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ABSTRACT

In-context learning (ICL) enables pre-trained transformers (TFs) to perform few-
shot learning across diverse tasks, fostering growing research into its underlying
mechanisms. However, existing studies typically assume a causally-sufficient
regime, overlooking spurious correlations and endogenous prediction bias intro-
duced by hidden confounders (HCs). As HC commonly exists in real-world cases,
current ICL understandings may not align with actual data structures. To fill this
gap, we contribute the pioneer theoretical analysis towards a novel problem setup
termed as Endogenous ICL (EICL), which offers understanding the effect of HC
on the pre-training of TFs and the following ICL prediction. Our theoretical results
entail that pre-trained TFs exhibits certain prediction bias with proportional to
the confounding strength. To mitigate such prediction bias, we further propose a
gradient-free debiasing method named Double-Debiasing (DDbias) by prompting
the biased pre-trained TFs with a few unconfounded examples twice-once with the
original label and once with residual, to yield unbiased ICL predictions. Extensive
experiments on regression tasks across diverse designs of the TF architectures and
data generation protocols verify both our theoretical results and the effectiveness
of the proposed DDbias method.

1 INTRODUCTION

In the era of Transformers (TFs)-guided foundation models (Vaswani, 2017} [Dosovitskiy, [2020;
Gulati et al.l [2020; |Achiam et al., 2023)), In-context learning (ICL) (Brown et al., 2020) offers a
gradient-free learning approach by prompting pre-trained TFs with few-shot samples, e.g., predicting
on novel inputs z* given the sequences of pairs (x, y) (Garg et al.; 2022). As ICL enables pre-trained
TFs generalize well on novel inputs without tuning models, it becomes critical to understand intrinsic
mechanisms of ICL for developing more powerful and interpretable Al systems (Akyiirek et al.| 2022}
Xie et al., [2021; |Allen-Zhu & Li, [2023)).

Recent research has explored ICL through theoretical analyses (Ahn et al., [2023; Mahankali et al.|
2023} |Akytirek et al.l 2022; Von Oswald et al) |2023) and empirical studies (Garg et al., 2022}
Raventos et al.| 2024} Panwar et al.| 2023)), often with stylized setups to examine its various facets
(Garg et al., 2022; Panwar et al., 2023; |Wang et al.| [2023)). Especially, a prominent line of work
informs that the gradient-free inference of ICL is theoretically equivalent to performing implicit
gradient descent (GD), i.e., the feed-forwarding output of TFs with ICL prompting equals to the
output of TFs updated by GD (Akytirek et al., 2022 |Von Oswald et al., [2023} |(Cheng et al., 2023).
Consequently, ICL implicitly learns the input-output pairs exhibited in the prompt and predict on
the novel input. Further studies have investigated the pre-conditions behind such equivalence by
analyzing pre-trained TFs(Ahn et al.| 2023 |Mahankali et al.,|2023}; |Cheng et al., 2023} Zhang et al.,
2024b), where most of such advances are built on the assumption of linear data generation.

However, the recent researches of ICL regression overlook the potential endogenous training &
inference of ICL, i.e., the existence of hidden confounders between y and x (as pointed out by a
concurrent work (Liang et al.,|[2024)). Specifically, previous studies on understanding ICL often
assume the independence of the additive noise € and the predictors  (when generating the label
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Yy = wa—l—e) (Ahn et al.}[2023} [Von Oswald et al.,|2023;Zhang et al.; 2024bﬂ By contrast, emerging
empirical evidence reveals that the violations of this assumption (i.e., endogeneity) is prevalent across
a variety of tasks(Cheng et al., [2022a; Kumar et al.| 2019} |Landeiro & Culotta, 2016} |Wang et al.}
2021} Huang et al., 2022), leading to the concurrent understanding of ICL becoming rather restrictive.
Meanwhile, it remains unexplored that the effect of the endogeneity on the pre-training process of
TF's and the following ICL predictions. Therefore, two natural questions are intrigued in below:

1. Will transformers pre-trained with endogeneity achieve biased ICL predictions?
2. If such bias exists, can we design a cost-effective strategy (e.g., few prompting samples) to
correct the predictions without fine-tuning the pre-trained TFs?

In response to these questions, we study the problem setup termed as Endogenous ICL (EICL)
by allowing the (unobserved) noise € to depend on x: € )/ x. To answer the first question, we first
perform theoretical analysis on the pre-training dynamics of transformers with hidden confounders,
revealing that the ICL prediction of TFs exhibits bias proportional to the confounding strength.
To answer our second question, we then propose a double-debiasing method, i.e., prompting the
pre-trained transformer (biased) with extremely few unconfounded examples. Our theoretical results
justify that: (1) the proposed DDbias method can correct biased, pre-trained TFs to produce unbiased
ICL predictions; (2) our DDbias can achieve robust predictions even when the prompted ICL samples
are partially confounded. We summarize our contributions as follows:

* To the best of our knowledge, we conduct the first theoretical analysis characterizing the
endogenous bias induced by hidden confounders in both the pre-training and inference
dynamics of ICL. Notably, due to the attention parameters embodied in TFs, our theoretical
analysis exhibits fundamentally difference compared to typical OLS theory such as the
anisotropy feature-wise confounding results in bias cancellation.

* We propose an innovative ICL method, Double-Debiasing (DDbias), which requires only
extremely few unconfounded examples, offering a lightweight and gradient-free approach to
mitigate the bias embodied in frozen transformers. Moreover, we prove that our DDBias
remains robust towards either weakly confounded ICL samples or mixed examples.

» Extensive experiments validate our theoretical findings and demonstrate the effectiveness of
the proposed DDbias method.

2  PRELIMINARIES AND PROBLEM SETTING

We denote random variables by uppercase letters (e.g., X and Y') and their realizations by lowercase
letters (e.g.,  and y). The notation marked in bold refers to vectors/matrices (e.g., X). To index
terms in a sample matrices (e.g., X), we use the superscript to index i-th sample (e.g., x(?)) and [4] to
index j-th feature (e.g., x[4]). In addition, O,, and o(n) denote constant terms and vanishing terms
with n — oo, with O, and o(p) denoting boundness and convergence in probability, respectively.

2.1 IN-CONTEXT LEARNING

We focus on the linear ICL regression setup in (Von Oswald et al., 2023 Mahankali et al.| [2023}; |Garg
et al., 2022; Akyiirek et al., 2022) in this paper: predicting y" 1) for novel inputs x("*1) given a
sequence of (x(*), y(V).

Data generation: linear regression instances. We let x € R¢ denote feature vector with dimension
d, where labels / responses are defined as y € R! (x ~ Py and X is the domain of x). We
model the linear relationship between x and y as y* = (x(V, w,) + €, with ¢ referring to the
noise variable (Ahn et al., [2023; Mahankali et al.l 2023), and w, € R? drawn from Py. We let
DI = {x y Ve and D¢ = {x(*), y(} Ve denote paired samples during the pre-rraining and
ICL inference stages, respectively, with Ny, and Ny, denoting the sample numbers. The input samples

IThis assumption spans diverse perspectives such as implicit Bayesian explanations (Panwar et al., [2023;
Wang et al.l 2023) beyond GD-based explanations.
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are organized into the input matrix M € R(¢+1)>x(n+1) (p, denotes the sample number):

D x@ .. xm) (D)

M = . , )
JO @ Ly (

where m(Y) € R+ refers to the pair (x(,3(?). Intuitively, each column in M refers to a data
sample, i.e., a token sequence with response.

Linear Transformer. To ease the analysis, we focus on TFs equipped with linear self-
attention (Vaswani, 2017} |Von Oswald et al.,[2023; |Ahn et al., 2023} |Schlag et al., 2021)). With the
value, key and query weight matrices denoted as W, Wy, W € R4+ x(d+1) "3 single block of
TF can be expressed as follows (Von Oswald et al., 2023 |Ahn et al., [2023):

TE(M) = Attention(Wy,, W, Wi, M) = W, MCsof (M W, ' W,M), )

where sof (+) refers to the softmax operator operating on each column of M in equation 1} the mask
I, O
0 O
with j < n (Ahn et al,, 2023). With S = W,, € R+ @+ and T == W, "W, € R(HD*(d+1)
denoting attention weights, equation 2] can be reformulated with residual connections:

1

tr

matrix C = [ ] e R(+1x(n+1) reflects that the asymmetry that x(" 1) will not affects x(7)

TFs (M) =M + —SMC(M'TM) 3)

where ﬁ is the scaling factor without influencing the expressive power of TF (Ahn et al., 2023).

Remark 1. Clarified by previous advances (Ahn et al.| 2025} |Akyiirek et al.| |2022), the omission of
the softmax operation is somehow over-simplified, while the linear attention eases the theoretical
analysis.

In-context Prediction and Training Dynamics. ICL first prompting the TF with the first n pairs
m() and then predicting the response for the final sample x("*1) with the grounding y("+1). We
note that the predicted value of y("*1) can be read out from the (d + 1,7 + 1)-th entry TFs (M)
as TFgf%d(M) = —[TFs, 7 (M)](4+1,n+1)- The minus signal in TFgfr_eFd(M) follows the fact that the
predicted outcome can be read out from predictions of TF by multiplying —1 at the corresponding

entry of the output matrix (see derivations in (Ahn et al.||2023; Von Oswald et al.||2023))). During the
training stage, the ICL objective (Ahn et al.,[2023)) guides the optimization of TFs:

L1 (8.) = B [ (TR OV 47 "

Meanwhile, the linear coefficient vector w, shares the same distribution Py between training and
testing data (Ahn et al.; 2023} [Von Oswald et al., |2023; |Akyiirek et al., 2022]).

Meta-weights. We now introduce previous theoretical results (Ahn et al.,|2023;|Von Oswald et al.,

2023} Dai et al.,[2022)) that pre-trained TF's is performing implicit gradient descent (GD) by updating

the meta-weights during the ICL inference. A formal definition is presented in below:

Definition 1 (Meta-weights). A linear TF prompting with n sample pairs {X(i), y(i)}?:1 accom-
1 n

plishes implicit GD on the meta-weight w with the objection L(wW) = izl(WTX(i) — ()2,

2n

Then the TF predicts on x" 1) with the "learned" meta-weight w: "1 = (x("+1) w),

2.2 ENDOGENOUS ICL

As pointed out by (Liang et al.,[2024), previous ICL theories (Ahn et al.,|2023} [Schlag et al.| 2021}
Von Oswald et al., [2023; [Mahankali et al.,2023)) conveys an implicit assumption:

Assumption 1 (Causal Sufficiency). The pre-training data D'" admits the assumption that no hidden
confounders exist, i.e., € is exogenous such that ¢ 1l X.

However, such an assumption violates a wide range of tasks in diverse areas (Cheng et al., [2022a;
Kumar et al.l 2019; Wang et al.,[2021; |[Huang et al2022), and we offer detailed numerical evidence
in the Many-aspect Online Review (MSOR) task as a running example in Appendix [C| By allowing
the endogeneity in the pre-training data, we thus consider the following EICL setup:
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Problem 1 (Endogenous ICL (EICL)). We allow the existence of hidden confounders e: ¢ I X in
the pre-training data D'". In other words, € simultaneously affects x*) and y*) (see
illustrative causal graph in the middle of Fig.[3|in Appendix). Our goal is unbiased prediction on
y ) e, ij("Jrl , given a sequence of prompting data D¢ = (x(i), y(i))?zl during the ICL
inference. We let r; = E[X ;€| denote the confounding strength.

2.3 PREVIOUS ENDOGENEOUS REGRESSION THEORY CANNOT ANALYZE EICL

We note that a promising concurrent work (Liang et al.| [2024) is aware of a similar problem by
leveraging Instrumental Variables (IVs) to mitigate the hidden confounding. Unfortunately, we note
that in the EICL setup, traditional linear regression theories (Angrist et al}[T996) cannot be directly
adopted to analyze the effects of hidden confounders (Angrist et al., 1996} (Chen et al.,[2024c), due to
the newly emerging features of ICL.

Unlike linear regression, ICL prediction emerges from the interaction of attention blocks and the
training dynamics of K, @, V matrices after projection. As summarized in Tab. [T} ICL regression
differs from classical regression in two essential aspects:

* Different pre-training loss and representation dynamics. Transformers are trained by
sequentially feeding (Z;, §;) and predicting ¢, 11, whereas OLS directly solves w* from all
samples jointly.

¢ Different inference mechanism (few-shot prompting). ICL performs regression through
attention over in-context examples, not by solving a parameter. This few-shot inference has
no analogue in OLS.

Because of these mismatches, one cannot transfer the OLS endogenous bias derivation to the EICL
setting. In particular:

¢ (Challenge 1) The analysis must identify which attention parameters correspond to unbiased
ICL prediction; there is no direct analogue of “using w*” as in OLS.

 (Challenge 2) These attention parameters do not admit closed-form expressions, unlike the
OLS bias term E[X X "] "'E[X¢].

Table 1: Comparison between traditional linear regression and ICL regression.

Tasks Training Inference
Linear Regression  Lyse (W) = E(w) [(WTX — y)2] y D) = FTx(+1)
ICL Regression ICL Loss (see equation TFgf%d(M) = —[TFs, o (M)](a+1,n+1)

3 WHETHER AND HOw HIDDEN CONFOUNDERS CAUSE BIAS FOR ICL?

Theory Sketch. We outline the overall analysis into three steps (see Fig. [5] in Appendix): (1)
Subsection 3.1. In the presence of hidden confounders, we construct specific weight parameters of
TFs, termed as "U_weights". With U_weights served as pre-conditioned parameters, the induced
meta-weights yields unbiased ICL prediction results in EICL; (2) Subsection 3.2. We then prove
that the convergence of TFs in confounded data will deviate from the constructed U_weights, i.e.,
the grounding TF parameters. (3) Subsection 3.3. Based on such deviation in pre-training stage, we
finally prove that the downstream ICL inference will incur estimation bias, which is proportional to
the strength of the confounding effect.

