the multi-step time-series forecasting task. Formally, given a time-series dataset
S with D covariates, the history sequence at time step n is denoted by X = [S,,—u11,...,S,] €
RHXD " while the label sequence is Y = [S,i1,...,8,01] € RT*P where H and T denote
the history and forecast horizons, respectively. Recent approaches predominantly adopt a direct
forecasting (DF) paradigm, predicting all T future steps simultaneously (Liu et al., 2024; Piao et al.,
2024). Therefore, the goal is to learn a parameterized model gy : RH*P — RTXD that generates

forecast sequence Y approximating Y, where 6 represents the learnable parameters'.

Advances in forecasting models typically revolve around two axes: (1) the design of neural architec-
tures for encoding historical inputs (Liu et al., 2024; Zeng et al., 2023); and (2) the design of learning
objectives for effective training (Wang et al., 2025d;e; Cuturi and Blondel, 2017; Sakoe and Chiba,
2003). This study is primarily concerned with the latter—specifically, the improved formulation of
learning objectives. Nonetheless, we briefly introduce both aspects as follows for completeness.

2.2 NEURAL NETWORK ARCHITECTURES IN TIME-SERIES FORECASTING

The principal goal of architecture development in time-series forecasting is to learn informative
representations of history sequence. The key challenge is to accommodate the autocorrelation effect
present in the history sequence. Traditional approaches include recurrent neural networks (Gu et al.,
2021; Chen et al., 2023), convolutional neural networks (Wu et al., 2023; Luo and Wang, 2024),
and graph neural networks (Cao et al., 2020; Mateos et al., 2019). In the recent literature, one
predominant series are Transformer models (e.g., TQNet (Lin et al., 2025), PatchTST (Nie et al.,
2023), iTransformer (Liu et al., 2024)), which show strong scalability on large datasets but at a higher
computational cost. Another predominant series are linear models (e.g., TimeMixer (Wang et al.,
2024), DLinear (Zeng et al., 2023)), which are efficient but may struggle to scale and cope with
varying history sequence length. There are also hybrid architectures that fuse Transformer and linear
modules to combine their respective advantages (Lin et al., 2024; Wu et al., 2025).

2.3  LEARNING OBJECTIVES IN TIME-SERIES FORECASTING

The primary challenge driving the development of learning objectives in time-series forecasting is to
accommodate the autocorrelation effect present in the label sequence. The standard mean squared
error (MSE) is widely used to train forecast models (Lin et al., 2025; 2024; Liu et al., 2024), which
measures the point-wise difference between the forecast and label sequences:

ﬁmse = ||Y_90(X)||27 (1)

However, L5, is known to be biased, as it neglects the presence of autocorrelation in the label
sequence (Wang et al., 2025¢). To mitigate this issue, alternative objectives have been explored.
One line of work promotes shape alignment between the forecast and label sequences (L.e Guen
and Thome, 2019; Cuturi and Blondel, 2017), emphasizing the autocorrelation structure, though
these approaches generally lack theoretical guarantees for bias elimination. Another line of works

"Hereafter, we consider the univariate case (D = 1) for clarity. In the multivariate case, each variable can be
treated as a separate univariate case when computing the learning objectives.
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(a) Partial correlation and significance of labels. (b) Partial correlation of extracted label components.

Figure 1: Statistics of label components conditioned on X, with a forecast horizon of T = 96. (a)
Partial correlation and conditional variance estimated from the raw label sequence Y, with colors
indicating different X. (b) Partial correlation matrices of label components extracted by FreDF and
Time-ol (Wang et al., 2025e;d). Calculation details are provided in Appendix A.

transforms the labels into decorrelated components before alignment, thereby mitigating bias and
improving forecast performance (Wang et al., 2025¢;d). These empirical advancements underscore
the critical role of objective function design in advancing time-series forecasting.

3 METHODOLOGY

3.1 MOTIVATION

The design of learning objectives is central to training time-series forecasting models. Likelihood
maximization provides a principled approach, minimizing the negative log-likelihood (NLL) of label
sequence. By Theorem 3.1, the NLL is a quadratic form weighted by the inverse of the conditional
covariance matrix . This formulation reveals two key challenges in designing learning objectives.

* Autocorrelation effect. Time-series data exhibit strong autocorrelation, where observations are
highly correlated with their past values. This implies that future steps within the label sequence are
correlated even when conditioned on the history X (Wang et al., 2025¢). This property necessitates
modeling the off-diagonal elements of 32, which are not necessarily zeros.

* Heterogeneous weights. The training of forecast models is a typical multitask learning problem,
where predicting each future step is a distinct task. These tasks often exhibit varying levels of
difficulty and uncertainty, suggesting they require different weights during optimization. This
property necessitates modeling the diagonal elements of 32, which are not necessarily uniform.

Theorem 3.1 (Likelihood formulation). Given history sequence X, letY € RT be the associated
label sequence and go(X) € RT be the forecast sequence. Assuming the forecast errors follow a
multivariate Gaussian distribution, the NLL of the label sequence, omitting constant terms, is:

T =
Ls(X,Y590) = [IY = go(X)|5 = (Y — 9o(X)) " DY — go(X)), @
where X € RT*" is the conditional covariance of the label sequence given X, X is the inverse of X.

However, it is infeasible to directly minimize L5 for model training. The conditional covariance
3’ is unknown and intractable to estimate from the single label sequence typically available per X.
This difficulty leads to the widespread adoption of the mean squared error (MSE) objective, which
in essence assumes 3 is an identity matrix (Lin et al., 2025) and therefore fails to model either
autocorrelation or heterogeneous uncertainty. Subsequent works advocate transforming the labels into
latent components for alignment, exemplified by FreDF (Wang et al., 2025¢) and Time-01 (Wang
et al., 2025d). However, the transformations they employ guarantee only marginal decorrelation
of the obtained components, not the required conditional decorrelation (i.e., diagonal X)°, thereby
failing to accommodate the autocorrelation effect. Moreover, they assign equal weight to optimize
each component, thereby failing to accommodate heterogeneous weights. Hence, existing methods
fail to address the two challenges in designing learning objectives for time-series forecast models.

Case study. We conducted a case study on the ECL dataset to substantiate our claims (Fig. 1). The
primary observations are summarized as follows:

>This property is demonstrated in Theorem 3.3 (Wang et al., 2025¢) and Lemma 3.2 (Wang et al., 2025d).
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Algorithm 1 Atomic update procedure of QDF.  Algorithm 2 The overall workflow of QDF.
Input: gy: forecast model, 3: weighting matrix, Input: go: forecast model, Dirain: training set.

D: dataset used to learn 3. Parameter: Ni,: round of inner update, Noy¢: round of
Parameter: N: number of updates, 7): update rate. outer update, n: update rate, K: number of splits.
Qutput: 3: obtained weighting matrix. Output: L£: obtained learning objective.
1: Din, Dout Split(D) 1: ¥« Ir, Di1,Ds,...,Dk < Split(Dtrain)
2: forn=1,2,...,Ndo 2: whilen =1,2,...,Noy do
3: Xin,Yin < Din 3: X4 « Algorithml(X2,, Dy, 90), k =1,...,K
4 0+ 0—-VoLls(Xin,Yin; o) 4: if | Znq1 — Enllp < le”*: break.
5: end for 5: end while
6: Xout, Yout — Dout 6: Xtrain, Ytrain — Dtrain
7 XX — VE['E (Xout, Yout; gG) 7: £ <~ ‘CE.,H_l (Xtrain, Ytrain; g(-))

* The identified challenges are prominent. As shown in Fig. 1(a), the partial correlation matrix
exhibits significant off-diagonal values (with over 61.4% exceeding 0.1), confirming the presence
of autocorrelation effect. Additionally, the conditional variances differ considerably across future
steps, highlighting the importance of using heterogeneous error weights.

 Existing methods fail to fully address them. The partial correlation coefficients of the latent
components extracted by FreDF and Time-ol (Wang et al., 2025e;d) are presented in Fig. 1(b).
Although the non-diagonal elements are notably reduced, residual values remain, indicating that
these methods do not completely eliminate autocorrelation in the transformed components.

Given the critical role of the weighting matrix in elucidating the two challenges and the limitation of
existing methods, it is essential to investigate strategies for incorporating the weighting matrix into
the design of learning objectives for training forecast models. Specifically, three key questions arise:
(1) How can the weighting matrix be estimated from data? (2) How to define a learning objective for
model training with it? (3) Does it improve forecasting performance?

