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Abstract—Recently, deep clustering methods have achieved remarkable results compared to traditional clustering approaches.
However, its performance remains constrained by the absence of annotations. A thought-provoking observation is that there is still a
significant gap between deep clustering and semi-supervised classification methods. Even with only a few labeled samples, the
accuracy of semi-supervised learning is much higher than that of clustering. Given that we can annotate a small number of samples in
a certain unsupervised way, the clustering task can be naturally transformed into a semi-supervised setting, thereby achieving
comparable performance. Based on this intuition, we propose ClusMatch, a unified positive and negative pseudo-label learning based
semi-supervised learning framework, which is pluggable and can be applied to existing deep clustering methods. Specifically, we first
leverage the pre-trained deep clustering network to compute predictions for all samples, and then design specialized selection
strategies to pick out a few high-quality samples as labeled samples for supervised learning. For the unselected samples, the novel
unified positive and negative pseudo-label learning is introduced to provide additional supervised signals for semi-supervised
fine-tuning. We also propose an adaptive positive-negative threshold learning strategy to further enhance the confidence of generated
pseudo-labels. Extensive experiments on six widely-used datasets and one large-scale dataset demonstrate the superiority of our
proposed ClusMatch. For example, ClusMatch achieves a significant accuracy improvement of 5.4% over the state-of-the-art method
ProPos on an average of these six datasets. Source code can be found at https://github.com/XY-ATOE/ClusMatch.

Index Terms—Deep Clustering, Semi-supervised Learning, Positive and Negative Learning

✦

1 INTRODUCTION

C LUSTERING is an unsupervised learning task that aims
to group samples into different clusters, ensuring that

samples within the same cluster are similar while those
from different clusters are dissimilar. Traditional clustering
methods, such as K-means [1], hierarchical clustering [2],
spectral clustering [3], subspace clustering [4]–[8], concept
factorization [9], [10], etc., usually rely on manually selected
features and distance measures, which limits the perfor-
mance and application of clustering. Deep clustering, on the
other hand, provides a new perspective for clustering by
automatically learning the representation without the need
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for manually defined features [11]–[19], which can mine
the intrinsic relationships within the data, leading to more
informative clustering results. Compared with traditional
methods, deep clustering often shows better robustness and
resilience to noise, and is capable of efficiently handling
large-scale data [15], [19]–[21].

Currently, there are two main paradigms for deep clus-
tering, including the clustering head based methods and
feature learning based methods. The first one tends to add
a clustering head after the feature encoder, such as the joint
unsupervised learning of deep representations and image
clusters (JULE) [22], deep adaptive clustering [11], [13] and
contrastive clustering [16], [17], [23], which learns the fea-
ture encoder and clustering head simultaneously through
end-to-end training. The clustering head can map the fea-
ture representation to the clustering space and constrain
the samples at a semantic level. Owing to the development
of self-supervised learning, the feature learning paradigm
has attracted much attention recently, which seamlessly
integrates deep learning with traditional clustering tech-
niques. This paradigm utilizes self-supervised learning, e.g.,
contrastive learning [21], [24]–[27], to train the encoder for
discriminative feature representations, which are then fed
into a traditional clustering algorithm, such as K-means [19].
Compared to clustering head based methods, this kind of
method directly imposes constraints at the feature level on
the shoulders of self-supervised learning, showing greater
flexibility. Nevertheless, it is imperative to acknowledge
that this approach involves a two-stage process, inevitably

https://github.com/XY-ATOE/ClusMatch


IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025 2

36

39

42

45

48

51

54

57

60

63

66

69

ImageNet-1K

88

89

90

91

92

93

94

95

96

97

98

99

CIFAR-10

A
cc

u
ra

cy
 (

%
)

ProPos

SeCu

FixMatch

FlexMatch

FreeMatch

Deep Clustering SSL with 40 labels

ProPos

SeCu

FixMatch

FlexMatch

FreeMatch

Deep Clustering SSL with 10% labels

(a) Comparison of deep clustering methods and semi-supervised learn-
ing (SSL) on CIFAR-10 and ImageNet-1K.
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(b) Rank of the distance from samples to the ’Brown Bear’ cluster
center after K-means for ProPos on Tiny-ImageNet.