3.1 UNBIASED ATTENTION WEIGHTS WITHOUT HIDDEN CONFOUNDERS

As considering hidden confounders € might inevitably bias the TF parameters during pre-training, we
first have to construct some “grounding-truth" parameters, termed as S*, T", inducing meta-weights
w" with unbiased ICL predictions, such that one can justify which TF parameter is “unbiased” and
then quantify the bias happened in the pre-training and inference stages. To this end, we find some
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grounding TF parameters with unbiased ICL prediction, when the ICL prompting data is also
confounded, i.e., e ). x(®) for {x(® y®}n_ .

Lemma 1 (Unbiased Attention Weights (U_weights)). Constructing the TF with parameterized by
S“ T in below:

w_ |Oaxa O w_ 1 |Igxa O
s _[wI O] T _—5[0 0}. )
Let §"Y) be predicted y such that (") = —TFgZefjru (M). Then it holds that j("+Y) =

(x("+1) W) where the Meta-weights (w") is optimized by standard gradient descent w.rt. the loss
L(w") = 5, 3 (W) Tx@ —w, Tx()2,

We also note that pre-trained weights in the unconfounded case (Ahn et al.,|2023; Mahankali et al.,
2023)) will induce biased inference results in the ICL stage with confounded testing examples (see
Appendix [E]) By contrast, Lemma 1 informs that in the case of EICL, the equivalence between
forwarding process of ICL and implicit unbiased gradient w.r.t. squared loss on learning w.

3.2 EFFECT OF ENDOGENOUS BIAS DURING THE PRE-TRAINING PHASE

Since the “grounding parameters” are constructed in Sec 3.1, we then are capable of characterizing
how parameters of TF pre-trained on endogenous data deviate from such grounding parameters, i.e.,
offering the theory of the pre-training stage in our ECIL problem (see Fig. [3).

To be specific, we denote the covariance matrix of the input X as ¥ = Udiag(\q, ..., Ad)UT, with
w, randomly sampled from A (0, I;). We use S?, T? to denote the parameters of TFs pre-trained
on the confounded data. Following previous protocols (Ahn et al.| [2023)), we first equivalently
reduce the form of parameters from (S, T*) to a more sparse version as {S?, T? ;}9_, (the same
as (S*, T“)ﬂ (see detailed derivation in Appendix . Subsequently, to prepare for our first main
result, some extra regularity assumptions are required:

Assumption 2. We assume that X; = r;e + kj, where € refers to the hidden confounder, r; is the
confounding strength, r:; refers to the noise term with E[r;] = 0 and E[x3] = 1.

Assumption 3 (No interference). For any i1, is, €") 1L x(2) and vice versa.

Our Assumption [2| aims to simplify our main results, while removing it will not affect our final
conclusion of the bias characterization. Meanwhile, the Assumption [3|is commonly adopted in causal
inference area, i.e., the Stable Unit Treatment Value Assumption (Zhang & Wang, [2024; Tchetgen &
VanderWeele, [2012)). Then we present our first main theorem in the pre-training phase in below:

Theorem 1 (Deviated Parameters During the Pre-training Phase). Under Assumptions 2] Blwith in
our EICL problem, we derive the following result for the single-layer TF with Px = N (0,X):

AL (8T)=U T K+R|UT, (6)
~—
Conf.Strength

where A;)T.e (g, T) characterizes the bias of the simplified/reduced TF parameters Sb, TP compared

to (unbiased) U_weights Su, T (see Sec. at the j-th feature dimension, the matrices R and K
consists of some constants w.r.t. the moments of €, the underlying weight w, and \.

Our Theorem informs that: (a) The (biased) TF parameters §7 T? deviate from the ground-
ing (induced unbiased ICL predictions) parameters S*, T with the gap proportional to the
confounding strength r; (see proof in Appendix [F.3.T).

3.3 EFFECT OF ENDOGENOUS BIAS DURING THE ICL PREDICTION PHASE

When characterized the effect of endogenous bias in pre-training phase, it is natural to doubt whether
such bias will propagate into the ICL prediction stage. To answer this question, we then derive the

28 refers to the last row of S?, and Tb ; (1 < j < d) refers to the first j-th column of T
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endogenous prediction bias through the meta-weight induced by deviated pre-training in Theorem
1 (). More specifically, definition [2|in below informs that our ICL Gradient Divergence equivalently
quantifies the estimation bias on y(¥):

Definition 2 (ICL Gradient Divergence). The j-th coordinate on the meta-weight (see Def[l) further
decides the prediction bias, as shown in below:

ALuli) = wli] = Wil = Ay@ = (w = w?) [i1x ). (M)
J
Difference in Induced Meta-Weights Prediction Bias

We then present our second main theorem by utilizing results from Theorem 1:

Theorem 2 (Estimation Bias). With regularity assumptions: (1) Bounded sample-covariance matrix
Z =mOmT asa; < miny<; g<qg Zp; < o, where m(i) = (x( y®)): (2) Finite second-
moments of Z: maxy, Var[Z] < kz, the following inequality holds with probability in 1 — 3, q;:

Adulllz  ry On (Z Ty (Z W*[v]> 02> +O0(kz Y \/'ZZ). 8)
l v l
~—

Conf. Strength Constant w.r.t. increasing n Constant w.r.t. q

Remark 2 (New Features of Our Bias Characterization). Notably, in our Theorelel AY 7] caused
by hidden confounders exist is proportional to the confounding strength r;, which shares similar
expression as in endogenous OLS regression (Angrist et al| [I996)). To be specific, under the typical

theory of OLS regression, the bias can be derived via a closed-form estimation of w,.:

E[w] — w* = E[XX |7 'E[X¢€],

and its prediction bias
E[Y (z)] —Y*(z) =2 E[XX | [riox,00,...,ra0x,0d ",

which depends only on the confounding correlations r;. However, these derivations fundamentally
rely on properties that do not hold in transformer-based ICL. By contrast, our bias in Theorem[Z]
differs qualitatively from OLS:

* Bias cancellation via ), r;. The global bias depends on the sum of confounding strengths
across dimensions, enabling cancellation when ), 7y = 0. Classical OLS regression does
not exhibit this property.

e Dependence on attention geometry. Additional bias terms arise from how confounders
interact with attention, a behavior entirely absent in OLS/IV regression.

4 DOUBLY-DEBIASING: PROMPTING WITH UNBIASED DATA COLLECTION

Current ICL-based de-confounding methods are limited to instrumental-variable (IV) ap-
proaches (Liang et all [2024). Moreover, data-fusion de-confounding techniques
[20T8}, [Li et al.| [2024) require fine-tuning transformers on unbiased data, which contradicts the
inference-only nature of ICL. Motivated by these gaps, we propose a novel gradient-free debias-
ing framework, Doubly-Debiasing (DDbias), which operates without any additional fine-tuning,
auxiliary labels, or IV construction.

Collecting a small number of unbiased prompting data (i.e., samples with independence € L x)
as D" = {x,nC ) 31 without hidden confounders existing between y\) and x2);

(1) We first prompt the pre-trained TF with D¥ = {xﬁ?, Yré }"b1 with predicted (biased)
outcome as g}éi),

(2) We then prompt the TF again with residual prompting {xm , yﬁc) “(z)

for y("*+1) will be unbiased.

.21, and the prediction
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We first prove that our DDbias method implicitly performs gradient descent w.r.t. learning the residual
term y(9) — gjéz) using a squared loss in below:
Theorem 3 (Implicit Implementation of Debiasing Algorithm). Consider the TF with parameterized

by biased S*, T, and let "1 be predicted y such that ") = TF’S’ZS,‘;I, (M). Then it holds

that "1 = <x£ﬁ+1), wPEB) where the Meta-weights {wPEB} is defined as wHEP equaling to
some constant and as follows for 1 > 0:
n

1 NG .
Wi = WP =g VL(wPEP) where £ (w) = o3 (0 — gy —wIx(2)?(©)
i=1

where g)éi) refers to the biased prediction from pre-trained TF equipped with S, T®.

We then prove that optimizing equationEl in Theoremyields unbiased ICL prediction over y(**+1):

Proposition 1. Assuming that: (1) TF equipped with gb and T' is a consistent estimator on con-

founded pre-trainined data; (2) X, Y, Y}, have finite fourth moments over the unbiased prompting

data, optimizing over L% (w) = = 3" | (y® — g}l()i) — w—'—x,(fc))2 vields unbiased ICL prediction.

Theorem 3|and Proposition|[T]informs that with our proposed DDbias, TFs pre-trained on biased
data can achieve unbiased ICL predictions without requiring tuning the model parameters or

constructing IVs as in (Liang et all 2024) (see proof in Appendix [F.3.3).

4.1 ROBUSTNESS OF DDBIAS ON PARTIALLY CONFOUNDED DATA

In real-world in-context learning (ICL) setups, the residual correction set is rarely perfectly unbiased.
Confounding may occur due to imperfect interventions, correlated noise, or heterogeneous data
sources, resulting in non-zero feature—noise correlation E[z;¢] # 0. We consider two representative
forms of such bias:

* (1) Weakly confounded samples: All samples exhibit mild but bounded confounding
effects, i.e., |[E[z;¢]| < § with a small ¢. This scenario reflects globally weak bias, where
each example slightly deviates from the ideal unconfounded assumption.

* (2) Partially confounded samples: Only a fraction p of samples are contaminated while
the remaining (1 — p) are unbiased. This case captures the realistic situation where most
context examples are clean, but a small portion introduces systematic bias.

Analyzing these two cases is critical for understanding the robustness of DDebias:

Proposition 2 (Weakly Confounded ICL Samples). Let the confounded ICL samples X (°°*f) contain
ny, unbiased samples with

Amin( 2 X (oD (xemMT) > 2, >,

ny
and let the corresponding noise ¢ satisfy E|x;e;] = 0 and E[e?] < 2. Then, for the DDbias estimator
0, there exists a constant C' > 0 such that

10012 < C(74).  [Elyer —doesll < C' () -
Proposition 3 (Mixed ICL Samples). Assume a fraction p of the “unconfounded” batch is con-
taminated: for those contaminated samples Elxje] = r; # 0 (denoted by X (cont) ) while the
remaining (1 — p)ny samples are unbiased (denoted by X (clean))  Suppose the clean subset is

well-conditioned: )\min(m X(Clean)X(Clean)T) > A« > 0. Let the mean confounding strength
1

onr 2iccont |Til- Then there exist constants C" > 0 such that

ber =

~ 1 _
{E[yGT - ?/DEBH < O/<\/m + p’l“) .

Hence, the bias remains asymptotically negligible as ny, — oo or p— 0, and a sufficient condition for
asymptotic unbiasedness is
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Table 2: Brief comparison between IV (proxy-based) and DDbias (unbiased-sample correction) in
ICL settings.

Proxy variable Unbiased samples Structural Assumptions  Suitable scenes Failure mode
IV (Proxy) Valid instrument(s). Not required. Additive Formula. Genetic instruments, pol- Invalid or weak instru-
icy shocks. ments.
DDbias (ours) Not required. Few unconfounded exam- Not required. Randomized traffic / rec- Partially confounded sam-
ples. ommender A/B. ples.

Table 3: Experimental results of DDbias on the Yelp Sentiment-Review Prediction tasks.

Dataset  VanillaLLaMA DMCEE|Cheng et al.|(2022b) ~ SC|Cheng et al.|(2022c} DDbias (15) DDbias (30 ICL) ~ DDbias (60 ICL)

RPI 23.8 21.2 22.5 22.8 194 16.7
ROR 0.46 0.28 0.24 0.36 0.18 0.16

5 EXPERIMENTS

Linear Data Generation. We follow the function regression setting in (Garg et al.l, 2022} [Ahn
et all, [2023; [Von Oswald et al, [2023)) by considering the ICL loss for linear regression. Our
simulation protocols contains two parts, i.e., unconfounded z, y and confounded x, y respectively: (1)
Unconfounded Case. We simulate (¥ ~ N(0, ) and w, ~ N(0,£~"), where d = 5, ny,. = 107,
nge = 20 (context length), ¥ = UTDU, U is a uniformly random orthogonal matrix, and D
is a diagonal matrix with entries (1, 1,0.25,0.0625,1). Meanwhile, we generate the exogenous
€ ~ N(0,0.5), and then simulate y) = (w,,x®) + ¢@; (2) Confounded Case. We first generate

the exogenous variable € ~ N(0,0.5), and then sample the linear 2 — e relationship, i.e., the

confounding effect ; ~ U(0, 1) (uniform). Then the features are simulated as xy)

= rje+ k; with
#j ~ N(0,1). Finally, y*) is generated by an analog. By controlling |7, the strength of confounding
effect can be tuned, i.e., the larger r; corresponds to larger effect. To check our Theoremmand that
the deviation and bias increasing w.r.t. increasing 7, we tune the value of r; by multiplying factos in
[0.5,1.0, 1.5, 2.0], with corresponding data denoted as Conf_r;, e.g., Conf_2.0.

IV-oriented Data Generation. To compare DDbias with an IV-based approach, we extend our
original confounded DGP by introducing instruments Z. We first draw Z(*) ~ N(0, I,,,), a latent
confounder U") ~ N(0,52), and noise ¢) ~ N(0,02). Features are generated by combining

instrument relevance and confounding: xg-i) = (T29); + ;U + mg-i), where I' controls instru-

ment strength and o; matches the heterogeneous confounding coefficients ;. Outcomes follow
Yy = 20Ty, + BUD 4 @, with w, ~ N(0,571). By construction, Z L (U, €) (instrument
exogeneity) and Z — X via I (relevance), yielding a clean comparison: IV exploits large confounded
observational data with valid instruments, whereas DDbias requires only a small unconfounded batch.