3.2 LEARNING WEIGHTING MATRIX TARGETING GENERALIZATION

A direct approach to incorporating the weighting matrix X is to use the NLL from (2). However,
as previously established, it is impractical for training because the true conditional covariance X is
unknown and intractable to estimate accurately from data. To overcome this challenge, we advocate
to learn proxy 3 targeting model generalization. To this end, we treat 32 as learnable parameters and
the associated optimization problem is formulated in Definition 3.2.

Definition 3.2. Let D;, = (Xin, Yin) and Doyt = (X out, Y out) be non-overlapping splits of the
training data, each consisting of historical and label sequences. The bilevel optimization problem is

glg_% »CE (Xoutv Yout; 99*) where 0" = arg mein 'CE (Xina Yin; 99) (3)

where 3 > 0 means X is semi-definite positive, a fundamental property of covariance matrix.

There are two loops in the optimization problem (3). The inner problem trains the forecast model gg
on a data split D;,, using a fixed X; the outer problem then updates X to improve the generalization
performance of the trained model on a disjoint holdout set D,,;. This process ensures the learned 3
produces a learning objective that drives the forecast model to generalize well.

Re-parameterization. To solve the problem (3), it is crucial to enforce 3 >~ 0. We address this by
reparameterizing X via its Cholesky factorization, 3 = LL", where L is a lower-triangular matrix
with positive diagonals (which can be ensured with a softplus activation). This reparameterization
converts the constrained optimization over 3 into an unconstrained optimization over L, thus enabling
the use of standard gradient-based optimization methods. For clarity, in the following derivations, we
continue to use X and omit the notational complexity introduced by this reparameterization.

Algorithm 1 details the procedure for solving (3) via gradient descent. The algorithm begins by
partitioning the dataset D into two disjoint subsets, D;, and Dy, (step 1). Within the inner loop, the
objective Ly is evaluated over D;y, and its gradient with respect to the model parameters 6 drives
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the update of 6 (steps 2-5). Subsequently, in the outer loop, the objective is evaluated on Dy, and
the gradient with respect to X is used to update the weighting matrix (steps 6-7). It is important to
emphasize that the gradient in the outer loop is backpropagated through the updated model parameters
0 to X, rather than being taken directly with respect to 3. This approach ensures that the impact of
3 on the learned #—and thereby on the generalization performance—is fully captured. Collectively,
the procedure above performs a single update of ¥ toward the optimum of (3), and can be repeatedly
applied to iteratively refine the estimate of 3.

3.3 THE WORKFLOW OF QDF FOR TRAINING TIME-SERIES FORECAST MODELS

While we have established a method to learn an instrumental weighting matrix 33, it is not clear how
to use the obtained X for training forecast models. To fill this gap, we detail the workflow of QDF,
which first learns ¥ and then applies it to train forecast models. The principal steps are encapsulated
in Algorithm 2, which consists of three primary phases as follows.

* Initialization. The process begins by initializing 3 as an identity matrix. The training set Dyyain
is split chronologically into K non-overlapping subsets (step 1). This partitioning is crucial for
robustness: by updating 3 across different data distributions (subsets), we seek for an estimation of
3 that is less likely to overfit to any single part of the training data (Nichol and Schulman, 2018).

* Weighting matrix learning. With the data prepared, we iteratively refine 3 by applying Algorithm
| sequentially across the K subsets. The iteration stops when 3 converges (i.e., the change between
iterations is negligible) or a predefined number of rounds is completed (steps 2-5).

* Model training. With the learned weighting matrix 3 in hand, the final phase is to train the
forecast model gg. This is achieved by minimizing the corresponding NLL objective (L) over the
training set (steps 6-7). In practice, this minimization is performed using standard gradient descent,
and the NLL objective can be estimated on mini-batches for computational efficiency.

By employing L for model training, QDF effectively leverages the weighting matrix X, thereby
addressing the two established challenges. Specifically, the off-diagonal elements of 3 enable the
model to account for the autocorrelation effect, and non-uniform diagonals enable heterogeneous
weights for each error term. There is no risk of data leakage, as the full training procedure (Algo-
rithm 2) exclusively utilizes the training set, without using the validation or test sets. Notably, QDF
is model-agnostic, making it a versatile tool for improving the training of various direct forecast
models (Liu et al., 2024; Zeng et al., 2023; Piao et al., 2024).

The strategy of treating 3. as learnable parameters is conceptually related to the principles of meta-
learning (Nichol et al., 2018; Finn et al., 2017). However, our work diverges from meta-learning
in both goal and implementation. (1) The goal of meta-learning is to enable rapid adaptation
to new, dynamic tasks, whereas QDF is designed to construct a static objective for time-series
forecasting—specifically accommodating autocorrelation and heterogeneous weights. (2) This
difference in goals leads to different validation schemes. Meta-learning validates generalization
on a set of new tasks, whereas QDF uses a holdout dataset drawn from the same forecasting task
for validation. (3) In time-series analysis, some studies accommodate meta-learning for model
selection (Talagala et al., 2023), ensembling (Montero-Manso et al., 2020), initialization (Oreshkin
et al., 2021) and domain adaptation (Narwariya et al., 2020), whereas QDF aims to obtain a versatile
learning objective. To our knowledge, this is a technically innovative strategy.

4 EXPERIMENTS

To demonstrate the efficacy of QDF, there are six aspects that deserve empirical investigation:
1. Performance: How does QDF perform? We compare the forecast performance of QDF against
state-of-the-art baselines (Section 4.2) and learning objectives (Section 4.3).

2. Gains: What makes it effective? We perform an ablation study (Section 4.4) to investigate the
contribution of each technical element to its overall performance.

3. Versatility: Does it benefit different forecast models? We compare the performance of DF and
QDF using different forecast models (Section 4.5), with further results provided in Appendix D.4.
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Table 1: Long-term forecasting performance.

QDF TQNet PDF Fredformer  iTransformer FreTS TimesNet MICN TiDE PatchTST DLinear
(Ours) (2025) (2024) (2024) (2024) (2023) (2023) (2023) (2023) (2023) (2023)

Models

Metrics MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

ETTml 0371 0.389|0376 0391|0387 0.396|0387 0398|0411 0414|0414 0421|0438 0430|0396 0.421 | 0413 0407|0389 0.400 | 0403 0407

ETTm2 0270 0317|0277 0321]0283 0.331]0280 0324|0295 0336|0316 0365|0302 0.334]0308 0364|0286 0328|0303 0344|0342 0392

ETThl 0431 0431|0449 0439]0452 0440|0447 0.434 | 0452 0448|0489 0.474 [ 0472 0463|0533 0.519 | 0448 0435|0459 0451|0456 0453

ETTh2  0.368 0.397]0375 0400|0375 0399|0377 0402|0386 0407 |0.524 0.496]0.409 0420|0620 0.546]0.378 0401|0390 0413|0529 0.499

ECL 0.165 0257|0175 0265|0198 0.281]0.191 0.284]0.179 0.270 [0.199 0288|0212 0.306 | 0.192 0302|0215 0292 0.195 0.286|0.212 0301

Weather  0.242 0.268 | 0.246 0270 | 0265 0.283 | 0.261 0282|0269 0.289 0249 0293|0271 0295|0264 0321|0272 0291|0267 0288|0265 0317

PEMS03 0.089 0.197]0.119 0217 | 0.181 0.286|0.146 0260 |0.122 0.233 | 0.149 0261 | 0.126 0230|0106 0.223]|0316 0370|0170 0282|0216 0322

PEMS08 0.120 0.221 | 0.139 0240|0210 0.301 | 0.171 0271 | 0.149 0.247|0.174 0275 | 0.152 0.243]0.153 0258 | 0.318 0378 0.201 0.303 [ 0249 0332

Note: We fix the input length as 96 following Liu et al. (2024). Bold and underlined denote best and second-best results, respectively. The reported results are
averaged over forecast horizons: T=96, 192, 336 and 720. QDF employs the top-performing TQNet as the forecast model.

4. Flexibility: Does the weighting matrix accommodate meta-learning methods? We attempt to
learn the weighting matrix using established meta-learning methods (Section 4.5).

5. Sensitivity: Is it sensitive to hyperparameters? We conduct a sensitivity analysis (Section 4.7) to
show that its effectiveness across a wide range of hyperparameter values.

6. Complexity: Is it computational expensive? We investigate the running time of QDF given
different settings (Appendix D.7).

4.1 SETUP

Datasets. Our experiments are conducted on public datasets for time-series forecasting, consistent
with prior works (Wu et al., 2023; Liu et al., 2024). The employed datasets include: ETT (consisting
of ETTh1, ETTh2, ETTml, and ETTm?2), Electricity (ECL), Weather, and PEMS. For each dataset,
we adopt a standard chronological split into training, validation, and testing partitions. Further details
on dataset statistics are available in Appendix C.1.