Fig. 1: Motivation of the proposed method. (a) Semi-supervised learning demonstrates better accuracy with only a small
amount of labeled data, prompting us to consider revisiting the clustering task in a semi-supervised way. (b) The top-
ranked samples all belonged to the correct ’Brown Bear’ class, while the lower-ranked samples exhibit label confusion,
indicating that the top-ranked samples are of high quality and can be treated as labeled data in semi-supervised learning.

requiring manual parameter selection for the traditional
clustering algorithm [15], [28].

Both paradigms have achieved great success in recent
years, but most of the existing methods view the clustering
from a traditional unsupervised learning perspective. In
this paper, we revisit the clustering task and formulate it
as a pseudo-label based semi-supervised learning task. As
depicted in Fig. 1 (a), it is evident that semi-supervised
learning methods consistently outperform clustering meth-
ods, both on the small dataset CIFAR-10 and the large-
scale dataset ImageNet-1K. For example, with only 4 labeled
samples per category, the accuracy of the semi-supervised
method FlexMatch [29] is 2.4% higher than that of the
state-of-the-art clustering method ProPos [19] on CIFAR-10
[30]. Moreover, the accuracy of FreeMatch [31] with only
10% labeled samples for supervised learning surprisingly
surpasses ProPos by 12.9% on ImageNet-1K [32]. This in-
sight illuminates the potential that, if we can transform the
clustering task into a semi-supervised learning paradigm
in some way, the clustering performance could closely ap-
proximate that of semi-supervised learning. The key to this
transformation lies in how to construct samples with high-
quality labels. Note that the term ’labels’ here refers to
notations that distinguish different categories, rather than
conventional labels in the true sense of the word. Luckily,
we have another observation that the closer a sample is to
the cluster center, the higher the credibility of its assigned
label. Taking the feature learning based method ProPos as
an example, after getting the clustering result by K-means,
we sort the samples according to the distance to the cluster
center. As shown in Fig. 1 (b), samples near the cluster
center often share the same true class, while samples far
from the cluster center tend to be of different wrong classes.
Consequently, by selecting samples close to the clustering
center as labeled samples, we can naturally transform the
clustering task into semi-supervised learning. In addition,
current clustering methods and semi-supervised learning
mainly explore the consistency between samples through
positive labels while ignoring the complementary informa-
tion provided by negative labels, which also leads to limited
supervised signals and poor performance.

In view of the above motivation, we propose ClusMatch,
which further enhances the performance of deep cluster-
ing by semi-supervised fine-tuning with unified positive
and negative pseudo-label learning. In order to satisfy the
setting of semi-supervised learning, we first use the pre-
trained clustering network to annotate positive labels for
the samples and design two selection strategies for the
clustering head based and feature learning based methods,
respectively, to select high-quality samples for supervised
training. For the unselected samples, we explore the con-
sistency between samples of different views and utilize
the positive pseudo-labels, negative pseudo-labels, and K-
means pseudo-labels generated by the weakly-augmented
branch as additional supervised signals to guide the learn-
ing of the strongly-augmented branch. To control the quality
of the generated pseudo-labels, we also design an adap-
tive positive-negative threshold strategy, which can dynam-
ically adjust the value according to the training status,
thus avoiding the interference of low-confidence pseudo-
labels. ClusMatch is pluggable and applicable to existing
deep clustering methods. Extensive experiments on several
commonly-used datasets verify the effectiveness of the pro-
posed method.