Non-linear and Partially Confounded Data Generation. We further test the robustness of theoreti-
cal conclusions on non-linear models or partially confounded ICL samples. We leave the protocols of

non-linear DGP in Appendix [G.7]and [G.8}

Real-world NLP Datasets. Finally, we conduct experiments on larger models pre-trained on two
NLP datasets, i.e., two sentiment review tasks, collected from the Yelp website (Cheng et al.| 2022bc).
We leave detailed setup of compared baselines with in Appendix [G.6] We refer to the adopted two
datasets as (1) Restaurant Popularity Index (RPI) and (2) Restaurant Overall Rating (ROR).

Implementation of Transformers. Throughout our experiments, we set the number of layer of
the TF as 3 (TF@3) and 1 (TF@1), respectively, with each weight is initialized as i.i.d. Gaussian
matrices. The optimizer is set to the Adam optimizer 2014) w.r.t. the ICL loss in equation[d]
with each gradient step computed from a minibatch of size 20,000, each minibatch resampled every
100 steps, and gradients clipped to 0.01. All results are averaged over five runs, with a different U
(and thus 3J) sampled for each run.

Justifying the U_Weights. Following (Von Oswald et al.| 2023), we design three metrics to test

whether the constructed U_weights in Lemma [I|match GD on £'(w) = 2= >~ (wx® — w/[x®)2.

Let 8% denote our constructed TF parameters and 6* those optimized on £’ (Appendix [G.2). We
compare: (a) prediction divergence ||§*(6™) — §*(0*)||; (b) L2 sensitivity divergence; (c) cosine
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Figure 1: (a-b): Verification of Lemma (c-d): Deviation of Pretrained Weights in Theorem
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Figure 2: The left two figures unveil the prediction bias comparision between our DDbias method
and vanilla pre-trained biased model. The right two figures show the L2 Div and Cosine similarity
with grounding w, of the regressed w before (red) and after debiasing (blue).

Table 4: f = Ploy, Prediction error of deeper, non-linear Transformers (ReLU, L=3/5/7, LayerNorm,
Non-linear MLPs, Softmax, Ratio=1.61e~3)) under different confounding strengths 7.

ICL Samples /L Conf@(0.5 Conf@1l.0 Conf@l5 Conf@2.0
L=5 — Biased (Vanilla TF) 0.280 0.370 0.475 0.600
L=5 — DDbias (Ours) 0.115 0.150 0.200 0.260
L=7 — Biased (Vanilla TF) 0.320 0.450 0.600 0.750
L=7 — DDbias (Ours) 0.135 0.175 0.225 0.290

Table 5: Effect on the Prompting Sample Ratio (Weak Conf@0.10)

ICL prediction error 0.090 0.092 0.095 0.100

Sample ratio for DDbias (oracle) (x1073) 6.4 3.2 2.4 1.6
Sample ratio for DDbias (weak) (x10~3) 8.6 7.2 6.3 3.5

sensitivity divergence, averaged over 500 trials. Fig.[T{a—b) confirms that U_weights closely track
implicit GD on £’.

Deviation of the Pre-training. We further measure the deviation A;m(g, T) between confounded
pre-trained (S®, T%) and U_weights (S*, T") across feature dimensions. Fig. c—d) shows that
pre-trained weights diverge from U_weights (Theorem T)), and that larger 7; leads to larger deviation,
matching our theoretical prediction. Additional visualizations appear in Appendix Figs. [IOHI3]

Estimation Bias during ICL. We compare ICL estimation using unconfounded (S*,7™) and
confounded (S?, T?) weights by regressing their predictions on confounded x via OLS
2024). L2 and cosine divergences between w, and w are computed. As shown in Fig.[6| w" aligns
with w,, whereas w® diverges as r; increases, validating Theorem E Additional comparisons under
confounded vs. unconfounded data are provided in Appendix Figs.|[7H16]

Verifying Our DDbias Method. Fig. 2| demonstrates the effectiveness of our proposed DDbias
method, highlighting two advantages: (1) as the prompt/pre-train sample ratio increases, prediction
bias decreases and the OLS-regressed w aligns with the ground truth (Appendix |G.5); (2) only
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very few unbiased samples suffice to debias, showing efficiency. Additional experiments (Appendix
Figs.[T8H20) and tests under non-Gaussian data (Appendix [G.10) further confirm robustness.

Results on Real-world Datasets. Table El reports results on RPI and ROR, whose MAE scales
differ due to distinct outcome ranges (RPI: foot-traffic popularity ~0-100; ROR: 1-5 star ratings).
DDbias consistently reduces MAE as the number of ICL examples grows (15 — 30 — 60), eventually
outperforms strong causal baselines. These results show that DDbias mitigates hidden-confounder
effects and is effective in real-world prediction tasks.

Generalized Analysis on Non-linear, deeper Models. Moreover, we conduct extensive studies to
prove that our bias characterization analysis can be generalized into non-linear regime, including the
non-linear TFs with non-linear DGP in Tab. f] (see more detailed experimental results with analysis

in Appendix [G.7).

Robustness Analysis on partially confounded ICL samples. Finally, as shown in Tab. [5} we
perform robustness to validate our Proposition 2 and 3, where the prompted ICL samples are either
weakly confounded or a mixture of unbiased/biased examples. Results further support our theoretical
robustness analysis that our DDbias remains robust even with imperfect prompting samples. We leave
detailed experimental results with analysis in Appendix [G.§]

Comparison with I'V-based ICL Method. We evaluate DDbias against IV-based in-context debias-
ing (Ciang et al] [2024)) under three controlled setups: (1) both unbiased ICL samples and valid IVs
can be queried (see details in Tab. 26]in Appendix); (2) only valid IVs can be queried and partially
confounded ICL samples are accessible (see details in Tab.[27]in Appendix); and (3) only unbiased
ICL samples are available but confounded IVs exist (see Tal%in Appendix).

6 RELATED WORK

Intrinsic Mechanisms inside ICL. Recent works seek to explain ICL through implicit Bayesian
inference (Xie et al.} 2021} [Raventds et al.,[2024; [Wang et al.} 2024), pre-training data properties
et all [2022), and implicit gradient descent (GD) (Ahn et al.l 2023; [Akyiirek et al., 2022). In function
extrapolation, [Akytirek et al)| (2022) first analyzed ICL dynamics of a pre-trained linear TF, later
extended by [Von Oswald et al.| (2023); [Cheng et al| (2023 who proved equivalence between ICL
and implicit one-step GD under tailored weights. Further, |Ahn et al.| (2023); Mahankali et al.| (2023
linked pre-training dynamics to converged weights inducing implicit GD. In contrast, |Liang et al.
highlight that prior studies neglect hidden confounders, showing TFs realize IV regression for
bias correction. Yet, theory for endogeneity in ICL remains undeveloped.

Exploring Causality in Prompting. A bunch of causally-inspired prompting methods emerge to
enhance the causal inference performance of LLMs from diverse perspectives (Chi et al.;(Chen et al.|
2024alb), including the Causal Prompt (Zhang et al,[2024a)), Intervented Prompt 2023), Meta-

CausalPrompt (Ohtani et al [2024), and Casual Chain-of-thought 2023). In recent,
(2024) reveals that the TFs are highly-efficient IV estimator during ICL process. Unfortunately,

the above-mentioned work is lack of theoretical understanding and insights whether and how hidden
confounders affects the ICL prediction. We are the pioneer paper to theoretically characterize both
the pre-training and inference stages of TFs when hidden confounder exists.

Empowering Transformers for Causal Tasks. The zero-shot or the few-shot properties of TFs have
inspired diverse causal tasks, including the zero-shot treatment effect estimation (Zhang et al, 2023}
Mahajan et al., 2024} [Nichani et al,[2024), and causal discovery (Nichani et al.,[2024). Besides, the
LLMs are also directly prompted for complex causal tasks (Liu et al.,|2024; Jiang et al.). By contrast,
our paper focus on empowering causality for unbiased predictions from TF, offering insights for
designing causally-inspired foundation models.

7 CONCLUSION

In this paper, we propose a pioneering analysis reveals the presence of prediction bias proportional to
the strength of the confounding effect, highlighting the importance of addressing hidden confounders
in data preparation. Alternatively, our proposed DDbias method demonstrates that unbiased predic-
tions can be achieved using a small number of unconfounded prompting examples. Future work
includes: (a) extending the framework to nonlinear settings; and (b) exploring the generalization
capabilities of ICL, such as out-of-distribution generalization 2021), by investigating shifts
in € across training and testing regimes, providing broader insights for the ML community.

10
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ETHICS STATEMENT

This paper presents the first theoretical framework on analyzing the effect of hidden confounders
on ICL predictions of transformers. The potential broader impact includes the extension of our
framework on more specific types of confounding bias, e.g., bias raising unfairness. Consequently,
our framework might can be adopted to explain why LLMs pre-trained on unfair data exhibits
unfairness during ICL prediction, and how one can obtain fair generations from LLMs using some
strategies inspired from our proposed DDbias method.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our framework, theoretical results, and experimental settings in
the paper and appendix. All datasets used are publicly available, and the current description of our
method is sufficient for full reproducibility. If the paper is accepted, we will be glad to release the
complete implementation to further support the research community.
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Figure 3: The illustration of (1) Traditional (unbiased) ICL framework; (2) Our proposed EICL
problem; (3) The bias characterization contributed in this paper with the proposed DDbias method.
As shown in the Figure, the same review ‘The service is a little slow’” may be perceived as relaxed
and positive in Italy, but inefficient and negative in the UK.

Congzhi Zhang, Linhai Zhang, Jialong Wu, Deyu Zhou, and Yulan He. Causal prompting: Debiasing
large language model prompting based on front-door adjustment. arXiv preprint arXiv:2403.02738,
2024a.

Jiaqi Zhang, Joel Jennings, Agrin Hilmkil, Nick Pawlowski, Cheng Zhang, and Chao Ma. Towards
causal foundation model: on duality between causal inference and attention. arXiv preprint
arXiv:2310.00809, 2023.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
Journal of Machine Learning Research, 25(49):1-55, 2024b.

Zhiheng Zhang and Zichen Wang. Online experimental design with estimation-regret trade-off under
network interference. arXiv preprint arXiv:2412.03727,2024.

APPENDIX

We provide supplementary documents to support our research. The details of Large Language Model
usage are presented in Section[A] We provide a concrete case to illustrate the commonly existence of
hidden confounders for ICL prediction in Section[C| with detailed notations in Section D] Moreover,
we first state the failure of previous analysis in constructing unbiased meta-weights in Section [E] and
offer the proof details in Section[F] Finally, we put experimental details, including the baseline setups,
data preparations, with more experimental results in Section [G]

A LARGE LANGUAGE MODEL USAGE

In this paper, we clarify that large language models (LLMs) are employed solely to support and
refine the writing process. Specifically, we use LLMs to provide sentence-level suggestions and to
enhance the overall fluency of the text.

B FRAMEWORK ILLUSTRATION OF OUR METHOD

C CASE OF HIDDEN CONFOUNDERS IN MSOR EXAMPLE

14
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Figure 4: Illustative Causal Graph of Our Running Example on MSOR.

This case study illustrates how the consideration of a hidden confounder (HC) can alter the relationship
between sentiment aspects and outcomes like Popularity and Rating. For Popularity, the inclusion
of HC led to significant reversals in the effects of both Price Neg and Misc Pos, changing negative
associations to positive ones. For Rating, while some effects remained unchanged, the influence of
Misc Neg was neutralized, highlighting the critical role of the confounder in adjusting the analysis of
sentiment’s impact on these two metrics (Cheng et al.,|2022a). For readers, we refer further details
in (Cheng et al.,[2022a).

Table 6: The table compiles all data related to hidden confounders extracted from (Cheng et al.}
2022a). The table illustrates the changes in the correlation coefficients of the effects that MAS has on
popularity and rating before and after accounting for hidden confounders. Nearly every sentiment
aspect’s influence coefficient has changed. However, for several sentiment aspects, the coefficients
have reversed signs dramatically, indicating a pronounced effect from hidden confounders, which is
shown in Table[7]in below.

. Popularity Rating
Sentiment ASpect —grp He Without HC ~ With HC _ Without HC

Ambience Neg -0.24 -0.22 -0.02 -0.01
Food Pos 0.39 0.34 0.25 0.23
Food Neg 0.09 0.05 -0.06 -0.08
Price Pos -0.04 -0.03 0.06 0.03
Price Neg 0.03 -0.00 -0.05 -0.03
Service Pos 0.10 0.03 0.22 0.20
Service Neg 0.08 0.09 -0.37 -0.31
Misc Pos 0.03 -0.04 0.05 0.03
Misc Neg -0.03 -0.08 -0.03 0.00

Table 7: The table presents the mean values for Popularity and Rating across different Sentiment
Aspects, with and without the consideration of a hidden confounder (HC). The primary observation
from this table is the notable reversal in the influence of certain sentiment aspects on Popularity and
Rating after accounting for the hidden confounder.

Popularity Rating
Sentiment Aspect With HC  Without HC  With HC  Without HC
Price Neg 0.03 -0.00 -0.05 -0.03
Misc Pos 0.03 -0.04 0.05 0.03
Misc Neg -0.03 -0.08 -0.03 0.00

D NOTATION TABLE

We summarize various notations used in our problem formulation, method design and algorithm in
Tab.[8

E FAILURE OF PREVIOUS CONSTRUCTED WEIGHTS

Lemma [Biased Pre-trained Attention Weights] Attention weights in previous studies (Ahn et al.|
2023 |Akyiirek et al.} 2022} \Von Oswald et al.| 2023)) suffers from biased (confounded) prompting
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Table 8: Summary of notions with their definitions.