Baselines. We compare QDF with 10 previous methods, which we categorize into two groups (Wang
et al., 2025d): (1) Transformer-based models: PatchTST (Nie et al., 2023), iTransformer (Liu et al.,
2024), Fredformer (Piao et al., 2024), PDF (Dai et al., 2024) and TQNet (Lin et al., 2025); (2)
Non-transformer based models: DLinear (Zeng et al., 2023), TiDE (Das et al., 2023), MICN (Wang
et al., 2023b), TimesNet (Wu et al., 2023) and FreTS (Yi et al., 2023).

Implementation. To ensure a fair evaluation, all baseline models are reproduced using the official
codebases (Lin et al., 2025). We train all models with the Adam optimizer (Kingma and Ba, 2015)
to minimize MSE on the training set. Notably, we disable the drop-last trick during both training
and inference to prevent data leakage and ensure fair comparisons, as suggested by Qiu et al. (2024).
More implementation details are available in Appendix C.

4.2 OVERALL PERFORMANCE

In this section, we compare the long-term forecasting results. As shown in Table 1, integrating QDF
yields consistent improvements in forecast accuracy across all evaluated datasets. For instance, on the
PEMSO0S dataset, QDF achieves a notable reduction in both MSE and MAE by 0.019. We attribute
the enhanced performance to QDF’s adaptive weighting mechanism, which addresses two critical
challenges in objective design: label autocorrelation effect and heterogeneous task weights.

Examples. A qualitative comparison between forecasts generated by DF versus QDF is presented
in Fig. 2. The model trained with DF captures general patterns, but it often fails to model subtle
dynamics. For example, on ETTm?2, it struggles to follow a sustained upward trend, and on ECL,
it misses a periodic peak around the 150th step. In contrast, QDF accurately captures these subtle
patterns, which showcases its practical utility to improve real-world forecast performance.
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Figure 2: The forecast sequence of DF (in blue) and QDF (in red), with historical length H = 96.

Table 2: Comparable results with other objectives for time-series forecast.

Loss QDF Time-ol FreDF Koopman Soft-DTW DF

Metrics MSE MAE ‘ MSE MAE MSE MAE ‘ MSE MAE MSE MAE MSE MAE

ETTml1 0.371 0.389 | 0372 0.390 | 0375 0390 | 0595 0499 | 0387 0394 | 0376 0.391
ETThl 0.431  0.431 0437 0432 | 0432 0432 | 0451 0442 | 0453 0438 | 0449 0439
ECL 0.165  0.257 | 0.167  0.257 | 0.168 0.257 | 0.166 0258 | 0.623  0.524 | 0.175  0.265
Weather | 0.242  0.268 | 0.245 0269 | 0.244  0.268 | 0282 0306 | 0.255 0276 | 0246  0.270

TQNet

ETTml1 0.381  0.394 | 0386 0399 | 0387 0400 | 0.587 0485 | 0.396 0.404 | 0387 0.396
ETThl 0.436 0429 | 0438 0438 | 0437 0435 | 0497 0472 | 0447 0447 | 0452 0440
ECL 0.194 0.277 | 0.195 0276 | 0.194 0.274 | 0.196  0.281 0.695 0.548 | 0.198  0.281
Weather | 0.259  0.281 0.264 0284 | 0.268  0.287 | 0.268  0.290 1.296 0452 | 0265 0.283

PDF

Note: Bold and underlined denote best and second-best results, respectively. The reported results are averaged over forecast horizons: T=96, 192, 336 and 720.

4.3 LEARNING OBJECTIVE COMPARISON

In this section, we compare QDF against alternative learning objectives. Each objective is integrated
into two forecast models: TQNet and PDF, using their official implementations. The results are
summarized in Table 2. Overall, methods designed to correct for bias in likelihood estimation, namely
FreDF and Time-ol, deliver consistent performance improvements. However, as we established in
Section 3.1, these approaches cannot handle the two challenges and yield suboptimal performance. In
contrast, QDF achieves the best performance, with its weighting matrix effectively tackling the two
main challenges in objective design: the label autocorrelation effect and heterogeneous task weights.

4.4 ABLATION STUDIES

In this section, we examine the technical components within QDF that address the two key challenges
of learning objective design and assess their individual contributions to forecast performance. The
results are presented in Table 3, with key observations as follows:

+ QDF' enhances DF by enabling heterogeneous task weights. Specifically, this variant follows the
QDF procedure but sets the off-diagonal elements of the weighting matrix to zero while allowing
the diagonal elements to be learned. It consistently outperforms DF, indicating that assigning
heterogeneous weights to different forecast tasks can improve performance.

+ QDF* improves DF by modeling label autocorrelation effects. Specifically, it fixes the diagonal
elements of the weighting matrix to one, while learning the off-diagonal elements. It also surpasses
DF, achieving the second-best results overall. This highlights the benefit of modeling autocorrelation
effects in the learning objective for forecasting performance.

* QDF integrates both factors above and achieves the best performance, demonstrating the synergistic
effect of addressing both heterogeneous task weights and label autocorrelation.

4.5 GENERALIZATION STUDIES

In this section, we explore the versatility of QDF as a model-agnostic enhancement. To this end, we
integrate it into different forecast models: TQNet, PDF, FredFormer and iTransformer. The results in
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Table 3: Ablation study results.

T=96 T=192 T=336 T=720 Avg
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTml 0.310 0.352 0.356 0.377 0.388  0.400 0.450 0.437 0.376 0.391
DF X X ETThl 0372 0.391 0.430 0.424 0.486 0.454 0.507 0.486 0.449 0439
ECL 0.143  0.237 0.161  0.252 0.178  0.270 0.218 0.303 0.175  0.265
Weather 0.160 0.203 0.210 0.247 0.267 0.289 0.346 0.342 0.246  0.270

Model Hetero. Auto. Data

ETTml 0.309 0.351 0.354 0.378 0.387 0.401 0.450 0.439 0.375 0.392

DE' v F's ETThl 0372 0.394 0.432 0.424 0.475 0.445 0.494 0.481 0.443  0.436
Q ECL 0.135 0.230 0.154  0.246 0.170  0.263 0.203 0.293 0.166 0.258
Weather 0.159  0.202 0.208 0.246 0.265 0.287 0.344  0.341 0.244  0.269
ETTml 0.308 0.351 0.353 0.377 0.385 0.399 0.443  0.436 0372 0.391
QDF! F's v ETTh1 0.369 0.391 0.430 0.422 0.477 0447 0.492  0.475 0442  0.434

ECL 0.136  0.230 0.153  0.245 0.171  0.264 0.203  0.292 0.166  0.258
Weather 0.159  0.202 0.210 0.247 0.266 0.289 0.343  0.340 0.245 0.269

ETTml 0.307 0.349 0.352  0.376 0.383  0.398 0.441 0.434 0.371  0.389
v v ETThl 0.365 0.389 0.427 0.421 0.466 0.449 0.466  0.467 0.431 0.431
ECL 0.135 0.229 0.153 0.245 0.169 0.262 0.202  0.291 0.165 0.257
Weather 0.158 0.201 0.207 0.245 0.263  0.286 0.342  0.339 0.242  0.268

QDF

Note: Bold and underlined denote best and second-best results, respectively. “Hetero.” and “Auto.” are abbreviations for heterogeneous task weight and label
autocorrelation effect, respectively. It employs the top-performing TQNet as the forecast model. Avg indicates average results over forecast horizons: T=96,
192, 336 and 720.
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Figure 3: Improvement of QDF applied to different forecast models, shown with colored bars for
means over forecast lengths (96, 192, 336, 720) and error bars for 50% confidence intervals.

Fig. 3 show that QDF delivers consistent performance gains across all evaluated models. For example,
on the ECL dataset, augmenting FredFormer and TQNet with QDF reduced their MSE by 7.4% and
5.9%, respectively. This consistent ability to elevate the performance of various models underscores
QDF’s versatility for improving time-series forecast performance.

4.6 FLEXIBILITY STUDIES

In this section, we explore the flexible implementation of QDF. Since the weighting matrix in
QDF is treated as a set of learnable parameters, it is natural to investigate whether established
meta-learning algorithms can be used to optimize it. To this end, we examine several represen-
tative meta-learning methods, including MAML (Finn et al., 2017), iMAML (Rajeswaran et al.,
2019), MAML++(Antoniou et al., 2019), and Reptile(Nichol and Schulman, 2018). Overall, all

Table 4: Comparison with meta-learning methods on ECL dataset.