Overall, the pivotal contributions of our work can be
summarized as follows:

• We reconsider the clustering problem and propose
ClusMatch based on a semi-supervised fine-tuning
framework, which is pluggable and can further im-
prove the performance of existing clustering meth-
ods.

• For the lack of supervised signals, we design novel
selection strategies for high-quality samples and
propose unified positive and negative pseudo-label
learning. To the best of our knowledge, this is the
first study that combines negative learning with the
clustering task.

• In order to obtain high-confident pseudo-labels, we
design an adaptive positive-negative threshold learn-
ing strategy, which can dynamically filter uninfor-
mative signals according to the learning status of
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training.
• We conduct extensive experiments on six benchmark

datasets and one large-scale dataset, and the pro-
posed ClusMatch outperforms existing deep cluster-
ing methods by a large margin.

2 RELATED WORK

In this section, we provide a brief overview of the advance-
ments and current research status in deep clustering and
semi-supervised learning.

2.1 Deep Clustering

Recently, deep clustering [12], [17], [19], [33]–[36] has
demonstrated remarkable advancements compared to con-
ventional clustering methods. Image clustering can be
broadly categorized into two groups according to evaluation
methods: clustering head based methods, such as Deep-
Cluster [37], CC [16], GCC [17], and TCL [23], and feature
learning based methods, represented by DEC [38], BYOL
[27], PCL [21], and ProPos [19].

Clustering head based methods use a clustering head to
directly output predictions. DeepCluster [37] is among the
earliest head-based methods designed for end-to-end clus-
tering. It is compatible with many standard clustering algo-
rithms, such as k-means, and requires minimal additional
steps. At the time, it achieves state-of-the-art performance.
CC [16], GCC [17], and TCL [23] all employ contrastive
learning at the instance and cluster level. Especially, GCC
contrasts images with their K-nearest neighbors while CC
and TCL construct contrastive pairs through data augmen-
tation.

Feature learning based methods, built upon the founda-
tion of self-supervised learning, have demonstrated notable
results [21], [25], [27]. They directly leverage features ob-
tained from the pre-trained model and apply the K-means
algorithm to yield favorable results. DEC [38] comes up with
the joint optimization of deep embedding and clustering,
along with a novel iterative refinement through soft as-
signment, achieving excellent results. Some methods utilize
contrastive learning for clustering. BYOL [27] introduces a
novel approach for contrastive learning by adding a pre-
diction head instead of using negative samples to prevent
the model from collapsing. PCL [21] proposes a prototypical
contrastive loss based on MoCo-V2 [39] to enhance feature
compactness. ProPos [19] further improves the prototypical
contrastive loss based on BYOL [27] and achieves state-of-
the-art results.

Owing to the powerful representation learning capabil-
ity of self-supervised learning, various deep image clus-
tering methods based on labeling technology have also
emerged, such as SCAN [15] and SPICE [28]. SCAN in-
troduces self-labeling, which enhances model performance
by leveraging high-confidence pseudo-labels generated by
a pre-trained self-supervised model. Self-labeling stands
out as a versatile approach, demonstrating notable results
in other models such as GCC [17] and SeCu [20]. Simi-
larly, SPICE [28] leverages the pre-trained model to assign
pseudo-labels by prototype and reliable labeling, which
subsequently are utilized to refine the whole model.

Regardless of the clustering head based or feature learn-
ing based methods, they have not departed from the tradi-
tional unsupervised learning framework. In this paper, we
revisit the clustering task from a novel perspective of semi-
supervised learning.