Notation Definition
x@ Features of the i-th Sample
y® Label of the ¢-th Sample
e Noise of the i-th Sample
r; = E[Xj€] The strength of confounding between j-th coordinate of X and €.
Ky The exogenous noise of X w.r.t. e.
d Dimension of the features.
D' and D*® Training and Testing Datsets.
D' and D'® Training and Testing Datsets.
<1 x@ x(m  xn+1) .
M= RO ym 0 Input format of data when feeding the transformers.
m® = (x¥, y®) Input Pairs.
Prx =N(0,Y) Distributions of the input features X .
% = Udiag(\1, ..., \)U" The covariance matrix of input feature X
Wi The underlying parameter between x* and y*).

Wy, Wi, Wq € RE+Dx(@+1)

_In O (n+1)x (n+1)
C= 0 0 €R

The projection parameters of transformers when computing the self-attentions.

The mask matrix to reflect the asymmetry in ICL process.

S =W, e RIFIXW@ D and T =

Wi TW, € ROTIX@D

The aggregated parameters of TF from W, Wy, Wq.

The U_weights, i.e., the constructed weights of TFs inducing unbiased predictions.
Corresponding unbiased X — Y relationship updated by implicit GD steps.

The biased weights, i.e., the converged weights of TFs on confounded training data.
Corresponding biased X — Y relationship updated by implicit GD steps.

s*, T

w

sb. b

wb

§ < Rlx(<i+l) andT < R(<i+l)><d

T.; € E;’“ .

G;t :757T:,,

A (5T)

K1, K2, K3
sl

D, x{2, yt!

wDPEB

K,

The last row of S and the first d columns of T'.
The j-th column of T

The composition of T ; and S.

Derivative Divergence in Det

Constant Matrices/scalars in Theorem
Prediction bias of ¥ in Theorem

Unbiased (unconfounded) Dataset.

Induced implicit gradient by our proposed method.
Regularity Constants in Theorem

Meta-Weights & Prediction

Our Theory Sketch

4 Without HC
P(X,e) = P(X)P(e)

Pretrained TF
SH

Unconfounded
Prompting
x®, y(i)}l!lzl

induce

Meta-Weights w
n
i Ty _ (D)2
m“llnz;(w X y¥)
=

ICL Prediction
y@+) = (w, x@+D)

Unbiased

N\ 10

withue ) 4 o Secg.aLemmat )
P(X,€) % PUOP(E) Finding Grounding (Unbiased) TF Par S
Unbiased
Pretrained TF ith s*. T ..
Sb.Tb ))) Iy w1th:S‘ o ‘ Unbiased Meta-Weights w* ‘ ICL Prediction
0 )» (U_Weights) YD = (w, x (D)

Confounded ))) Grounding Parameter

Prompting

{x®, yOyn Sec 3.2 Theorem 1

i induce Endogenous Pre-training Bias

Meta-Weights w?
n

Grounding TF S*, T* Pre-traini Tt
. T cr . re-training Deviation
min y (WP x® —y®)2 Compare :
o ; ))) Pretrained TF $?,T° ‘ ' (Proportional to ;)
O
__ICL Prediction ))) Sec 3.3 Theorem 2
Y@+ = (Wb, x(+D) Endogenous ICL Prediction Bias
))) Prediction Bi ICL Predicti
rediction Bias iction

Our Lemma in
Appendix C /

examples Dté:

S

T=-

‘ Pre-training Deviation
(Proportional to 7;)

(Proportional to 7;) ‘ y @) = (b, x@+D)

Figure 5: Outline of Our Theory Sketch

~ |0axd
- 0

i

d

Udiag {LM '
n—17"7

_1_
n—1

0

1 M)UT}Z.

10)

suffers from biased ICL inference, and let "tV be predicted y such that ("1 = TFgT%d(M).

Then it holds that §" TV = (x("+Y) wSGD) ywhere {w§P} is defined as w§P = 0 with either
exogenous or endogenous €:

wiP = wiP — v L(woP)
- 1 - T (2) (i)\2
where L(w) = o ;(w x\ —yl=,

16
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Proof. We only consider the special case that U = I with Ay = Ay = --- = A\4. Then our derivation
follows the same protocols as in (Von Oswald et al.| |2023)):

5 = TR )

=M + lSMC(MTTM)

n
= x(mHD _l’_izn: Odxa O x (%) ® Lixa O x(® Iyxa O x(n+1)
N 0 2n & 0 —1] \y® 0 0] \y® 0 0 \yo+D)

_ X(7L+1) 0
- 0 + ,vﬁ(WGD)X(nH) )
13)

where the optimized loss function is biased, as the y(*) is confounded by €(¥). O

F THEORETICAL ANALYSIS

In the following, we perform all theoretical analysis in the case of Py = N(0,diag(A1, ..., Aq)),
and then turn back to the correlated case that Py = A/(0, X).

F.1 U_WEIGHTS CONSTRUCTION

Lemma 4 (Construction of Unbiased Implicit Gradient). Consider the TF with parameterized by

S“ T in below:
QU — |:Od>_<rd 0]

w, O (14)
T — 1 Taxa O
921 0 0f -

, and let j"*Y) be predicted y such that j("+1) = TFgTE‘d(M). Then it holds that §"t1 =

(x( D) WGP where {wGP} is defined as w§'P = 0 with biased (confounded) prompting exam-
ples Dte:

wiP = wiP — vL(woP) (15)
LT ) T ()32
where L(w) = %Z(W x\ —w, x\")%. (16)

i=1
Proof. The extension follows the same protocols as in (Von Oswald et al., [2023)):
5o = TRE (M)
1
=M + —SMC(M'TM)
n

_ (xmD 1 = ([04xa 0] (x© Lixqg 0] (x? Lixqg 0] (x"T)
L0 +%Zl w,] 0] \y® “{lo o y(® 0 0] \ym+D)

1=

- X(7L+1) 0
- 0 + ,vﬁ(WGD)X(nJrl) )
(17)

where the underlying label is w, "x(?), serving as unbiased guide for optimization during ICL
inference. O

F.2 SIMPLIFICATION ON TRANSFORMER PARAMETERS

17
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F.2.1 DETAILS ON PARAMETER SIMPLIFICATION

To ease the theoretical analysis, we introduce the Gaussian assumption, which has been commonly
adopted (Ahn et al.| 2023; Mahankali et al.,[2023)) when analyzing into the dynamics of pre-training
optimization of TFs:

Assumption 4 (Gaussianity). We assume that Py = N(0,%) with ¥ = Udiag(\1,...,A\q)U",
and w, is sampled from N(0, I ).

We use S?, T? to denote the parameters of TFs pre-trained on the confounded data. We first show
that quantifying the difference between the converged parameters S°, T in EICL and the grounding
parameters S*, T can be reduced to only a small subset of each parameter matrix:

Lemma 2 (Parameter Simplification). During the pre-training phase, analyzing the variation of
{S?, Tf”j j-l:l equals to analyzing that of S®, T?, where S refers to the last row of S®, and Tﬁj (1<
§ < d) refers to the first j-th column of T®.

Unfortunately, we find that directly quantify difference between the unbiased TF parameters {S?, T®}
and the converged parameters (potential biased) {S*, T*} exhibits challenges, since the spurious
correlation r; = E[X €] prevents the derivation of a closed-form expression of S?, T? as in equa-
tion 5] (see (Ahn et al.l 2023)). We therefore compare the two groups of TF parameters from the
perspective of derivative instead, that is, quantifying how S°, T® and S*, T* contribute to the
pre-training objective L;.; differently:

Definition 3 (Derivative Divergence). We measure the deviation of S°, T® from S*, T as follows:

dﬁicl _ dﬁicl

j QT p—
Apre <S7T) - dGJ i Qb b dG] -
st Git:Sb’T?‘j st Git:S“,T?fj

Intuitively, A7 7re quantifies the divergence between effects of SP, T? and S, T in the j-th feature-

dim on £;.; during pre-training. We note that the derivatives of L;,; w.r.t. S, T? equals to 0, as
Sb T? refers to the global minima points with endogenous e.

F.2.2 PROOFS OF PARAMETER SIMPLIFICATION

To simplify our proof of Lemma 2] we first introduce several useful lemmas:

Lemma 3 (Ahn et al., 2023)During the optimization of L., only S € R'* (1) and T € R(d+1)xd
are updated, where S = S, . refers to the last row of S and T = T ., refers to the first d columns
of T.

We use S, T interleavely with notations S, T without ambiguity. We then present another lemma
for decomposition of S and T into d pairs of weight parameters: {S, T ; T, }¢ =1, Where T.,; j € RA+1

refers to the j-th column of T:

Lemma 3 (Decomposition along T, Py = N(0,diag(\1, . - ., \a))) Finding global minimum, i.e.,
S, T of L can be equivalently turned into finding the global minimum of each component L;; ;

wrt. S T,
Lia = ZEMW*,E[<27G§t>+w4ﬂ}2 x(N)j +ZEMW,,,€[<2,G&>]/3J~, (18)

where G, = §TTJT, B refers to the correlation between X; and e: v; = E [eX;], and (A, B) :=
Tr(AB") for two matrices A and B here and below.

18
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Proof. We first simplify the original ICL objective:
2
Lt (8.T) = Eqnae, | (TRE (M) + 50 |

= Evw.) [(TFgff}d(M) 4w, Tx(D) 4 6(n+1)> }

1

2
+ W*TX(nJrl) + 6('rLJrl)
(d+1,n+1)

(n+1) (n+1)
= Bt {X } Z m®( T {X 0 } +w, x(FD (D)

=2 (d+1)

r_ 2
=Em,w,) (SZTX("H) +w, x4 e("+1)) }

— B[(SZT + w. ) x| 4 2B [x V0D (2T w, )|+ [t )]]

Optimizable
(19)
where we further expand the first term as follows:
_ 2 4 S 2
E[(S2T+w.T)x"0] =S NE[(2S T ) +wlil] (20)
j=1
as E[x("+D[j]x("*+D[j"]] = 0 for j # j' and E[x("+V[j]?] = \;. The second term is expanded as
follows in an analog:
E [ (SZT + w,T) x| = Z 5E[(z,8T; )] @1)
Hence, the overall expression of £;.; can be written as follows.
d
—T—T 412 —T—T
Lia=> NE[(ZS T, )+ wljl] +28E (25T, ). 22)
j=1

With the decomposed expression shown above, we further prove our lemma by performing induction
on d. When d = 1, the objective becomes:

Lits =M Entw, . [(Z,GL) + W] + 2Bmw, .« [(Z,GL)] 1. (23)

By taking G, as an integration, we observe that £, 1 exhibits the quadratic-form w.r.t. G.,,i.e., a
convex formulation w.r.t. G1,. Furthermore, when taking derivative of £;.; 1 w.r.t. G1,, we obtain
the following expression:

v‘Cicl,l

vGL — 2M B, e [((Z,GY) +wi) Z) + mE[Z] = 0 (24)
To achieve vanished derivative, we just have to show that there exists G, such that:
)\18 ZT;J' = —Wyx — M1, (25)
We now decompose Z due to its symmetry:
Z = U?diag (M3, \2) (U%) 7L, (26)
and turn the above expression into:
S'Udiag (A, 33) (U%) ' T, 27)
<u : z z z\—1mp
_ (s UZ) diag (Af, A3) ((U%)~'T.) (28)

19
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and we construct S and T ; such that (§TUZ) = (:1()\7‘1]2;{;12) , ;gfz;g?) and ((U%)7'T, ;) =
(AT, A3).

We assume that the our lemma holds for the case d = d’. For the case that d = d’ + 1, given the
the existence of S T* that achieves global minima of Z L;ci, 5, we only have to show that
there exists T_7df+1 such that the pair T;,d/_;,_l, S can achieves the global minima of L 4'11. Be

awaring of the fact that £;.; q/11 is also convex w.r.t. GftH, we just have to construct T'. ;1 with
given S such that:

2281 Entwaa e |((Z.GET) + wald + 1) Z] 4 naa E[Z] =0, (29)
where we further have to construct the vector T'. 41 such that:
S — d+1 /
(8" Tu) = Wl A e (30)
2Mar 41
which is obviously feasible. Then our claims follows by induction. O

Remark 3. Previous studies has been explored similar conclusion in (Ahn et al., |2023). However,
the conclusion relies on the explicit closed-form expressions of S, T with a shared S across each T
by coincidence when hidden confounder is missing.

F.3 PROOF

F.3.1 PROOF OF THEOREM 1

Theorem 1. (Deviated Weights, Py = N(0,diag(A1,...,Aq))) Under Assumption 4| with
endogenous ¢, we derive that:

K, K| 1 [w.[j]Diag ({2 N + L(k = j)Ap i Ajej
pre (S T) =r; [K;— K:J—F [ ( J kSk 1) VA

n )‘je;r On ({)‘j}?:17‘72
(D
where each sub-matrix are expressed as follows:
Kl = W*[j]UZAda
=0, ((Z W*[U]> 02> r,
K3 =0,(0+>_\)
where e; denotes the base vectors with j-th element as 1 and others as 0, Ay = diag(A1, ..., Aq),

X € R and r € R? are vectors consisting of )\ _, and r9_,, respectively, 0%, c* denotes the 2-th

and 4-th moments of €, respectively.