Method | T=96 \ T=192 \ T=336 | T=720
| MSE MAE | MSE MAE | MSE MAE | MSE MAE
DF 0.143 0.237 0.161 0.178 0.270 0.218 0.303

iMAML | 0.1355 749 02303 269 | 0.154, 319
MAML 0.1365 549, 0.2303 509¢, | 0.1544 5407

0.1704 459 0.2635 479 | 0.2055 909, 02933 369

0.1704 7196, 0.2635 569 | 0.2055 659,  0.2933 o997y
MAMLA++ | 0.1355 769  0.2293 3307 | 0.1544 250, 29% | 01704 700, 0.2635 659 | 0.2046 419 02923 579
Reptile 0.1365 069 0.2305. 909 | 0.1553 7305,  0.2475 149, | 01713 9190, 02645 o797 | 0.2065 369, 0.2945 969,
QDF 0.1355 109, 0.22935 639, | 0153, 769, 0.2455 g001 | 01695 149,  0.2625 7197 | 0.2027 5700, 0.2904 99,

Note: Bold and underlined denote best and second-best results, respectively. The subscript denotes the relative error reduction compared with DE.
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Figure 4: Impact of hyperparameters on the performance of QDF.

these methods outperform the canonical DF approach that sets the weighting matrix as an identity
matrix, thereby demonstrating the flexibility of QDF’s implementation. However, these methods do
not explicitly optimize the weighting matrix for out-of-sample generalization, which is a distinct
advantage of our implementation that benefits forecast performance.

4.7 HYPERPARAMETER SENSITIVITY

In this section, we examine the impact of key hyperparameters on QDF’s performance, with results
shown in Fig. 4. The main observations are as follows:

* The coefficient Ny, determines the number of inner-loop updates in Algorithm 2. We observe that
increasing Nj, from O to 1 significantly improves forecasting accuracy. Further increases bring
marginal gains, suggesting that the forecast model’s performance after one-step update already
provides valuable signals to guide the weighting matrix update.

* The coefficient K determines the number of data splits in Algorithm 2. The best performance is
achieved when K = 3, indicating that splitting the data enhances the generalization ability of the
learned weighting matrix. Increasing it further leads to diminishing returns, as the sample size per
split becomes too small to be informative given large values of K.

* The coefficient 1 determines the update rate in Algorithm 2, where setting it to zero immediately
reduces the method to the DF baseline. In general, using > 0 to update the weighting matrix
effectively improves performance, and the improvement is robust to a wide range of 7 values.

CONCLUSION

In this study, we identify two key challenges in designing learning objectives for forecast models: the
label autocorrelation effect and heterogeneous task weights. We show that existing methods fail to
address both challenges, resulting in suboptimal performance. To fill this gap, we introduce a novel
quadratic-form weighted learning objective that simultaneously tackles these issues. To apply this
objective, we propose a QDF learning algorithm, which trains the forecast model using the quadratic
objective with an adaptively updated weighting matrix. Experimental results demonstrate that QDF
consistently enhances the performance of various forecasting models.

Limitations & future works. A limitation of the current QDF is that it assumes a static weighting
matrix ¥ suffices to enhance the learning objective. While this assumption is well motivated to
address the two identified challenges—label autocorrelation and heterogeneous task weighting—it
constrains the expressiveness of the learned objective. A promising solution for future work would
be to employ a hyper-network that dynamically generates input-dependent weighting matrix, thereby
yielding a more adaptive and expressive formulation that could potentially lead to further performance
improvements.
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REPRODUCIBILITY STATEMENT

The anonymous downloadable source code is available at https://anonymous.4open.
science/r/ODF-8937. For theoretical results, a complete proof of the claims is included
in the Appendix B; For datasets used in the experiments, a complete description of the dataset
statistics and processing workflow is provided in Appendix C.
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A ON THE LABEL AUTOCORRELATION ESTIMATION DETAILS

In this section, we introduce the procedure for estimating the label autocorrelation in Fig. 1. A
primary challenge in this estimation is accounting for the confounding influence of the historical
input sequence, X (Wang et al., 2025c¢; Li et al., 2024b;c). A direct correlation between labels at
different time steps, such as Y; and Y/, may not exist. However, failing to control for the common
influence of X can introduce spurious correlations (Wang et al., 2023a; 2025a), leading to a biased
estimation (Wang et al., 2025b; Li et al., 2024a). Consequently, standard metrics like the Pearson
correlation coefficient are inadequate for this task, as they are unable to isolate the relationship
between Y, and Y/ from the spurious correlations.

To overcome this limitation, we utilize the partial correlation coefficient to provide a proxy of label
autocorrelation. Our approach mirrors MATLAB’s “partialcorr® function®. Specifically, to compute
the partial correlation between two points in the label sequence, Y; and Y/, while conditioning on
the history sequence X (the control variables), we employ a two-stage regression process. First, we
fit two separate linear regression models using ordinary least squares (OLS) to predict Y; and Y/
from X. The resulting residuals, €; and €;/, represent the variance in Y, and Y, that is not explained
by X. The partial correlation is then computed as the standard Pearson correlation between these
two sets of residuals, p(e;, €;/). This procedure effectively quantifies the linear relationship between
Y ; and Y4 after factoring out the confounding influence of the historical context.
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Figure 5: The label autocorrelation effect on the original label sequence and the components extracted
by FreDF and Time-ol (Wang et al., 2025d;e). The datasets are ETTh1, ETTh2, ECL, and Weather
from left to right. The forecast length is uniformly set to 96.

To further validate the observations from the case study in Fig. 1, we extend the analysis on four
additional datasets. As illustrated in Fig. 5, the partial correlation matrices corresponding to the raw
labels display significant off-diagonal values across multiple datasets. This pattern provides strong
evidence for the widespread presence of label autocorrelation. In contrast, while the latent components
extracted by methods such as FreDF and Time-ol (Wang et al., 2025¢;d) show a marked reduction in
these off-diagonal correlations, they do not succeed in eliminating them entirely. The persistence of

3The official implementation is detailed at https://www.mathworks.com/help/stats/
partialcorr.html.
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these residual values suggests that these methods only partially eliminate the autocorrelation effect.
Therefore, directly applying point-wise error (such as MSE or MAE) on the obtained components
yields bias due to the oversight of residual autocorrelation effect.

One might advocate for directly estimating the conditional covariance from data statistically. However,
this approach is generally intractable due to its prohibitive computational complexity. Specifically,
to estimate the partial correlation between each pair of time steps ¢ and ¢’, two OLS problems must
be solved over the entire dataset. The scale of each OLS problem grows rapidly with the length of
the history sequence and the number of covariates. Worse still, the overall complexity increases
quadratically with the forecast horizon. For example, if the forecast length T = 720, computing
the full partial correlation matrix requires estimating 720 x 720 partial correlations. In our case
study, we mitigate this complexity by subsampling only 5,000 examples from each dataset, restricting
the history sequence length to 8, and limiting the forecast horizon to 96. This reduction makes the
estimation tractable and affordable at the cost of accuracy, which is acceptable since the estimated
results are used solely for the case study rather than for model training.

B THEORETICAL JUSTIFICATION

Theorem B.1 (Likelihood formulation, Theorem 3.1 in the main text). Given history sequence X, let
Y € R7T be the associated label sequence and go(X) € R be the forecast sequence. Assuming the
label sequence given X follow a multivariate Gaussian distribution, the NLL of the label sequence,
omitting constant terms, is:

Le(X,Y;g0) = IY — go(X)|Ix = (Y — go(X))" (Y — go(X)), )

where 3 € RT*7T js the conditional covariance of the label sequence given X.

Proof. The proof follows the standard derivation of negative log-likelihood given Gaussian assump-
tion. Suppose the label sequence given X follows a multivariate normal distribution with mean
vector gg(X) and covariance matrix ¥. The conditional likelihood of Y is:

1 1 2
Py x = WQXP(_§HY_QO(X)“2) o)
On the basis, the conditional negative log-likelihood of Y is:
1
—log Py x = 5 (Tlog(2m) +log S| + ¥ — gu(X)]3,)

Removing the terms unrelated to gy, the terms used for updating € is expressed as follows:
Lx(X.Yig0) = IY — go(X)|5- ©)
The proof is therefore completed. O

C REPRODUCTION DETAILS

C.1 DATASET DESCRIPTIONS

Our empirical evaluation is conducted on a diverse collection of widely-used time-series benchmarks,
with their key properties summarized in Table 5. These include:

o ETT (Li et al., 2021): Electricity transformer data consisting of four subsets with varied temporal
resolutions (ETTh1/ETTh2 at 1-hour intervals, ETTm1/ETTm2 at 15-minute intervals).

* Weather (Wu et al., 2021): Comprises 21 meteorological indicators recorded every 10 minutes
from the Max Planck Institute.
* ECL (Wu et al., 2021): Hourly electricity consumption data from 321 clients.