2.2 Semi-supervised Learning

Semi-supervised learning is an approach that can produce
significant results only with a small amount of labeled data.
A common practice of semi-supervised learning is to utilize
the confident predictions to generate pseudo-labels [40], [41]
and train the model through entropy minimization [42].
MixMatch [43] determines highly-confident pseudo-labels
through multiple augmentations. FixMatch [44] employs
predefined hyperparameters as a positive threshold to de-
termine which samples are used for training. However, Fix-
Match does not take into account variations in the learning
difficulty of samples across different categories. FlexMatch
[29] refines the FixMatch method by allowing dynamic
threshold adjustments for different categories during train-
ing. It is worth noting that both of these methods unavoid-
ably introduce hyperparameters. In contrast, FreeMatch
[31] introduces an adaptive threshold approach that deter-
mines pseudo-labels without the need for any additional
hyperparameters. SoftMatch [45] assigns different weights
to pseudo-labels based on their quality. Furthermore, self-
supervised learning methods such as MoCo [25], SimCLR
[24], BYOL [27], etc., can also be easily transformed into
semi-supervised learning by directly adding a supervised
learning loss to the original loss or applying supervised
learning with a few labeled samples based on the pre-
trained model.

To further enhance the performance, several semi-
supervised learning methods also combine negative learn-
ing which utilizes negative labels to construct loss functions.
Negative labels are often easier to obtain compared to pos-
itive labels and can provide additional supervisory signals
for model training. Typical negative learning includes com-
plementary labels methods [46], [47] and NLNL [48]. NS3L
[49] and UPS [50] introduce negative learning into semi-
supervised learning. Both NS3L and UPS employ negative
thresholds to filter out noisy samples with negative labels.
FullMatch [51] employs a method that ranks negative labels
based on the probability of different categories, achieving
favorable results. These methods are limited to a fixed
threshold or rank strategy, which is unreasonable and not
flexible enough.

In our method, we transform the clustering task into
semi-supervised learning, leveraging negative learning with
a dynamic and flexible threshold strategy to achieve im-
proved clustering performance.

3 METHOD

In this section, we introduce ClusMatch in detail. We first
give a brief introduction to the deep clustering task, and
then describe the whole framework of ClusMatch. Next,
we elaborate on the proposed components of ClusMatch,
including label selection, positive pseudo-label learning,
and negative pseudo-label learning.
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Fig. 2: The overall framework of ClusMatch. We first select high-quality samples using the pre-trained model using two
designed strategies for supervised learning. Branch selection means choosing one of the two branches for label selection,
depending on the type of pre-trained model. For unselected samples, the weakly-augmented branch generates high-
confident positive, negative, and K-means pseudo-labels as the supervised signals to instruct the learning of the strongly-
augmented branch. A novel adaptive positive-negative threshold strategy is also proposed to further boost the confidence
of generated pseudo-labels.

3.1 Problem Formulation

Given N images X = {xi}Ni=1, the deep clustering task
aims to group them into different K classes without using
any labeled data, ensuring that similar images are clustered
together as much as possible. Considering clustering head
based methods, the typical framework consists of two main
components, a feature encoder f(·) that transforms the im-
age xi into the corresponding feature, and a clustering head
c(·) that maps the features to a K-dimensional probability
vector pi, which satisfies

∑K
j=1 pij = 1. Note that pij refers

to the probability that the image xi is clustered into the
j category, and the category with the largest probability
usually acts as the clustering result of the image. Finally, by
designing a suitable loss function, we can jointly optimize
encoder f(·) and clustering head c(·) to obtain a high-
performance clusterer.

Different from the traditional approach of together train-
ing the encoder f(·) and clustering head c(·) end to end,
in this work, we propose a novel approach to optimizing
clustering networks that leverages semi-supervised learning
to fine-tune the pre-trained encoder f(·) for more discrimi-
native features.

3.2 Overview of ClusMatch

To facilitate the subsequent formulation, we first give the
concepts of positive labels, negative labels, positive pseudo-
labels, and negative pseudo-labels in this paper. The positive
label indicates the category to which the sample is most
likely to belong, and it is generally of the one-hot form. As
an example, for a probability distribution pi, the positive
label should be the category corresponding to the maximum
probability, i.e., yposi = argmax(pi). The negative label, on

the other hand, is generally in the form of multi-hot, in-
dicating those categories with non-maximum probabilities,
to which the sample is unlikely to belong. In contrast, the
definition of positive and negative pseudo-labels is based
on the positive-negative threshold strategy. The category
corresponding to the maximum probability above the pos-
itive threshold will serve as a positive pseudo-label, while
the categories with the non-maximum probabilities below
the negative thresholds collectively constitute the negative
pseudo-label.