Jj=r

Proof. Before our formal proof, we further clarify the decomposition of unbiased weight matrices,

ie., §u, T" in our Lemma 4 as follows:

g T

5= w0) (32)
T:,j = ej ’

where we remove the scaling factor 1/2 without loss of generality. Recalling the expression of £;;

w.rt. G7, as follows:

Lict; = N Entow, c [<z th> n w*[j]r 4 B, [<z thﬂ , (33)
with derivative as follows:
Vvﬁézj = 2), Entw, [<z th> z} + Entw,  [Wolj]Z] + 8, E[2)]. (34)

Rt @) 3)

20
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Meanwhile, we also recall the expression of decomposed derivative as follows:
VEicl vAcicl

il VQY (35)
VGst Sb,Tf"j VGst

(5.T) =

b
S*,TY,

and we compute two terms one by one. To be first, as Sb, T? ; corresponds to the global minimum of
L;c,; with endogenous €, we have:

ViLie =0. (36)
VG 57,17,
We then calculate % by expanding Z as follows:
T

1 n i iNT 1
S x() (x0 )) s y( )x (@ )]
4= LE )T LY &7

We then derive term (2) in equation [35|by further decomposition:

) LSS @ ()T L vy (D)D)
EM,w.,e (Wi 1]Z] = Em,w, e |Wxl]] T %lﬁi y(j,) gx(i)i‘r "lzz::ﬁ %y(l)) ”
_ [ Odxd %Z? yl )X )
=Em,w,,c _W* (4] _% Z;ﬂ ) y(i) (X(i))T % E ( )
. [ i [ OdXd 1 ZZ 1 (W x(i) _|_ 6(7')) X(’L)
=EM,w,,e [WxlJ] %Z?:l (W*Tx(i) + 6(i)) (X(i))T " 711 Elzl(y(i))Q
ded )\jej ' Ly
Al Enta o [wali) Sy (T 4 e0)]

_ {ded )\jej:|
o )‘j e;»r 25j7
(38)
where the second equality is due to the fact that w, is symmetric, and the third equality is due to
E [w.[j]? x(@[4] x® [k]] = Aj1[j=y), and the final equality is due to the derivation that:

EMw. .c [W*[j]i( x4 ) ] ZE[ ICAES >) +w.[j] (e(i))2—|—2w*[j] (w.Txt >)€(z‘>}
—22153[ (W x(1)> (i)}

_mq 7w L9 7160
=28,

(39
We then derive term (3) in equation [35]by further decomposition:
BiE(Z) = B E [1Z$ﬁmﬁmﬁ RE
! ! n i y (x)T % Z?ﬂ(y(i))Q
[ A, B [3 0, (w0 4 ) x0)
B[S, (X0 4 @) )] E (LT (wTxO 4 c0)’]
- (40)

-Ad r
SO B[RRI (w0 0]

_6 r
= Pj I'T 02+Zl)‘l ’

21
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where the final equality is due to the fact that:

E {(w*TX(i) + €(i)>2:| =E {(W*Tx(ivz + (e(i))z + 2@ (W*Tx(i)>]
=0?+F [(W*Tx(i))z}

) d o (i) 2 41)
= 0%+ Y E |w.[j]? (xV[j])
j=1
d
=0+ Z Al
1=1
Finally, we derive term (1) in equation [35]in three sub-blocks:
1 En: xOxMT L zn: pomol
n < n
i=1 =1
Z — Z(a) Z(b) (42)
1< . ) 1 & .
- @) (xHT = ()2
EDSPRICLINNED SR
i=1 i=1
L Z(®) Z(0) J

Then we derive the following equations for v < d:

1 - ] . i 2
+—5 Y E {x(“)[v]x(“)[j]} E [x< 2)[1]x( 2>[k]}
i1 702
1 n . . 1 n .
) Mv=j=1=kX -+ ; 1(v = )N = k)N
7 11 F12

(43)
where we utilize the fact that zero correlation in joint Gaussian implies independence. Hence, we
conclude the expression as follows for v = j:

n(n — 1))‘j>‘1 0 0

0 0
1 0 n(n—1)AX, 0 0 0
(a) . (a)| — s
Em,w,, [<Z »EM>Z } ) 0 0 : 7n(n_1))‘j)‘j+n)‘?
0 0 0 n(n — 1)\ g
(44)
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where Entw, .« [(Z(,E; ;) Z(¥] = 0 when v # j. We then calculate the second term as follows:

EM w, « [<Z(b),Ev,j>Z(b)L - Z Z [ (i) [p]x ) [j] (W T3 (i2) +€(72>) x(’é)[z]}

11=112=1
= Zl Zl E [Xm x5 '}e<i2>x(iz>[1]}
- Z ]E{ (1) [y]x (1) [ ]} E [e(iz)x(iz)[l]}
i174
@
ZE{ [o]x [ ](i)x(i)[l}]

@
(45)
where (D) can be derived as follows:

i i), in) o (i !
S 3 E O E [Ox] =10 = ) (nln - Dro’rs) )
11702
and @) can be derived as follows:

77 2B [ L GO O] = TR [ +57) e + 60 rie? + 617

_ % (rjrorio® + E[rod18; + 15616, + 116;0,])

1
- (rjromio* + o (L1 = j)ry + L(v = j)r + L(v = 1)) ,

(47)
where we invokes linear confounding effect to derive the expectation. Finally, we calculate the third
term, i.e., Entw, e [(Z(9, E, ;) Z(9)] as follows:

EM w, e [<z(c),E > (c)] Z Z [ ) [p]x ) [5] (6(i2))2:| LR [X(il)[v]x(il)m (W T (i2) 5 (i2) T *)}

i1=11i2=1
@ @
(48)
where we further expand each term in below:
)] ()] = {25 10 =DA0" if i1 # i,
For Term@ 2 lel 1221 |: [J] (E ) :| = {Tll (’I"UT‘J'OA + ]]_(’U _ j)02) if iy = io,
(49)

where we invokes linear confounding effect to derive the expectation. For the term (2), we perform
the following derivation:

55 SR R (T )

1= 122 1

L F ST (i )
990 ) LTI

i1=11i2=1 k=1

(50)

Il
=
—
4
Il
<
N—
\

XA M| +(n—1)) (Z )\k:> =0 ({N}i-)

k#j k
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Now every components are calculated, and we are ready to summarize our main results by summing
over v € [d] with weight w,[v]:

* For the upper-left area of Apv o
bining equation 0| and equation @

. (AJ,..)axa» we have the following equations by com-

. n—1 n—1 n—1 1 n—1
W*[j]Dlag< n )\j)\l, n )\j)\g,”',T)\j)\j‘Fﬁ)\?,“', )\d)\1>+ﬂjAd

_y n—1 n—1 n—1 1 n—1 .
:W*[]]Dlag< o Aj)\la " )\]A27 ’TA]A]_'—E)\?’ , )\d>\1) +W*[]]Tj0'2Ad
(5D

* The upper-right area (AJ .)dx1 can be derived as follows by combining equation equa-
tion 47} equation and . equation

; 1
(A),c)ax1 = ( Zw* v]ry)r + 1+ O ( Zw* )(2n — 1)r;ro ) + Aje;

o (S ))

(52)
* The lower-right area can be derived as follows by combining equation [50] equation A9}
(D)) arnx (@) = On ({Xi}921,0%) +71500(30% + > \)
d 2 2 . (53)
=0, ({)\j}jzl,a ) +7;0n(c® + Z)‘”)
O

Prediction Weight w’ with endogenous noise . We show that inside the forward pass of ICL
inference, deviated parameters S?, T? still induces implicit gradient weights w®. Consider the fact

that G%7 = G%7 + §7,, and we have:

G V] = TRY &M Z G’S’;j> x (D[]

=
<z Gl + 8 ) X[ G4
— x( D []wEP[j] + <z,5it>x<"“)[j],

where we let w®[j] = wEP[j] + <Z,5gt>

F.3.2 PROOF OF THEOREM 2
Theorem 2. (Estimation Bias) By assuming the lower-boundness of the sample-covariance

matrix Z = m® (m(i))T, i.e, a1 < mini<yr<qZy < ao, and the finite second-moment of Z:
maxy; Var|Z] < kz, we have the following inequality holds with probability in 1 — ", q;:

K(n,\ 1,02 0% Kz K(n,\r,0% 0%)
Aq:)g > mln b b b b + ,
«li ( da ; V' Gar1,dae doy Z V qa+1, ldal

(55)
Proof. We observe the following equations during the forward process:
u" V] = TRG g (VD[] = (Z, G2 ) x"*V[j] - Biased (56)
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(nH)[ | = TF’éfdeu(M)[j] = <Z, Ggg‘j>x(”+1)[j] Unbiased (57)

Then we only have to compare < Z,G%7 > and <Z7 GZ’tj >, where their difference are already shown
in equation [34]the proof of Theorem 1:

Entor.e |[(Z.GL) 2] — B, [(Z.G2) 2] = B, c[ALIIZ]. (58)

where the quantity Eng w, « [A%,[j]Z] has already been computed by combining. Hence, by invoking
Chebyshev’s Inequality on the region of Z® (lower-left area in equation , we have the following

inequality holds with probability 1 — gg41,; for 1 <1 < d:

Vary w, e [A%[J] Z]d+1,j < Kz

qd+1,1 TV Qd+1,
(59)

AL Zar10 — Emyw, e [<Z(b),B(n,)\)Ed+1,j> Z(b)H < \/

where we further recall the expression of the lower-left region (in equation [52)) as follows:

Entaw..c [(20 Bai15) 20| = (A, o)axs = Asej =750n ((Zw* ) )

we further perform the union bound of equation [59|over [, we further have the following inequality
holding with probability 1 — >~ ga+1.:

; ‘Ag;t[j]zd-&-l,j — Bataw. c [ (20, B \Ear ;) z(b)M < zl: )
where the left side can be derived as follows:
Z (Aest[ 1Zav11 — EMow, e [<Z(b),B(n, /\)Ed+1,j> z(b)})‘
l (61)
< Y| AL 1Za10 ~ Entae, . [(29, B N B ) 20 |
1
with:
Z (Aest[ 1Zav1,1 — EMow, [<Z(b), B(n, )\>Ed+l,j> z(b)}l)’
l
(62)

)

est sz+1l—7’J ((ZW* >02>Zrl
l
Then we substitute the above quantlty back to equation [60} we obtain:

w Tjon ((E [ Zl Tl TJ n v [ Zl Tl
Aculi] 2 mm( Z V' qa+1, lda2 Z V qa+1 zda1>

(63)
O

We then turn everything back to the correlated case, i.e., X exhibits covariance matrix ¥ =
Udiag(\1, ..., A\q)UT using the same trick as in (Ahn et al.,[2023).

Proof for Theorem I when Py = N(0,3). We deduce the case with Px = N (0, X) to the previous
case. By defining (V) := UTx("), we conclude that E[Z() (Z())T] = A4 due to the orthogonal
properties of U. With x( ) = Ux(l) back to the loss decomposition in equation we have:

E[(S2T +w.") X("+1)r —E [(ng+ w.T) U]

) (64)
[(SZT + w. ") U],

H'M&
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and the vector (SZT + w,. ") U can be transformed as follows:

S — 1 —T I X(l) ®27
=T uz®
n 28 (UZD), w,) + Ue

l«—=T[U 0 Q) 2IUT 0] -
w2 0 1} [<%<i>,w*>+e<i>} 0o 1|TU+w. U

®2
<i>UT] TU +w,' U (65)

_ T _
where we use x®2 to denote the operation x®2 = xx ". Letting ST FOJ ﬂ and {U(.) ﬂ TU be

the new weight parameters, respectively, with the fact that w, " U stills follows A(0, ), the case is
deduced to previous cases, and our final claim of Theorem 1 follows. O

Proof for Theorem 2 when Py = N(0,X). We note that <Z, th’j > and <Z7 Gz’tj > remain invari-

ant under the transformation 7(¥ := UTx® due to the fact that UU? = I, and our claim on
<Z, GZLZJ> — <Z7 Gz’g> follows the same. O

F.3.3 PROOF OF THEOREM 3

Theorem 3. (Implicit Implementation of Debiasing Algorithm) Consider the TF with parameter-
ized by biased S®, T, and let ") be predicted y such that §("+t1) = TF’S”;‘T’% (M). Then it holds
that §" Y = (x(" D) wPEB) ywhere {wGP} is defined as w§ PP equaling to some constant w.r..
input data and pre-trained weights:

wDPEB — wDEB _ v 1 (wDEB) (66)
I &, - ,
where L% (w) == 5 Z(y(z) — oy, — wTx®)2, 7

=1

where y(i) , refers to the biased prediction from pre-trained TF equipped with S®, T®.

Proof. We first note two observations as follows:

1. The parameters S, T can be decomposed using the feature-wise expression:
ST & (G} 8" T & {GY/}, (68)

and we note that G/ = 7, + G/,

2. The pre-trained parameters of TF is fixed, while inputing different data matrix will invoke

different unbiased implicit gradient for the same unbiased parameters G;‘t’j , as shown in Lemma
4.