* PEMS (Liu et al., 2022): California traffic data aggregated in 5-minute windows. We utilize the
PEMSO03 and PEMSO0S subsets.

For all datasets, we adopt a standard chronological split into training, validation, and testing sets,
following established protocols (Qiu et al., 2024; Liu et al., 2024). We standardize the input
sequence length to 96 for the ETT, Weather, and ECL datasets, evaluating on forecast horizons of
{96,192, 336, 720}. For the PEMS datasets, we use forecast horizons of {12, 24, 36, 48}.
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Table 5: Dataset description.

Dataset D Forecast length Train / validation / test Frequency Domain

ETThl 7 96, 192, 336, 720 8545/2881/2881 Hourly Health

ETTh2 7 96, 192, 336, 720 8545/2881/2881 Hourly Health

ETTml 7 96, 192, 336, 720 34465/11521/11521 15min Health

ETTm?2 7 96, 192, 336, 720 34465/11521/11521 15min Health

Weather 21 96, 192, 336, 720 36792/5271/10540 10min Weather

ECL 321 96, 192, 336, 720 18317/2633/5261 Hourly Electricity

PEMSO03 358 12, 24, 36, 48 15617/5135/5135 Smin Transportation

PEMS08 170 12, 24, 36, 48 10690/3548/265 Smin Transportation
Note: D denotes the number of variates. Frequency denotes the sampling interval of time points. Train, Validation, Test denotes the number
of samples employed in each split. The taxonomy aligns with (Wu et al., 2023).

C.2 IMPLEMENTATION DETAILS

All baseline models were reproduced using official training scripts from the iTransformer (Liu et al.,
2024) and TQNet (Lin et al., 2025) repositories after checking reproducibility. Models were trained
to minimize the MSE loss using the Adam optimizer (Kingma and Ba, 2015). The learning rate was
selected from the set {1073, 5 x 1074,107*,5 x 10~°}. We employed an early stopping patience of
3, halting training if validation loss did not improve for three consecutive epochs.

When integrating QDF into an existing forecasting model, we retained the original model’s established
hyperparameters as reported in public benchmarks (Liu et al., 2024; Piao et al., 2024). Our tuning
was conservatively limited to the QDF-specific parameters, i.e., the round of inner update (Nj,), the
number of splits (K), and the update rate (1), along with the learning rate. The final hyperparameter
configuration for each model was selected based on its performance on the validation set.

D MORE EXPERIMENTAL RESULTS

D.1 OVERALL PERFORMANCE

We provide additional experiment results of overall performance in Table 6, where the performance
of each forecast horizon T is reported separately.

D.2 SHOWCASES

We provide additional experiment results of qualitative examples in Fig. 6 and Fig. 7.

D.3 LEARNING OBJECTIVE COMPARISON

We provide additional experiment results of learning objective comparison in Table 13.

D.4 GENERALIZATION STUDIES

We provide additional experiment results of generalization studies in Fig. 8.

D.5 CASE STUDY WITH PATCHTST OF VARYING HISTORICAL LENGTHS

We provide additional experiment results of varying historical lengths in Table 8, complementing
the fixed length of 96 used in the main text. The forecast models selected include TQNet (Lin et al.,
2025) which is the recent state-of-the-art forecast model, and PatchTST (Nie et al., 2023) which is
known to require large historical lengths. The results demonstrate that QDF consistently improves
both forecast models across different history sequence lengths.
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Figure 6: The forecast sequences generated with DF and QDF. The forecast length is set to 336 and
the experiment is conducted on ETTm?2.
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Figure 7: The forecast sequences generated with DF and QDF. The forecast length is set to 192 and
the experiment is conducted on ECL.
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Table 6: Full results on the multi-step forecasting task. The length of history window is set to 96 for
all baselines. Avg indicates the results averaged over forecasting lengths: T=96, 192, 336 and 720.

QDF TQNet PDF Fredformer iTransformer FreTS TimesNet MICN TiDE PatchTST DLinear
(Ours) (2025) (2024) (2024) (2024) (2023) (2023) (2023) (2023) (2023) (2023)

Metrics MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE_MAE | MSE_MAE | MSE MAE | MSE_MAE | MSE_MAE | MSE MAE | MSE MAE

96 [0.307 0.349]0.310 0.352]0.326 0.363|0.326 0.361]0.338 0.372|0.342 0.375]0.368 0.394]0.319 0.366 | 0.353 0.374|0.325 0.364|0.346 0.373
E 192 [0.352 0.376 | 0.356 0.3770.365 0.381 [0.365 0.382{0.382 0.396 [ 0.385 0.400 | 0.406 0.409 |0.364 0.395[0.391 0.393|0.363 0.383]0.380 0.390
E 336 [0.383 0.3980.388 0.400 | 0.397 0.402 [0.396 0.404 | 0.427 0.424 [0.416 0.421|0.454 0.444 |0.395 0.425[0.423 0.414|0.404 0413|0413 0.414
m| 720 | 0.441 0.434 | 0450 0.437 | 0.458 0.437|0.459 0.444 |0.496 0.463|0.513 0.489 | 0.527 0.474|0.505 0.499 | 0.486 0.448 |0.463 0.442|0.472 0.450

z
ik

0.371 0.389)0.376 0.391|0.387 0.396 | 0.387 0.398 | 0.411 0.414 | 0.414 0.421|0.438 0.430|0.396 0.421 [0.413 0.407 | 0.389 0.400 | 0.403 0.407

96 10.170 0.253|0.175 0.256]0.176 0.264|0.177 0.260 | 0.182 0.265|0.188 0.279 | 0.184 0.262]0.178 0.277]0.182 0.265 | 0.180 0.266 | 0.188 0.283
192 0.234 0.294]0.243 0.300 [ 0.245 0.310{0.242 0.300 | 0.257 0.315|0.264 0.329 | 0.257 0.308 [ 0.266 0.343|0.247 0.304 [ 0.285 0.339 | 0.280 0.356
0.290 0.331[0.297 0.336|0.305 0.345]0.302 0.340 | 0.320 0.354|0.322 0.369 | 0.315 0.345[0.299 0.354 |0.307 0.343]0.309 0.347 [ 0.375 0.420

720 | 0.387 0.389]0.394 0.393 [0.404 0.403|0.399 0.397 |0.423 0.411|0.489 0.482|0.452 0.421 |0.489 0.482|0.408 0.398 |0.437 0.422|0.526 0.508

ETTm?2
w
oY)
s

0.302 0.334

z
x

0.270 0.317[0.277 0.321|0.283 0.331|0.280 0.324|0.295 0.336]0.316 0365

0.308 0.364 ‘ 0.286 0.328

0.303 0.344 ‘ 0.342 0.392

96 [0.365 0.389]0.372 0.391]0.388 0.400 | 0.377 0.396 | 0.385 0.405 | 0.398 0.409 | 0.399 0.418]0.381 0.416 |0.387 0.395|0.381 0.400 | 0.389 0.404
192 0.427 0.421]0.430 0.424 [0.440 0.428|0.437 0.4250.440 0.437 | 0451 0.442|0.452 0.451 [0.497 0.489|0.439 0.425|0.450 0.443 [ 0.442 0.440
336 | 0.466 0.449 | 0.486 0.454|0.483 0.449 [0.486 0.449 | 0.480 0.457 [0.501 0.472|0.488 0.469 | 0.589 0.555|0.482 0.447 | 0.501 0.470|0.488 0.467
720 | 0.466 0.467 | 0.507 0.486 [ 0.495 0.482|0.488 0.467 |0.504 0.492|0.608 0.571 |0.549 0.515|0.665 0.617 | 0.484 0.471 |0.504 0.492|0.505 0.502

ETThl

z
[

[ 0431 0.431]0449 0439

0.452 0440|0447 0434|0452 0.448 | 0.489 0.474 | 0.472 0.463

0.533 0.519]0.448 0.435]0.459 0451|0456 0.453

96 [0.286 0.338]0.293 0.343]0.291 0.340 | 0.293 0.344 | 0.301 0.349 [ 0.315 0.374]0.321 0.358]0.351 0.398 [0.291 0.340]0.299 0.349]0.330 0.383
192 | 0.361 0.388]0.364 0.390|0.374 0.391 [0.372 0.391{0.383 0.397 [ 0.466 0.467 | 0.418 0.417 [0.492 0.489 [ 0.376 0.392|0.383 0.404|0.439 0.450
0.408 0.422 (0411 0.424)|0.414 0.426|0.420 0.433 | 0.425 0.432]0.522 0.502 | 0.464 0.454 [0.656 0.582(0.417 0.427)|0.439 0.444|0.589 0.538