In this paper, we propose a new training approach,
ClusMatch, which unifies positive and negative pseudo-
label learning to fine-tune the pre-trained clustering net-
work for more discriminative feature representation and
better clustering performance. The overall framework is
shown in Fig. 2. The training process of ClusMatch can be
summarized into two stages:
1) Label Selection. Assign positive labels using the pre-
trained clustering network for all samples, and select a
few samples with high-quality positive labels, ensuring that
the number of selected samples of each category is equal.
The specific strategies of selection for clustering head based
and feature learning based pre-trained networks will be
introduced in detail in Section 3.3.
2) Semi-supervised Fine-tuning. Treat the selected samples
as the labeled data and generate highly-confident pseudo-
labels for unselected samples based on the proposed adap-
tive positive-negative threshold strategy to perform semi-
supervised fine-tuning.

For samples S = {si, yi}Ns
i=1, which are selected and

annotated with a positive label yi in the label selection stage,
we follow supervised learning for training. Specifically, we
perform weak augmentation α(·) on the sample si, after
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which they are passed through the encoder f(·) and the
clustering head c(·) to obtain the assignment probability. Fi-
nally, the cross-entropy between the probability and positive
label yi is calculated as follows:

Lsup =
1

B

B∑
i=1

H(yi, c(f(α(si)))), (1)

where B denotes the number of labeled samples in a mini-
batch and H(·) is the cross-entropy function.

For unselected samples U = {ui}Nu
i=1, we adopt pseudo-

label learning, i.e., we leverage the weakly-augmented
branch to generate highly-confident pseudo-labels to guide
the learning of the strongly-augmented branch. ClusMatch
mainly considers three forms of pseudo-labels, namely,
positive pseudo-labels, negative pseudo-labels, and K-
means pseudo-labels. In order to improve the confidence
of pseudo-labels, we design an adaptive positive-negative
threshold strategy, which can automatically adjust the value
of the positive and negative thresholds according to the
training status. Based on this, unified positive and negative
pseudo-label learning is proposed to optimize the entire
clustering network, which will be presented in Sections 3.4
and 3.5.

Considering that the clustering head c(·) is randomly
initialized at the early stage of training, its output is not
convincing. In contrast, K-means results of features are more
reliable since the encoder f(·) is a pre-trained deep cluster-
ing network. In order to familiarize the whole network with
the samples as soon as possible, we also propose K-means
pseudo-label learning to warm up the training, where
K-means results of the weakly-augmented branch acting
as K-means pseudo-labels instruct the strongly-augmented
branch:

pi = c(f(α(ui))), (2)

Lkpl =
1

µB

µB∑
i=1

1(max(pi) > τpos)H(y′i, c(f(A(ui)))), (3)

where 1(·) is the indicator function, µ is the ratio of the
number of samples for pseudo-label learning and samples
for supervised learning in a mini-batch, A(·) denotes strong
augmentation, and y′i is the K-means pseudo-label after
Hungarian algorithm, following ProPos [19]. Note that only
samples whose maximum probability exceeds the positive
threshold τpos are used in K-means pseudo-label learning
because they tend to be simpler and show more convincing
cluster results than those not exceeding.

Finally, we can get the following overall training objec-
tive in the semi-supervised fine-tuning stage:

Ltotal = Lsup + δ · Lppl + β · Lnpl + γ · Lkpl, (4)

where Lppl is the positive pseudo-label learning loss, and
Lnpl is the negative pseudo-label learning loss. δ, β and γ
are constants for balancing the contribution of each term.