With the above observations, we first derive the behaviors of the biased parameters {Gls”tj ?:1

when meeting the residual input matrix Z”. By treating the residual term y(9) — y(@, as the new
label 3(¥), we invoke Lemma 4 and conclude that S*, T* achieves unbiased implicit gradient w.r.t.
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the loss £9(w) implemented in the forward process. By re-writing G%Y = G%? + §7,, and

recalling equation [54] we have:
T 4
= (e e (23 )
j=1

= (WFEB)T x(M ) 4 (<Zr,5;t> ’ <er5§t> . ,<Zr,5§t>)Tx(”+1)

Recalling Lemma 4, the starting point of S*, T* when performing unbiased implicit gradi-

ent descent is Wy, = 0 as the input matrix sets y(»*?) = 0. Being aware of the fact that
((z~,6%,),(Z",62,), -+, (Z*,6%,)) remains fixed w.r.t input prompts and J,; embodied in fixed

» Vst » Vst
pre-trained TF, we can equivalently treat (Z*,8},),(Z*,62,) -+ ,(Z",8%,) as shifted starting
point of gradient descent comparing to intrinsic starting point W = 0. As the squared function is

convex and no local minima exists when performing GD, our claim follows. O

(69)

Proposition 3. Assuming that: (1) TF equipped with gb and Tb is a consistent estimator on con-
founded pre-trainined data, (2) X, Y and Y}, has finite fourth moments over the unbiased prompting

data, optimizing over L (w) := £ 5" (y) — gjlgi) —wTx )2 will leads to consistent estimation
for y(t1),

Proof. We extend techniques in (Kallus et al., 2018) in the case of high-dimensional regression. First,
we denote the residual term y(*) — g)lgl) as g™, with yng = w, "x'Y is underlying ground truth.
We denote the expected (biased) prediction by biased TF with §b7 T’ as yl()i). Meanwhile, we have

g =y —¥b. Letting X,.. = {xs.lc) x&? e xgﬁ)} , the estimated residual parameter for 6, i.e., 0
can be derived as follows: )
0= (X, X)) Xpeg', (70)
We then decompose g in the following three terms:
99 =y — v + 90—y +u” -y (70
9 96 96

By noting the linear relationship between x and y, with the linear architecture of TF, we obtain that

the residual term between expected truth and expected bias prediction is linear w.r.t. x: yg)T - yl()i) =

07 Xy, and we then expand g(1) as follows:

g = (g0 @ o g™ ) =0T XD x@ x| =X ()
We then derive the following equations:
H—6=(X,XL) X,g" -6

X, . XT\ "1
=() X"~ 0

nTC rc

X, X\ 1
= (w) —Xre () +8b) +8l) -0

n'I’C
X0 ! - X, X'\ "1 X, X'\ "1
= <TC 'I‘CXI‘C 0 + (N> 7X7"cg(2) + (N> 7X7"Cg(3) _&7
nTC n’l"C n’l"C n’l’C n’l"C n’l’C
(73)

T

re?

2 1 ?
2= (mini O’i(Anm)) ’ 74
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where we further derive each term in the last equation in below. Letting A,, , = X,..X,.,, we have:

X, X\ .
()
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where o; refers to the i-th eigenvalue of A, _. Meanwhile, we denote E[X,..X L] = A, it is obvious

that A,,,, —> A. Meanwhile, as A is symmetric and real-valued, we have its eigenvalues are
distinct (Rogers, [1970), such that o; is continuous mapping of A. By invoking the continuous
mapping theorem, we immediately obtain that:

min ; (A, ) =2 mino;(A),
and we furthe have:

_ 2 1 _ _ _ 1
1AL = (AL — AT +Al]p)" < = (IIAnfC — AT+ (1ATY3) =o(l)+—, (75

*

Nre

where o, refers to minimal eigenvalue of A. We then consider the term — X,Lg(z) as follows:

! @y 76
Koo D (v - y)., (76)
where we further note that E[y() — y ] E[e] = 0. By invoking the Chebyshev’s Inequality,

Cauchy-Schwartz inequality and the ﬁnlte moment assumption, we have:
E[X% (Y - Yor)’] SE[XA]E[(Y - Yor)'] < o, (77)

and

Nre

Zx ( i) _ i)T>_O”(n1m)' (78)

Hence, we have that:

X, XTI\ 1 1 1 1
( ) Mxmg@“(@“”@) O (nm)—op () )

Ty-1
In similar, we further check the term (%) %chg(;;), where we first recall the consistency

assumption that E[(7, — y3)?] = 0(1). We then expand the term ——X,..g s as follows:

1 &g /i\
X, o&3) = ( yt )) : (80)
Nyc

where we invoke Chebyshev’s Inequality, Cauchy-Schwartz inequality and finite moment assumptions
again:

E (Il — %) Xrel3] < E (3 — %)°] E [ Xrcll3] = 0(1), (81)
and
. 2 .
E [y — ) Xrell2]” < E [(s — %) E [ Xrell2] < o0, (82)
We then obtain that:
X, X\ 1 1
—r Xre = 1)+ — 1) = 1). 83
(BE) Lxg = (o + 1) o) = 0,1) )
Hence, the overall gap between 6 and 6 can be expressed as follows:
~ 1
079:01,(1)+(9p(ﬁ) = 0p(1). (84)

Since the final estimation equals to 9T x$1) + yl(f), we combine the consistency assumption that

E[(yéi’) - yéi))ﬂ = o(1) and obtain the following final conclusion that:

2 2
B (ol - 7 = o] =B [oldh 072+ T2 -T2 44
(85)

TC

— 2
=EP9—@”+M42—Wﬂﬂ — 0,(1).

Then our claims follows. O
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Remark 4 (Feasibility of Unbiased Samples in Real Applications). Obtaining a small (few-shot-
scale) set of approximately unconfounded samples is feasible in multiple realistic settings. Below we
outline two representative examples.

First, in sentiment-analysis or review modeling, as shown in Appendix C and Figure 1, hidden
confounders such as regional culture or context can reverse the effect of sentiment aspects on metrics
like Popularity or Rating. In this case, unconfounded samples can be collected via controlled labeling,
where independent human annotations are obtained without product or regional information; context
randomization, by presenting the same text in varied neutral contexts; and temporal control, by
selecting reviews from stable, non-promotion periods. These controlled subsets, typically containing
only tens of samples, serve as the unconfounded set D" used by DDbias.

Second, in recommender or ranking systems, large-scale logs are often confounded by exposure and
position bias. However, most industrial systems already maintain a small unbiased traffic bucket
through A/B random exposure for evaluation purposes. Interactions from this random traffic, or from
cold-start users, naturally satisfy approximate ¢ 1 x and can directly provide the required D".

Finally, to verify or filter candidate unconfounded samples before applying DDbias, lightweight
verification and diagnostic strategies can be employed. One approach is to perform residual—feature
independence tests, such as HSIC or MMD, between residuals (4, — y) and the features x. Another
approach is sensitivity analysis, reporting the smallest confounding strength r (or I'-bound) that
would alter the conclusions. These diagnostics provide a practical and low-cost pipeline for building
or validating D".

Proposition 2 (Weakly Confounded ICL Samples). Let the confounded sample X (¢°™1) contain n,,
unbiased samples with

)\min(i X(conf) (X(conf))T) > A > O,

ny

and let the corresponding noise ¢ satisfy E[x;e;] = 0 and E[e?] < 2. Then, for the DDbias estimator
0, there exists a constant C' > 0 such that

||(§—49H2§C(\/ﬁ>a |E[yGT_Q/U\DEBH§C/<\/n17A*>'

Proof. From the DEB update rule,

é\_ 0 = A—l (%X(CO”JC)ET>, An, — %X“OHJ[)(X<conf>))T.

n

Thus,

106l < 147" o~ | £ xemDeT|

By the eigenvalue condition Ay (A,) > A., we have |4, !]|2 < 1/),. Standard random matrix

concentration yields
1 (conf) T o 1
xemneT|, =0, )

and the claim follows. O

Proposition 3. (Mixed ICL Samples) Assume a fraction p of the “uncm%founa'ed ” batch is contami-
nated: for those contaminated samples E[xje] = r; # 0 (denoted by X cont) ) while the remaining

(1 — p)ny samples are unbiased (denoted by X (clean)) " Suppose the clean subset is well-conditioned:
Ao 1 X(clean)X(clean)T >N\ >0
min (1_/)>“/b iy * N

Let the mean confounding strength be

7= ,1b Z |7:].

n
P i€cont

Then there exist constants C,C" > 0 such that

- L - L
3-8l < (b +o7) [Blior ~ Gosl] < O St +o7).
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Hence, the bias remains asymptotically negligible as ny, — oo or p— 0, and a sufficient condition for
asymptotic unbiasedness is

pr=o0(l), and ———— =o0(1).

In particular, the practical bound
1

P <
~ P/ np

ensures the contamination term is dominated by the sampling term.

Proof. From the DEB estimator, we have:

é\—HZA;l(anXTch)7 Ay, = L X XT g:y_@\b-

ny <rrcrres

Hence, the following upper-bound is derived:

16 = 0ll2 < A7)z -

1 T
L],

By the eigenvalue condition on the clean block, ||A,; |2 < 1/((1 — p)X.). Then split g into clean

and contaminated parts:

g= g(clean) +g((:ont) _ g(dean) + E((:ont) + r(cnnt)7
and we separately bound the three terms in below: (1) Clean noise aggregation:

x| o o)
L c , O, N — O

S S
”( V (1=p)npAs ) '

(2) Random contaminated noise:

LX(Cont)e(cont)T H2 _ Op(\/,B)a

ny
which is absorbed into constants for small p.

(3) Systematic confounding bias:

1 cont) T
TTbXTCr( )

, <O(/pF) = O(pf) after scaling by || A, Y|

Combining all terms in (1) yields

- -
1581 < (b +07).

and the same order applies to the expected prediction error |Elycr — Yprg]| up to a constant. [

G EXPERIMENTAL RESULTS

G.1 COMPUTATIONAL RECOURSES

We perform all experiments using a Nvidia A100 GPU, and all codes are implemented using Python.

G.2 VERIFICATION OF CONSTRUCTED WEIGHTS

We detail how we learn 6* by optimizing £ (w) = 5= > (w x(® — w, Tx(?)2. With the same
simulation protocols in generating the confounded data, we generate w, x(!) by an analog, while we
generate y(*) = (w,x(V) without considering . By training the TF@1 and TF@3 on such data, we

obtain the grounding 6* that is indeed obtained by optimizing over L.
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Figure 6: Comparison between U_weights and Biased weights obtained from Pre-training TFs.
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Figure 7: Comparison between estimation with biased weights pre-trained from confounded data and
U_weights we construct in the main paper, with X ~ N (0, I) and TF@3.
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Figure 8: Comparison between estimation with biased weights pre-trained from confounded data and
U_weights we construct in the main paper, with X ~ N(0,X) and TF@3.
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Figure 9: Comparison between estimation with biased weights pre-trained from confounded data and
U_weights we construct in the main paper, with X ~ N(0,X) and TF@1.
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Figure 10: Deviation of Pre-trained Weights along each feature dimension for the 1-th layer of TF@1
with X ~ N(0, ).

G.3 VERIFICATION OF DEVIATION IN PRE-TRAINING

The computational details of computing the weight divergence between S*, T and S®, T? exactly
follow the protocols in Def. [3] To be specific, the derivative divergence is defined as follows:

P dﬁw dﬁzc
AJ, (8, T) =>4 - : (86)

J o — J S
dGst th:Sb7TPj dGst GﬁtzsuvT?Lj

where we report the tensor-norm (L2) of AJ . (S, T) as the divergence between S*, T and S, T
along each feature dim (j).

G.4 VERIFICATION OF INFERENCE BIAS

When performing ICL inference, checking whether S*, T* aligns with S?, T? is complicated, as
judging the distance between two high-dimensional tensors is challenging. Alternatively, recalling
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Figure 11: Deviation of Pre-trained Weights along each feature dimension for the 1-th layer of TF@3
with X ~ N(0,X).
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Figure 12: Deviation of Pre-trained Weights along each feature dimension for the 2-th layer of TF@3

with X ~ N(0,%).
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Figure 13: Deviation of Pre-trained Weights along each feature dimension for the 3-th layer of TF@3
with X ~ N(0,X).

the linearity of our experimental setup, we observe that it is sufficient to compare the grounding
w, with the regressed w with predicted y and original x. To be specific, we first perform OLS
regression on predicted pairs {xV, y(©:0)}"*7 from S*, T and obtain w". By an analog, we obtain
wP from S®, T, Finally, we compare the L2-similarity and Cos-similarity between w", w® and w,,
respectively.

G.5 VERIFICATION OF OUR PROPOSED DDBIAS METHOD

We verify our proposed DDebias method using three metrics, including the prediction bias (comparing

grounding y("*1) and predicted y(+1)), and the L2-Div and Cos-Div. To be specific, the L2-Div
and Cos-Div are computed as the similarity between the grounding w, and OLS regressed w with
the same protocols as before.

G.6 VALIDATION ON REAL-WORLD DATASETS

We evaluate our method on two real-world datasets constructed from the publicly available Yelp
restaurant review corpus, following the experimental settings in [Cheng et al| (2022bf{c). We refer
to these two datasets as the Restaurant Popularity Index (RPI) dataset and the Restaurant Overall
Rating (ROR) dataset.

Each dataset contains rich textual reviews, a 10-dimensional Multi-Aspect Sentiment (MAS) repre-
sentation (e.g., Food, Service), and restaurant metadata such as category and location. Both datasets
naturally exhibit hidden confounding, as previously reported in[Cheng et al| (2022bjic). In the RPI
dataset, the outcome variable is the popularity index, defined as the real-world foot-traffic score at
Saturday 7-8 PM. The input feature is the 10-dimensional MAS vector, while the hidden confounder
corresponds to socio-economic status or food preference (as illustrated in Fig. 6 in our revised
Appendix). In the ROR dataset, the outcome is the aggregated restaurant star rating, with the same
MAS input and the same type of hidden confounder (also illustrated in Fig. ).

In the experimental evaluation, we use LLaMA 3.2-3B as a unified base model and fine-tune it on
the raw dataset to obtain a model exposed to real-world confounding. During the in-context learning
(ICL) stage, we provide prompting examples that contain no hidden-confounder information. A set
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of relatively unbiased samples—selected by three human evaluators—serves as the ICL prompting
set. Specifically:

* (1) The hidden confounder (socio-economic status or food preference) cannot be directly
queried from the dataset (each dataset contains approximately 6,000 instances);

* (2) Domain knowledge in sentiment-review modeling indicates that the observable variable
“location” is a reliable proxy for socio-economic status or food preference;

* (3) With the assistance of GPT-5 reasoning, we test the correlation between “location” and
the MAS inputs, followed by verification by three human evaluators;

* (4) We then select and rank the top 60 samples exhibiting verified independence between
“location” and the input features, which constitute our unbiased ICL set;

* (5) Finally, we fine-tune the base LLaMA model on the remaining data and apply our DDbias
method using the selected ICL examples.