720 | 0.419 0.439|0.430 0.444 [ 0421 0.440 | 0.421 0.439 | 0.436 0.448|0.792 0.643 | 0.434 0.450 | 0.981 0.718|0.429 0.446 | 0.438 0.455|0.757 0.626

ETTh2
w
@
>N

‘Avg‘(mﬁx 0.397 | 0.375 0.400 | 0.375 0.399]0.377 0.402|0.386 0.407 | 0.524 0.496 | 0.409 0.420 | 0.620 0.546 | 0.378 0.401 [0.390 0.413|0.529 0.499

96 |0.135 0.229
192 0153 0.245
0.169 0.262

0.143 0.175 0.259 | 0.161 0.258 | 0.150 0.242 | 0.180 0.266 | 0.170 0.272|0.170 0.281 | 0.197 0.274 |0.170 0.264|0.197 0.282
0.161
0.178
720 [0.202 0.290 | 0.218
0.175
0.160
210

0.182 0.266 | 0.174 0.269 [ 0.168 0.259 | 0.184 0.272 | 0.183 0.282 | 0.185 0.297|0.197 0.277 | 0.179 0.273|0.197 0.286
0.197 0.282]0.194 0.290 [ 0.182 0.274 | 0.199 0.290 [ 0.203 0.302 | 0.190 0.298 | 0.212 0.292 | 0.195 0.288 [ 0.209 0.301
0.237 0.315]0.235 0.319 [0.214 0.304 | 0.234 0.322[0.294 0.366 | 0.221 0.329]0.254 0.325|0.234 0.320|0.245 0.334

ECL
(98]
@
IsN

| Avg | 0.165 0.257 | 0.198 0.281]0.191 0.284]0.179 0.270]0.199 0.288 |0.212 0306 | 0.192 0302 |0.215 0.292|0.195 0.286|0.212 0.301

96 |0.158 0.201 | 0.160 0.181 0.221 [ 0.180 0.220 | 0.171 0.210 [ 0.174 0.228 ] 0.183 0.229 [ 0.179 0.244 (0.192 0.2320.189 0.230 | 0.194 0.253
192 {0.207 0.245 0.24710.232 0.262 [ 0.222 0.258 [ 0.246 0.278 | 0.213 0.266 | 0.242 0.276 | 0.242 0.310|0.240 0.270 | 0.228 0.262 | 0.238 0.296
0.263 0.286 | 0.267 0.2890.285 0.300|0.283 0.301 [ 0.296 0.313|0.270 0.316 [ 0.293 0.312 | 0.273 0.330 [ 0.292 0.307 | 0.288 0.305 | 0.282 0.332
720 | 0.342 0.339]0.346 0.342 [ 0.360 0.348|0.358 0.348 |0.362 0.353 | 0.337 0.362 | 0.366 0.361 | 0.360 0.399|0.364 0.353|0.362 0.354 |0.347 0.385

Weather
(98]
15
=N

z
©

0.242 0.268|0.246 0.270]0.265 0.283|0.261 0.282]0.269 0.289 | 0.249 0.293]0.271 0.295|0.264 0.321]0.272 0.291 [0.267 0.288 | 0.265 0.317

12 [0.064 0.167 | 0.097 0.180]0.092 0.204 | 0.081 0.191 | 0.072 0.179 | 0.085 0.198]0.094 0.201]0.096 0.217 [ 0.117 0.226]0.092 0.210]0.105 0.220
24 10.080 0.189|0.099 0.204 [0.149 0.261|0.121 0.240 [0.104 0.217 | 0.129 0.244 [ 0.116 0.221 [0.095 0.210]0.233 0.322 | 0.144 0.263 [ 0.183 0.297
0.098 0.208)0.123 0.230{0.210 0.314 [ 0.180 0.292|0.137 0.251 |0.173 0.286 | 0.134 0.237 | 0.107 0.379 0.418 [ 0.200 0.309]0.258 0.361

48 |0.112 0.223]0.157 0.256|0.275 0.364 |0.201 0.316|0.174 0.285 | 0.207 0.315[0.161 0.262 | 0.125 0.535 0.516 [ 0.245 0.344]0.319 0.410

PEMS03
(%)
=N

z
o

0.089 0.197 | 0.119 0.217]0.181 0.286 | 0.146 0.260 | 0.122 0.233 | 0.149 0.261 | 0.126 0.230 | 0.106 0.316 0.370|0.170 0.282]0.216 0.322

12 [0.074 0.176 | 0.079 0.183]0.100 0.209 [ 0.091 0.199 | 0.084 0.187 [0.096 0.205|0.111 0.208 | 0.161 0.274 | 0.121 0.233]0.106 0.223]0.113 0.225
24 10.104 0.208 [0.117 0.222[0.168 0.273|0.138 0.245 | 0.123 0.227|0.151 0.258 [ 0.139 0.232[0.127 0.237|0.232 0.325[0.162 0.275[0.199 0.302
0.134 0.237 [ 0.158 0.260 | 0.244 0.333|0.199 0.303 | 0.170 0.268 | 0.203 0.303 | 0.168 0.260 | 0.148 0.252 [0.376 0.427 | 0.234 0.331|0.295 0.371

48 |0.168 0.263|0.203 0.295|0.327 0.389 | 0.255 0.338 |0.218 0.306 | 0.247 0.334[0.189 0.272|0.175 0.270 [ 0.543 0.527 [ 0.301 0.3820.389 0.429

PEMS08
(%)
=N

| Avg|0.120 0.221]0.139 0240|0210 0301 [0.171 0.271[0.149 0.247|0.174 0.275]0.152 0.243]0.153 0258|0318 0.378|0.201 0303]0.249 0332

MCount| 39 3 | 0 oo oo of]o o1 oo ofo oo 1]o0o o]0 o0

D.6 RANDOM SEED SENSITIVITY

We provide additional experiment results of random seed sensitivity in Table 9. The results include
the mean and standard deviation from experiments using five different random seeds (2021, 2022,
2023, 2024, 2025) in Table 9, which showcase minimal sensitivity to random seeds.

D.7 COMPLEXITY

We provide additional experiment results of the running time of QDF in Fig. 9. Specifically, we
investigate (1) the complexity of each inner-loop update, i.e., calculating L with fixed X for updating
6, and (2) the complexity of each outer-loop update, i.e., calculating L with fixed 6 for updating 3.
The forward phase calculates Ls; while the backward phase performs updates.

As expected, the running time for both forward and backward phases increases with the forecast
horizon T, since T determines the size of the weighting matrix 3 involved in the learning objective.
Nevertheless, the running time remains below 2 ms even when T increases to 720. Moreover, QDF’s
additional computations are confined exclusively to the training phase and are entirely isolated from
inference.
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Table 7: Comparable results with different learning objectives.

Loss QDF Time-ol FreDF Koopman Soft-DTW
Metrics MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
Forecast model: TQNet
96 [ 0307 0349 [ 0309 0351 [ 0314 0355 [ 0.806 0578 [ 0315 0353 [ 0310 0352
= | 192 | 0352 0376 | 0353 0375 | 0359 0378 | 0.619 0515 | 0360 0377 | 0356  0.377
£ | 33 | 0383 0398 | 0383 0398 | 0382 0396 | 0507 0468 | 0398 0402 | 0388  0.400
@ | 720 | 0441 0434 | 0444 0436 | 0444 0432 | 0450 0437 | 0476 0446 | 0450 0437
| Avg | 0371 0389 | 0372 0390 | 0375 0390 | 0595 0499 | 0.387 039 | 0376  0.391
96 | 0365 038 | 0381 0395 | 0369 0391 | 0415 0425 | 0379 0390 | 0372 0391
= | 192 | 0427 0421 | 0427 0424 | 0425 0422 | 0430 0422 | 0437 0424 | 0430 0424
£ | 336 | 0466 0449 | 0471 0444 | 0467 0445 | 0474 0445 | 0488 0453 | 0486 0454
Bl 720 | 0466 0467 | 0469 0466 | 0468 0469 | 0483 0474 | 0510 0487 | 0507  0.486
| Avg | 0431 0431 | 0437 0432 | 0432 0432 | 0451 0442 | 0453 0438 | 0449 0439
96 | 0135 0229 | 0.136 0228 | 0.136 0228 | 0.137 0231 | 0.162 0258 | 0.143 0237
S| 192 | 0153 0245 | 0.154 0245 | 0.155 0.245 | 0.154 0247 | 0446 0449 | 0.161  0.252
Q| 336 | 0169 0262 | 0171 0262 | 0.172 0263 | 0171 0264 | 0912 0675 | 0.178 0270
720 | 0.202 0290 | 0208  0.293 | 0209 0293 | 0204 0292 | 0971 0715 | 0218 0303
| Avg | 0.165 0257 | 0.167 0257 | 0.168 0257 | 0.166 0258 | 0.623 0524 | 0.175  0.265
96 | 0158 0201 | 0.159 0201 | 0.158 0.199 | 0223 0268 | 0.161 0202 | 0.160  0.203
5] 192 | 0207 0245 | 0209 0246 | 0209 0246 | 0269 0304 | 0212 0247 | 0210 0.247
T | 336 | 0263 0286 | 0268 0290 | 0266 0288 | 0291 0309 | 0270 0289 | 0.267  0.289
B ] 720 | 0342 0339 | 0344 0341 | 0344 0341 | 0346 0343 | 0378 0365 | 0.346  0.342
| Avg | 0242 0268 | 0245 0269 | 0244 0268 | 0282 0306 | 0255 0276 | 0246  0.270
Forecast model:PDF
96 [ 0320 0358 | 0326 0361 | 0325 0362 | 1.051 0.663 [ 0323 0362 [ 0326 0363
E 192 | 0361 0380 | 0371 0386 | 0372 0383 | 0420 0414 | 0371 0388 | 0365  0.381
£ | 33 | 0390 0401 | 0401 0409 | 0399 0409 | 0421 0415 | 0408 0413 | 0397 0402
W] 720 | 0451 0437 | 0448 0439 | 0453 0443 | 0456 0448 | 0480 0454 | 0458 0437
| Avg | 0381 0394 | 0386 0399 | 0387 0400 | 0587 0485 | 0.396 0404 | 0387 039
96 | 0375 0391 | 0380 0403 | 0373 0393 | 0632 0533 | 0383 0405 | 0388  0.400
= | 192 | 0423 0419 | 0422 0425 | 0423 0426 | 0424 0429 | 0430 0432 | 0440 0428
£ | 336 | 0461 0439 | 0463 0441 | 0477 0446 | 0456 0450 | 0462 0453 | 0483  0.449
2| 720 | 0484 0468 | 0485 0483 | 0475 0476 | 0476 0478 | 0511 0496 | 0495 0482
| Avg | 0436 0429 | 0438 0438 | 0437 0435 | 0497 0472 | 0447 0447 | 0452 0440
96 | 0.171 0257 | 0173 0253 | 0.163 0246 | 0.194 0278 | 0.164 0250 | 0.175  0.259
o | 192 | 0177 0261 | 0.181 0262 | 0.179 0261 | 0.173 0260 | 0387 0410 | 0.182  0.266
S| 33 | 0192 0277 | 0196 0282 | 0.196 0278 | 0.189 0276 | 0966  0.698 | 0.197  0.282
720 | 0234 0312 | 0229 0307 | 0237 0312 | 0228 0310 | 1263 0834 | 0237 0315
| Avg | 0194 0277 | 0.195 0276 | 0.194 0274 | 0.196 0281 | 0.695 0548 | 0.198  0.281
9 | 0176 0218 | 0178 0219 | 0173 0216 | 0202 0242 | 0178 0219 | 0.181 0221
5] 192 | 0225 0260 | 0236 0267 | 0235 0268 | 0225 0258 | 0232 0262
T | 336 | 0280 0299 | 0284 0304 | 0274 0295 | 0280 0302 | 0281 0296 | 0285  0.300
5| 720 | 0357 0347 | 0357 0348 | 0356 0350 | 0353 0347 | 4502 1036 | 0360 0.348
| Avg | 0259 0281 | 0264 0284 | 0268 0287 | 0268 0290 | 1296 0452 | 0265 0.283
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Figure 8: Performance of different forecast models with and without QDF. The forecast errors are
averaged over forecast lengths and the error bars represent 50% confidence intervals.

Table 8: Varying input sequence length results on the Weather dataset.

Models \ QDF TQNet \ QDF PatchTST
Metrics | MSE MAE | MSE MAE | MSE MAE | MSE MAE
96 0.158 0.201 0.160 0.203 0.180 0.224 0.189 0.230
192 0.207 0.245 0.210 0.247 0.226 0.262 0.228 0.262
96 336 0.263 0.286 0.267 0.289 0.279 0.300 0.288 0.305
720 0.342 0.339 0.346 0.342 0.354 0.347 0.362 0.354
| | Avg | 0242 0268 | 0.246 0270 | 0.260 0283 | 0.267 0.288
2 96 0.152 0.199 0.151 0.197 0.161 0.208 0.163 0.209
- 192 0.198 0.241 0.198 0.241 0.207 0.248 0.207 0.249
P 192 336 0.252 0.282 0.253 0.283 0.259 0.287 0.268 0.293
S 720 0.324 0.332 0.327 0.334 0.334 0.337 0.511 0.451

o
g | Avg | 0231 0263 | 0232 0264 | 0.240 0270 | 0287 0.301
& 96 0.148 0.198 0.149 0.198 0.160 0.214 0.158 0.208
= 192 0.195 0.240 0.196 0.243 0.204 0.253 0.235 0.291
336 336 0.244 0.279 0.246 0.281 0.251 0.287 0.252 0.287
720 0.313 0.327 0.318 0.331 0.324 0.338 0.326 0.336
\ | Avg | 0225 0261 | 0227 0263 | 0235 0273 | 0.243 0.280
96 0.148 0.199 0.155 0.206 0.161 0217 0.153 0.205
192 0.192 0.241 0.203 0.251 0.205 0.255 0.205 0.254
720 336 0.246 0.285 0.257 0.295 0.254 0.293 0.248 0.288
720 0.310 0.329 0.319 0.339 0.315 0.337 0317 0.339
\ | Avg | 0224 0264 | 0.233 0273 | 0234 0276 | 0231 0.272
Table 9: Experimental results (mean.qq) with varying seeds (2021-2025).
Dataset | ECL Weather
Metrics | MSE MAE | MSE MAE MSE MAE | MSE MAE

96 0.13510.000 0.22940.000 | 0.14310.000 0.23710.000
192 | 0.153+0.000 0.245+0.000 | 0.161+0.000 0.25240.000
336 0.169+0.000 0.26240.000 | 0.178+0.000 0.2704+0.000 | 0.264+0.001 0.287+0.001 | 0.266+0.001 0.289+0.001
720 0.2024+0.002 0.29110.002 | 0.218+0.000 0.30310.000 | 0.343+0.001 0.340+0.001 | 0.345+0.001 0.342+0.000

Avg | 0.165+0.001 0.257+0.000 | 0.175+0.000 0.265+0.000 | 0.244+0.001 0.269+0.001 | 0.246£0.001  0.271+0.001

0.160+0.001  0.2031+0.001 | 0.160+0.001 0.2031+0.001

Models ‘ QDF DF ‘ QDF DF
0.208:{:0_001 0.246:{:0.001 0.211;{:0_001 0248:{:0.001

19



Under review as a conference paper at ICLR 2026

16 175 14 75
E g £ g

o 14 3 150 012 5 180
£ € £ E

s F o5 Flo F 125

64 96 128 192 256 336 512 720 64 96 128 192 256 336 512 720 64 96 128 192 256 336 512 720 64 96 128 192 256 336 512 720
T T T
(a) Running time in the forward phase. (b) Running time in the backward phase.

Figure 9: The running time of the QDF algorithm given varying forecast horizons ('T). In each sub-
figure, the left panel considers the complexity of each inner-loop update (i.e., step 4 in Algorithm 1),
the right panel considers the complexity of each outer-loop update (i.e., step 7 in Algorithm 1).

Table 10: The comprehensive results of different learning objectives on the MAPE metric.

Dataset ‘ QDF Time-ol FreDF Koopman Dilate Soft-DTW DF
Forecast model: TQNet

ETTml 2.305 2.315 2.313 2.783 2.338 2.319 2.338
ETThl 9.619 9.697 9.875 10.488 10.036 10.283 10.290
ECL 2.509 2.540 2.534 2.601 2.554 5.316 2.578
Weather 3.054 3.098 3.086 3.573 3.121 3.276 3.121
Forecast model:PDF

ETTml 2.232 2.420 2.412 2.876 2421 2.391 2.283
ETThl 9.565 10.563 10.468 11.255 10.648 10.980 9.846
ECL 2.750 2.795 2.787 2.757 2.749 5.199 2.869
Weather 3.156 3.226 3.189 3.293 3.244 5.064 3.228

Therefore, QDF introduces no additional complexity to model inference, and the extra computational
cost during training is minimal.

D.8 PERFORMANCE ON THE MAPE METRIC
We provide additional experimental results of the MAPE metric in Table 10 on four datasets. The
underlying forecasting model is selected as TQNet (Lin et al., 2025) and PDF (Dai et al., 2024) for

their competitive performance. Overall, QDF achieves the best performance on 7 out of 8 cases,
thereby further substantiating its effectiveness on the MAPE metric.