For empirical comparison, we include three baselines:
 Baseline 1 uses the vanilla LLaMA model (fine-tuned on the full dataset without debiasing).

* Baseline 2 uses DMCEE (Cheng et al} 2022b)), which employs observable metadata (e.g.,
location, category) as proxy variables to estimate causal effects under hidden confounding.

* Baseline 3 uses AAAI-SC (Cheng et al.| 2022¢)), which learns low-dimensional surrogate
confounders from the MAS representation via probabilistic factor modeling and adjusts for
them during estimation.

We report the Mean Absolute Error (MAE) as the primary evaluation metric for both datasets (lower
is better).

The MAE values differ substantially in magnitude across the two datasets because the outcome vari-
ables are measured on different scales. The RPI dataset uses a popularity score ranging approximately
from O to 100, whereas the ROR dataset uses the average star rating ranging from 1.0 to 5.0.

G.7 GENERALIZATION OF OUR CONCLUSION TO DEEPER, NON-LINEAR TFs

Moreover, we generate non-linear data in various cases with deeper, non-linear transformers (Softmax,
Layernorm, Non-linear Activation with MLPs), to further show the generalization of our theoretical
conclusions on the bias characterization. In the nonlinear confounded data-generating process, we
adopt the additive model y = f(x) + € with e ~ N(0,0.5). The confounder influences the covariates
through a nonlinear transformation z; = r; h(e) + x;, where r; ~ U(0, 1), k; ~ N(0,1), and h(e)
denotes the quadratic mapping. To examine robustness under different structural nonlinearities, we
instantiate f using three common forms:

* (i) Polynomial mapping: fproy(z) = a'x + b|z||?> The coefficients are sampled as
a~N(0,02I), b~ N(0,0?), where 04,05, € [0.5,1.0] control the linear and quadratic
contributions to the output. This mapping allows simple additive non-linear effects for
benchmarking.

e (ii) MLP-ReLU: fyrp(z) = WoReLU(Wix + b1) + by The weights are sam-
pled from Gaussian distributions: Wy ~ N(0,0%1), Wa ~ N(0,03I), by ~
N(0,0.121), by ~ N(0,0.1%), where 01,02 € [0.5,1.0] control the signal strength.
This ensures diverse non-linear mappings for our confounded DGP.

* (iii) Softmax-activated: fs\(7) = w"softmax(Uz + byy) The weights are sampled as
U~ N(0,031), w ~ N(0,021), by ~ N(0,0.12I), with o7, 0, € [0.5,1.0] to

control output amplitude. This allows systematic control of signal-to-noise ratio in non-
linear confounded data.

By scaling each confounding coefficient r; by factors in [0.5,1.0,1.5,2.0], we obtain datasets
Nonlin-Conf,.; that mirror the linear case and enable a controlled study of how nonlinearity amplifies

confounding bias.
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Analysis. By combining conclusions from Tab.[T2] Tab.[9] Tab.[TT] Tab.[I0] Tab.[I3] Tab.[T4] Tab.
Tab. [T6} Tab.[T7} Tab.[T8] Tab.[I9]and Tab. 20} we observe that our bias characterization remains
consistent across a wide spectrum of architectures and data-generating mechanisms. Specifically,
across additive polynomial mappings, single-layer non-linear Transformers with ELU or ReLU
activations, MLP-ReLU networks, and Softmax-activated mappings, the predicted increase of ICL
prediction bias with rising confounding strength r; is consistently confirmed. Furthermore, deeper
Transformers (L=3/5/7) exhibit the same qualitative trends, demonstrating that the theoretical lower
bounds and deviation analyses derived in our paper are not limited to shallow or linear models. Overall,
these extended experiments empirically validate that DDbias effectively corrects for heterogeneous
confounding effects across non-linear and deeper architectures, reinforcing the robustness and
scalability of our approach beyond the standard linear ICL setting.

Table 9: f = Ploy, Prediction error of non-linear Transformers (single-layer + MLP + softmax + ELU)
under different confounding strengths 7. Columns denote confounding strengths, rows denote ICL
sample sizes and the prompting/pretraining sample ratio. Lower is better.

ICL Samples / Ratio Conf@0.5 Conf@1l.0 Conf@l.5 Conf@2.0
Biased (Vanilla TF) 0.182 0.236 0.314 0.417
DDbias (Ours): Ratio (1.6 x 1073) 0.072 0.098 0.130 0.178
DDbias (Ours): Ratio (2.4 x 1073) 0.070 0.095 0.126 0.173
DDbias (Ours): Ratio (3.2 x 1073) 0.069 0.093 0.124 0.171
DDbias (Ours): Ratio (6.4 x 10793) 0.068 0.091 0.120 0.167

Table 10: f = Ploy, Prediction error of non-linear Transformers (single-layer + MLP + softmax +
ReLU) under different confounding strengths . Columns denote confounding strengths, rows denote
ICL sample sizes and the prompting/pretraining sample ratio. Lower is better.

ICL Samples / Ratio Conf@0.5 Conf@1l.0 Conf@l.5 Conf@2.0
Biased (Vanilla TF) 0.195 0.254 0.336 0.452
DDbias (Ours): Ratio (1.6 x 1073) 0.083 0.111 0.144 0.195
DDbias (Ours): Ratio (2.4 x 1073) 0.081 0.109 0.141 0.193
DDbias (Ours): Ratio (3.2 x 1073) 0.080 0.107 0.138 0.190
DDbias (Ours): Ratio (6.4 x 1073) 0.078 0.105 0.134 0.187

Table 11: f = Ploy, Prediction error of deeper, non-linear Transformers (ReLU, L=3 /5 /7, Lay-
erNorm, Non-linear MLPs, Softmax, Ratio=1.61¢~?)) under different confounding strengths 7.
Columns denote confounding strengths, rows show ICL sample sizes and different model depths L.
Lower is better.

ICL Samples / L Conf@0.5 Conf@1l.0 Conf@l.5 Conf@2.0
L=3 — Biased (Vanilla TF) 0.205 0.290 0.380 0.500
L=3 — DDbias (Ours) 0.090 0.130 0.170 0.220
L=5 — Biased (Vanilla TF) 0.280 0.370 0.475 0.600
L=5 — DDbias (Ours) 0.115 0.150 0.200 0.260
L=7 — Biased (Vanilla TF) 0.320 0.450 0.600 0.750
L=7 — DDbias (Ours) 0.135 0.175 0.225 0.290

G.8 ROBUSTNESS ANALYSIS ON PARTIALLY CONFOUNDED DATA

Moreover, we also performed experiments in our synthetic data setup, by simulating two cases of the
partially confounded data, i.e., the weakly confounded data :
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Table 12: f = Ploy, Prediction error of deeper, non-linear Transformers (ELU, L=3/5/7, LayerNorm,
Non-linear MLPs, Softmax, Ratio=1.61e~?) under different confounding strengths . Columns
denote confounding strengths, rows show ICL sample sizes and different model depths L. Lower is
better.

ICL Samples / L Conf@0.5 Conf@l.0 Conf@l.5 Conf@2.0
L=3 — Biased (Vanilla TF) 0.190 0.270 0.360 0.470
L=3 — DDbias (Ours) 0.085 0.125 0.165 0.215
L=5 — Biased (Vanilla TF) 0.250 0.335 0.440 0.580
L=5 — DDbias (Ours) 0.110 0.145 0.190 0.250
L=7 — Biased (Vanilla TF) 0.280 0.410 0.550 0.700
L=7 — DDbias (Ours) 0.120 0.160 0.210 0.280

Table 13: f = MLP-Relu, Prediction error of non-linear Transformers (single-layer + MLP + softmax
+ ELU) under different confounding strengths r. Columns denote confounding strengths, rows denote
ICL sample sizes and the prompting/pretraining sample ratio. Lower is better.

ICL Samples / Ratio Conf@(0.5 Conf@l.0 Conf@l.5 Conf@2.0
Biased (Vanilla TF) 0.230 0.310 0.405 0.540
DDbias (Ours): Ratio (1.6 x 107%) 0.112 0.148 0.188 0.248
DDbias (Ours): Ratio (2.4 x 1073) 0.109 0.144 0.184 0.242
DDbias (Ours): Ratio (3.2 x 1073) 0.107 0.142 0.181 0.238
DDbias (Ours): Ratio (6.4 x 1073) 0.104 0.138 0.176 0.232

Table 14: f = MLP-Relu, Prediction error of non-linear Transformers (single-layer + MLP + softmax
+ ReLU) under different confounding strengths r. Columns denote confounding strengths, rows
denote ICL sample sizes and the prompting/pretraining sample ratio. Lower is better.

Model (L) / Method Conf@(0.5 Conf@1.0 Conf@l.5 Conf@2.0
L=3 — Biased (Vanilla TF) 0.260 0.345 0.455 0.610
L=3 — DDbias (Ours) 0.118 0.155 0.198 0.265
L=5 — Biased (Vanilla TF) 0.310 0.420 0.545 0.710
L=5 — DDbias (Ours) 0.135 0.175 0.225 0.300
L=7 — Biased (Vanilla TF) 0.360 0.505 0.660 0.850
L=7 — DDbias (Ours) 0.150 0.195 0.250 0.330

Table 15: f = MLP-Relu, Prediction error of deeper, non-linear Transformers (ReLU, L=3/5/7,
LayerNorm, Non-linear MLPs, Softmax, Rati0=1.616’3)) under different confounding strengths 7.
Columns denote confounding strengths, rows show ICL sample sizes and different model depths L.
Lower is better.

ICL Samples / L Conf@0.5 Conf@l.0 Conf@l.5 Conf@2.0
L=3 — Biased (Vanilla TF) 0.260 0.345 0.455 0.610
L=3 — DDbias (Ours) 0.118 0.155 0.198 0.265
L=5 — Biased (Vanilla TF) 0.310 0.420 0.545 0.710
L=5 — DDbias (Ours) 0.135 0.175 0.225 0.300
L=7 — Biased (Vanilla TF) 0.360 0.505 0.660 0.850
L=7 — DDbias (Ours) 0.150 0.195 0.250 0.330

e To show more generlized conclusions, we adopt the non-linear, deep TF model (L=5,
LayerNorm, relu activation, Softmax) as the base model,;
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Table 16: f = MLP-Relu, Prediction error of deeper, non-linear Transformers (ELU, L=3/5/7,
LayerNorm, Non-linear MLPs, Softmax, Ratio=1.61e~?) under different confounding strengths 7.
Columns denote confounding strengths, rows show ICL sample sizes and different model depths L.
Lower is better.

ICL Samples / L Conf@0.5 Conf@l.0 Conf@l.5 Conf@2.0
L=3 — Biased (Vanilla TF) 0.245 0.330 0.425 0.560
L=3 — DDbias (Ours) 0.112 0.150 0.195 0.255
L=5 — Biased (Vanilla TF) 0.295 0.395 0.520 0.670
L=5 — DDbias (Ours) 0.130 0.170 0.220 0.290
L=7 — Biased (Vanilla TF) 0.335 0.465 0.610 0.780
L=7 — DDbias (Ours) 0.145 0.188 0.240 0.315

Table 17: f = Softmax, Prediction error of non-linear Transformers (single-layer + MLP + softmax +
ELU) under different confounding strengths . Columns denote confounding strengths, rows denote
ICL sample sizes and the prompting/pretraining sample ratio. Lower is better.

ICL Samples / Ratio Conf@0.5 Conf@l.0 Conf@l.5 Conf@2.0
Biased (Vanilla TF) 0.205 0.280 0.375 0.500
DDbias (Ours): Ratio (1.6 x 1073) 0.092 0.122 0.162 0.218
DDbias (Ours): Ratio (2.4 x 1073) 0.089 0.119 0.158 0.212
DDbias (Ours): Ratio (3.2 x 1073) 0.087 0.117 0.155 0.208
DDbias (Ours): Ratio (6.4 x 1073) 0.085 0.113 0.150 0.202

Table 18: f = Softmax, Prediction error of non-linear Transformers (single-layer + MLP + softmax +
ReLU) under different confounding strengths . Columns denote confounding strengths, rows denote
ICL sample sizes and the prompting/pretraining sample ratio. Lower is better.

Model (L) / Method Conf@0.5 Conf@1.0 Conf@l.5 Conf@2.0
L=3 — Biased (Vanilla TF) 0.225 0.315 0.420 0.560
L=3 — DDbias (Ours) 0.100 0.135 0.175 0.235
L=5 — Biased (Vanilla TF) 0.275 0.380 0.500 0.660
L=5 — DDbias (Ours) 0.115 0.155 0.200 0.270
L=7 — Biased (Vanilla TF) 0.315 0.460 0.615 0.800
L=7 — DDbias (Ours) 0.130 0.175 0.230 0.305

Table 19: f = Softmax, Prediction error of deeper, non-linear Transformers (ReLU, L=3/5/7,
LayerNorm, Non-linear MLPs, Softmax, Ratio=1.61e~3)) under different confounding strengths r.
Columns denote confounding strengths, rows show ICL sample sizes and different model depths L.
Lower is better.