D.9 SHORT-TERM FORECASTING RESULT
We provide additional experimental results of the short-term forecasting task on the M4 dataset in
Table 11. The forecasting architectures are selected as TQNet (Lin et al., 2025) and PDF (Dai et al.,

2024) for their recency and competitive performance. Overall, QDF consistently performs best in
21/30 cases, yielding the best overall performance.

D.10 CONVERGENCE OF ALGORITHMS

We visualize the loss curves of Algorithm 1 and 2 in Fig. 10 to demonstrate the convergence of the
two algorithms.

D.11 VISUALIZATION OF THE CORRELATION MATRIX

We provide additional experimental results to visualize the correlation matrix learned by QDF in
Fig. 11.

E STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the conference guidelines, we disclose our use of Large Language Models (LLMs)
in the preparation of this paper as follows:
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Table 11: The comprehensive results on the short-term forecasting task.

Loss QDF Time-ol FreDF Koopman DF

Metric ‘ SMAPE MASE OWA | SMAPE MASE OWA | SMAPE MASE OWA | SMAPE MASE OWA | SMAPE MASE OWA
Forecast model:TQNet

Yearly 13.355 3.015 0.788 | 13.377 3.004 0.787 | 13.404 3.022 0.790 | 22.588 5.512 1.385|13.502 3.074 0.800
Quarterly | 10.018 1.174 0.883 | 10.174 1.200 0.899 | 10.116 1.196 0.895| 17.713 2.415 1.685|10.132 1.192 0.895
Monthly | 12.756 0.939 0.884 | 12.776 0.949 0.889 | 12.786 0.952 0.891 | 18.655 1.506 1.355|12.777 0.945 0.887
Others 4909 3.203 1.022| 5.039 3.285 1.048 | 4908 3.219 1.024 | 7478 5365 1.633| 5.048 3.292 1.050
Average | 11.844 1.586 0.851 | 11.903 1.599 0.857 | 11.894 1.600 0.857 | 18.775 2.839 1.434 | 11.923 1.611 0.861
Forecast model:PDF
Yearly 13.426 3.044 0.794 | 13.524 3.014 0.793 | 13.479 3.052 0.796 | 23.515 5.695 1.436 | 13.532 3.036 0.796
Quarterly | 10.361 1.224 0917 | 10.690 1.282 0.953 | 10.367 1.241 0.923 | 19.090 2.572 1.804 | 10.646 1.279 0.950
Monthly | 12.930 0.961 0.900 | 13.181 1.003 0.928 | 13.023 0.987 0.916 | 20.595 1.756 1.540 | 13.208 0.999 0.928
Others 4.891 3.262 1.029 | 5.012 3256 1.041 | 5381 3.579 1.130| 9.890 8213 2.336| 5.698 3.735 1.188
Average | 12.026 1.618 0.866 | 12.254 1.645 0.882 | 12.108 1.653 0.879 | 20.370 3.181 1.583 | 12.292 1.672 0.890

0.25

Loss
o o o
w B (2}
() © o
Loss

o o

I 9

[$,] o
Loss

o o o o

[} (2} (2] ~

w (<] © N

0.24
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300
Step Step Step
1.40 0.96 1.08
» 1.05 o 0.84 o 096
] 8 g
0.84
= 670 072 a
0.72
0.60
0.35
0 100 200 300 0 100 200 300 0 200 400 600
Step Step Step

(a) The dynamics of loss functions in Algorithm 1 across different epochs.
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(b) The dynamics of loss functions in Algorithm 2 across different epochs.

Figure 10: The dynamics of loss functions on ETTm1, ETTm?2, ETTh1, ETTh2, ECL, and Weather
from left to right. The forecast horizon T' = 336.

Table 12: Running complexity of QDF algorithm under task splits K=3.

Direction ‘ Loop ‘

T=64

T=96

T=128

T=192 T=256 T=336 T=512

Forward

Inner
Outer

1.196 +0.007 1.175+0.011 1.17640.009 1.40940.012 1.43140.015 1.590+0.011 1.52340.012
1.161+0.010 1.168+0.014 1.16240.009 1.3504+0.019 1.366+0.011 1.357+0.013 1.361+0.012

1.672+0.012

Backward

Inner
Outer

1.147 +0.005 1.14440.005 1.137+0.006 1.487+0.007 1.49240.008 1.647+0.007 1.591+0.010
0.954+0.006 0.967+0.006 0.950+0.008 1.1904+0.009 1.19440.009 1.343+0.008 1.296+0.007

1.770+0.010
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Table 13: The performance of varying ranks of the inverse covariance matrix 3.

Rank Rank=1 Rank=0.8

Rank=0.6

Rank=0.4

Rank=0.2

DF

Metrics MSE MAE MAPE|MSE MAE MAPE|MSE MAE MAPE|MSE MAE MAPE|MSE MAE MAPE|MSE MAE

Forecast model: TQNet

96 10.307 0.349 2.156
192 {0.352 0.376
336 |0.383 0.398
720 [0.441 0.434

ETTml

0.308 0.350
0.354 0.377
0.387 0.399
0.445 0.437

0.310 0.351
0.355 0.379
0.387 0.399
0.446 0.437

0.309 0.351
0.354 0.378
0.387 0.400
0.443 0.437

0.310 0.352
0.352 0.377
0.387 0.401
0.445 0.437

2.201
2.295
2.357
2.538

0.310 0.352
0.356 0.377
0.388 0.400
0.450 0.437

| Avg0.371 0.389

[0.373 0.391

[0.375 0.392

[0.373 0.391

[0.373 0.392

2.348 0.376 0.391

96
192

0.158 0.201
0.207 0.245
336 |0.263 0.286
720|0.342 0.339

Weather

0.158 0.201
0.208 0.246
0.264 0.287
0.342 0.339

0.159 0.202
0.208 0.246
0.264 0.287
0.342 0.339

0.158 0.201
0.207 0.246
0.263 0.287
0.342 0.339

0.159 0.202
0.207 0.246
3.323 |0.264 0.287
3.355 |0.342 0.340

2.602
3.065

0.160 0.203
0.210 0.247
3.337 [0.267 0.289
3.380 [0.346 0.342

3.085

Avg [0.242 0.268

[0.243 0.268

[0.243 0.269 3.

[0.243 0.268

3.095 0.243 0.269

3.096 0.246 0.270

Forecast model:PDF

96 [0.320 0.358
19210.361 0.380
336 10.390 0.401
720 [0.451 0.437

2.176
2.210
2271
2.487

ETTml

0.314 0.355
0.358 0.378
0.389 0.401
0.449 0.434

0.315 0.353
0.358 0.376
0.389 0.402
0.447 0.434

0.317 0.358
0.359 0.379
0.389 0.399
0.448 0.435

2.103
2.194
2.245
2.468

0.314 0.356
0.361 0.380
0.389 0.398
0.447 0.435

2.126
2.253
2.280
2.475

0.326 0.363
0.365 0.381
0.397 0.402
0.458 0.437

| Avg|0.381 0.394 2.287

|0.377 0392

[0.377 0.391

|0.378 0.393

2.253 10.378 0.392

2.283 0.387 0.396

96
192
336
720

0.176 0.218
0.225 0.260
0.280 0.299
0.357 0.347

2.708
3.164
3.391
3.443

Weather

0.178 0.219
0.226 0.260
0.280 0.298
0.357 0.347

0.181 0.221
0.227 0.261
0.281 0.298
0.357 0.347

0.179 0.220
0.226 0.260
0.279 0.299
0.357 0.348

2.776
3.165
3.407
3.472

0.179 0.220
0.227 0.260
0.280 0.299
0.356 0.347

2.826
3.160

0.181 0.221
0.232 0.262
3.408 [0.285 0.300
3.440 [0.360 0.348

| Avg[0.259 0.281 3.176

|0.260 0.281

3.189]0.261 0.282

3.205 0.260 0.282

3.205 ]0.260 0.282

3.208 0.265 0.283
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Figure 11: The learned correlation matrix on different datasets: ETTm1, ETTm2 and Weather from

left to right.

We used LLMs (specifically, OpenAl GPT-4.1, GPT-5 and Google Gemini 2.5) solely for checking
grammar errors and improving the readability of the manuscript. The LLMs were not involved in
research ideation, the development of research contributions, experiment design, data analysis, or
interpretation of results. All substantive content and scientific claims were created entirely by the
authors. The authors have reviewed all LLM-assisted text to ensure accuracy and originality, and take
full responsibility for the contents of the paper. The LLMs are not listed as an author.
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