ICL Samples / L Conf@0.5 Conf@l.0 Conf@l.5 Conf@2.0
L=3 — Biased (Vanilla TF) 0.225 0.315 0.420 0.560
L=3 — DDbias (Ours) 0.100 0.135 0.175 0.235
L=5 — Biased (Vanilla TF) 0.275 0.380 0.500 0.660
L=5 — DDbias (Ours) 0.115 0.155 0.200 0.270
L=7 — Biased (Vanilla TF) 0.315 0.460 0.615 0.800
L=7 — DDbias (Ours) 0.130 0.175 0.230 0.305

* We report performance of vanilla TF, our DDbias with clean ICL examples, and our DDbias
with weakly confounded examples in Table 2T} 23] and 22] with difference prompting sample
ratio;
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Table 20: f = Softmax, Prediction error of deeper, non-linear Transformers (ELU, L=3/5/ 7,
LayerNorm, Non-linear MLPs, Softmax, Ratio=1.61e~?) under different confounding strengths 7.
Columns denote confounding strengths, rows show ICL sample sizes and different model depths L.
Lower is better.

ICL Samples / L Conf@0.5 Conf@l.0 Conf@l.5 Conf@2.0
L=3 — Biased (Vanilla TF) 0.215 0.305 0.400 0.525
L=3 — DDbias (Ours) 0.095 0.128 0.167 0.225
L=5 — Biased (Vanilla TF) 0.260 0.365 0.485 0.640
L=5 — DDbias (Ours) 0.110 0.150 0.195 0.260
L=7 — Biased (Vanilla TF) 0.300 0.435 0.580 0.760
L=7 — DDbias (Ours) 0.125 0.170 0.220 0.292

Table 21: Prediction error under weak confounding (Weak Conf@0.10)

Method / Sample Ratio (x107?) 1.6 2.4 3.2 6.4

Biased (Vanilla TF) 0.240 0300 0.360 0.430
DDbias (pure clean examples) 0.090 0.085 0.082 0.080
DDbias (weakly confounded) 0.105 0.100 0.097 0.094

* The above results across consistently show the robustness of our proposed DDbias even with
weakly confounded data;

¢ At the same time, results in Table@ inform the cost of using weakly confounded data, i.e.,
the increase of ICL sample number.

Finally, we added experiments in our synthetic data setup, by simulating mixed ICL data:

* To show more generlized conclusions, we adopt the non-linear, deep TF model (L=5,
LayerNorm, relu activation) as the base model;

* We report performance of vanilla TF, our DDbias with clean ICL examples, and our DDbias
with mixed ICL examples in Table 10 with difference ratio p;

* Results in Table 10 consistently show the robustness of our proposed DDbias even with
small p, i.e., confounded examples consist of a small part of the whole ICL sample set;

Table 22: Prediction error under weak confounding (Weak Conf@0.15)

Method / Sample Ratio (x1073) 1.6 2.4 3.2 6.4

Biased (Vanilla TF) 0.260 0330 0.400 0.490
DDbias (pure clean examples) 0.100 0.095 0.092 0.090
DDbias (weakly confounded) 0.110 0.105 0.102 0.099

Table 23: Prediction error under weak confounding (Weak Conf@(.30)

Method / Sample Ratio (x1073) 1.6 2.4 3.2 6.4

Biased (Vanilla TF) 0.270 0.350 0.440 0.560
DDbias (pure clean examples) 0.110 0.105 0.102 0.100
DDbias (weakly confounded) 0.115 0.110 0.107 0.104

G.9 COMPARISON WITH IV-BASED ICL DEBIASING METHOD
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Table 24: Effect on the Prompting Sample Ratio (Weak Conf@0.10)

ICL prediction error 0.090 0.092 0.095 0.100

Sample ratio for DDbias (oracle) (x 1073) 6.4 3.2 2.4 1.6
Sample ratio for DDbias (weak) (x10~2) 8.6 7.2 6.3 3.5

Table 25: Prediction error under mixed ICL prompting.

Method / Sample Ratio (x1073) 1.6 2.4 3.2 6.4

Biased (Vanilla TF) 0.335 0.370 0.388 0.420
DDbias (pure clean examples) 0.145 0.132 0.117 0.106
DDbias (mixed examples, p = 0.1) 0.190 0.140 0.132 0.118
DDbias (mixed examples, p = 0.3) 0.218 0.176 0.144 0.120
DDbias (mixed examples, p = 0.5) 0.290 0.260 0.220 0.235

To compare DDbias with an I'V-based approach, we extend our original confounded DGP by in-
troducing instruments Z. We first draw Z() ~ N(0, I,,), a latent confounder U®) ~ N(0,02),
and noise € ~ A (0,02). Features are generated by combining instrument relevance and con-

founding: x§7) = (I'z®) j+o;U @) 4 ny), where I controls instrument strength and «; matches
the heterogeneous confounding coefficients ;. Outcomes follow y@ = x0Ty, + UG 4 ),
with w, ~ N(0,X71). By construction, Z L (U, €) (instrument exogeneity) and Z — X via I’
(relevance), yielding a clean comparison: IV exploits large confounded observational data with valid
instruments, whereas DDbias requires only a small unconfounded batch.

Remark 5. We do not simulate non-linear 1V data generation, as existing ICL-based debiasing

method relies on the two-stage linear debiasing frameworks (Angrist et al| [1996)).
Although we note that non-linear, deep IV methods also exist (Hartford et al.| |2017)), extending
IV-based approaches towards non-linear DGP under the regime of ICl is out of our scope in this

paper.

Comparison with clean data. To be first, we compare our DDbias with I'V-based approach
in a perfect regime, i.e., both unconfounded ICL samples and valid IVs can be acquired.
We report results in Tab.[26] Experimental trends inform that, in both perfect regimes, our method
slightly performs betther than IV approaches.

Table 26: f = linear, Prediction bias comparison (IV vs DDbias) across Transformer depths and
context sizes.

Model / Method n=50 n=30 n=20 n=10

L=3/1V 0.102 0.142 0.182 0.228
L=3/DDbias 0.090 0.130 0.170 0.220
L=5/1V 0.118 0.165 0.208 0.268
L=5/ DDbias 0.115 0.150 0.200 0.260
L=7/1V 0.145 0.188 0.235 0.298

L=7/ DDbias 0.135 0.171 0.222 0.290

Comparison with partially confounded data. Then, we compare our DDbias with IV-based
approach in an imperfect regime, i.e., partially confounded ICL samples are provided but valid
IVs are accessible. In this regime, we adopt the mixed ICL sample case. As reported in Tab.
we observe that with partially confounded data, our proposed DDbias achieves worse prediction
performance than I'V-based ICL approach, while with large ICL samples (n = 50, our method
achieves certain robustness when p is small).

Comparison with Confounded IVs. Finally, we compare our DDbias with I'V-based approach
in another imperfect regime, i.e., clean ICL samples are provided but only confounded IVs are
accessible. As reported in Tab. 28] we observe that with weakly confounded IVs, increasing ICL
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Table 27: Prediction Bias comparison (IV vs DDbias) under Partially Confounded ICL Samples and
Valid IV.

Model / Method n=50 n=30 n=20 n=10
L=3/1V (Valid IV) 0.105 0.145 0.185 0.222
L=3/DDbias (p =0.3) 0.118 0.176 0.213 0.268
L=5/1V (Valid 1IV) 0.118 0.162 0.205 0.265
L=5/DDbias (p = 0.3) 0.150 0.185 0.247 0.306
L=7/1V (Valid IV) 0.145 0.188 0.235 0.300

L=7/DDbias (p = 0.3) 0.157 0.218 0.245 0.342

samples result significantly prediction bias, which is opposite to the trend of our DDbias under
partially confounded data. Moreover, such a phenomenon informs that the imperfect acquisition of
IVs results in a structural bias in estimation, which cannot be canceled by the increasing ICL samples.

Table 28: Prediction Bias under Invalid IV and Unconfounded ICL Samples, where we set the
correlation between IV Z and € to 0.1 in the IV-oriented DGP.

Model / Method n=50 n=30 n=20 n=10

L=3/IV (WeakIV) 0423 0.351 0.280 0.265
L=3/DDbias 0.090 0.130 0.170 0.220
L=5/1V (Weak IV) 0.500 0.420 0.340 0.291
L=5/DDbias 0.115 0.150 0.200 0.260
L=7/1V (Weak IV) 0.600 0.500 0.400 0.312
L=7/ DDbias 0.135 0.171 0.222 0.290
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Figure 14: Comparison between estimation with biased weights pre-trained from confounded data
and weights pre-trained on unconfounded data, with X ~ N(0,X) and TF@1.
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Figure 15: Comparison between estimation with biased weights pre-trained from confounded data
and weights pre-trained on unconfounded data, with X ~ N (0, I) and TF@3.

G.10 NON-GAUSSIAN ANALYSIS

We show the properties of the constructed U_weights, deviation of pre-trained weights, inference
bias of the ICL stage and the effectiveness of our proposed DDbias method in the regime of Gamma
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Figure 16: Comparison between estimation with biased weights pre-trained from confounded data
and weights pre-trained on unconfounded data, with X ~ N(0,X) and TF@3.
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Figure 17: Prediction comparison of our proposed Double-Debiasing method with increasing
prompting/pre-training sample ratio with Tf@1, where X ~ N(0,%).
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Figure 18: Prediction comparison of our proposed Double-Debiasing method with increasing
prompting/pre-training sample ratio with Tf@3, where X ~ N (0, I).
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Figure 19: Prediction comparison of our proposed Double-Debiasing method with increasing
prompting/pre-training sample ratio with Tf@3, where X ~ N(0,X).

Conf@0.5 Conf@1.0 Conf@1.5 Conf@2.0
0.8+ 0.8 0.8 0.8
=
2067 ) .= 0.6 ) .2 0.6 . .2 0.6 )
) —— DDbias-Ours =) —— DDbias-Ours ) —— DDbias-Ours =) ——— DDbias-Ours
~ 0.44 — Biased ~N 0.4 —— Biased ~ 0.44 — Biased ~N 0.44 — Biased
- - | a7
(012 02— X8 0.2+ 0.2
T T T T 0.0 T T T 0.0+, T T T 0.0+ T T T
1.6 2.4 3.2 6.4 1.6 2.4 3.2 6.4 1.6 2.4 3.2 6.4 1.6 2.4 3.2 6.4
Ratio (x1e™3) Ratio (x1e™3) Ratio (x1e™3) Ratio (x1e™3)
Conf@0.5 Conf@1.0 Conf@1.5 Conf@2.0
1.004 4
1.00 1.001 1.001
-2 0.954 2 2 2
[ahe —— DDbias-Ours — | O 9931 — DDbias-Ours ___ | O 0957 — DDbias-Ours: 50957 — DDbias-Ours
3 —— Biased 3 —— Biased 3 —— Biased 3 —— Biased
0.90-
© 0.90+ © 0.90- © 0.90 O
0.854
: . . Jo08s, . . Jo 08 . . . . . . .
1.6 2.4 3.2 6.4 1.6 2.4 3.2 6.4 1.6 2.4 3.2 6.4 1.6 24 3.2 6.4
Ratio (x1e~3) Ratio (x1e~3) Ratio (x1e~3) Ratio (x1e~3)

Figure 20: Comparision of Cos Divergence and L2 Divergence of our proposed Double-Debiasing
method with increasing prompting/pre-training sample ratio with Tf@1, where X ~ N (0, %)
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Figure 21: Comparision of Cos Divergence and L2 Divergence of our proposed Double-Debiasing
method with increasing prompting/pre-training sample ratio with Tf@3, where X ~ N(0,X)
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Figure 22: Comparision of Cos Divergence and L2 Divergence of our proposed Double-Debiasing
method with increasing prompting/pre-training sample ratio with Tf@3, where X ~ N (0, I).
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Figure 23: Checking U_weights on Non-Gaussian Data, with X ~ Gamma(0.1,10) and TF@1.
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Figure 24: Comparison between estimation with biased weights pre-trained from confounded data
and U_weights we construct in the main paper, with X ~ Gamma(0.1,10) and TF@1.

distribution, where X is sampled from Gamma(0.1,10), together with the noise ¢ in Fig
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Figure 25: Comparison between estimation with biased weights pre-trained from confounded data
and weights pre-trained on unconfounded data, with X ~ Gamma and TF@3.
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Figure 26: Deviation of Pre-trained Weights along each feature dimension for the 1-th layer of TF@3.

3.0
2.5 —4— Conf_0.5 2.5 30 —4— Conf_0.5 —4— Conf_0.5 3.0 —4— Conf 0.5
g 4 Conf 1.0 g .g - Conf_1.0 .g 25 —4— Conf 1.0 g 2s —4— Conf 1.0
20 —— Conf 15 |22 =2 —+ Confl5 |2 ¢ —4— Conf 15 | —4— Conf 15
i “ b 2 2.0
U —— Conf 2.0 | s 20 —+ 'Conf72.0 < —— Conf 2.0 |1 —— Conf 2.0
5 | ¥ls 5 ke YoV Yes
15 -
E10 E10 £ £ £
fa) a Do aLo Q1o
Cos Cos o ° 4
© © ©0.5 © 05 © 0.5
a a a a a
0.0 0.0 0.0 0.0 0.0
0 2000 4000 .6000 8000 0 2000 4000 .6000 8000 0 2000 4000 .EDDO 8000 o 2000 4000 .EDDO 8000 o 2000 4000 .EBDO 8000
Iteration Iteration Iteration Iteration Iteration

Figure 27: Deviation of Pre-trained Weights along each feature dimension for the 2-th layer of TF@3.
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Figure 28: Deviation of Pre-trained Weights along each feature dimension for the 3-th layer of TF@3.
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Figure 29: Comparision of Cos Divergence and L2 Divergence of our proposed Double-
Debiasing method with increasing prompting/pre-training sample ratio with Tf@1, where X ~
Gamma(0.1,10)
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