3.3 Label Selection
Given a pre-trained deep clustering network, the goal of
label selection is to annotate all samples with positive labels
and pick out high-quality ones. In other words, the aim is

to select M =
⌊
σ·N
K

⌋
samples, whose positive labels are

as accurate as possible, for each category. Here σ is a ratio
controlling the number of selected samples and 0 ≤ σ ≤ 1.

For clustering head based methods, we can get an as-
signment probability matrix P = [p′1, p

′
2, ..., p

′
N ]T ∈ RN×K

from the clustering head c(·) of the pre-trained model. p′i
denotes the probabilities over K clusters and the category
corresponding to the maximum probability of p′i is treated
as the positive label, i.e., yi = argmax(p′i). In order to filter
out the low-quality samples, we only retain the samples
with large variances of p′i. In general, the larger the variance
of the probability distribution, the greater the distinction
between different categories, and thus the more credible the
positive labels [50]. Taking the category a as an example, we
first compute the variance vi of the probability distribution
p′i for all samples with argmax(p′i) = a and then select the
top-M samples with the largest vi.

As to feature learning based methods, we take the result
of the K-means algorithm on the features as the positive
label. By K-means, we can get a distance matrix D =
[d1, d2, ...., dN ]T ∈ RN×K , each element dij denotes the
distance from the i-th sample to the j-th clustering center.
The category corresponding to the clustering center closest
to the sample acts as the positive label, i.e., yi = argmin(di).
From Fig. 1 (b), we see that the closer the samples are to the
clustering center, the higher the confidence of the positive
label. Therefore, for samples with positive label a, we select
the top-M samples with the smallest min(di) as the high-
quality samples.

By choosing one of the two branches for label selection
depending on the type of deep clustering model, we can
construct set S = {si, yi}Ns

i=1 for supervised learning. Here
Ns = K ×M .

3.4 Negative Pseudo-label Learning

Let us first consider conventional cross-entropy loss. The
optimization objective of cross-entropy is as follows:

L = H(yposi , pi) = −
K∑

k=1

yposik log pik, (5)

where yposi denotes the one-hot positive label. Cross-entropy
expects the probability corresponding to the true label to
be close to 1. In this paper, we call it positive learning. In
contrast, the objective function for negative learning is:

L = H(ynegi , 1− pi) = −
K∑

k=1

ynegik log(1− pik), (6)

where ynegi is the negative label of the one-hot form, indicat-
ing the category to which the sample is least likely to belong.
The objective aims to make the probability corresponding to
this category close to zero. Generally, the negative label is in
the form of multi-hot, to constrain the sum of probabilities
for all negative classes approaching zero, we modify the
optimization objective to:

L = − log(1−
∑

k∈{j|yneg
ij =1}

pik). (7)
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8 0.31 0.23 0.07 0.14 0.25

9 0.19 0.38 0.13 0.21 0.09

10 0.12 0.09 0.16 0.22 0.41
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Fig. 3: A toy example for adaptive positive-negative threshold learning strategy. We provide a detailed presentation of the
dynamic generation process for positive and negative thresholds of class 2. Initially, 10 samples are given with probability
distributions over five classes. Subsequently, samples 1, 5, and 7, whose maximum probabilities correspond to class 2,
participate in the threshold construction. The current positive and negative thresholds are then obtained after applying
our proposed dynamic strategy. Finally, the involved samples whose probability of class 2 exceeds the positive threshold
will generate the one-hot positive pseudo-label, such as samples 1 and 7. Other classes whose probabilities fall below the
corresponding negative threshold will constitute the multi-hot negative pseudo-label.

Most of the existing clustering head based methods are
based on positive learning and ignore the additional infor-
mation brought by negative labels. Through negative learn-
ing, the clustering network can avoid allocating more effort
to impossible categories and fix positive labels faster and
more accurately, thus improving the clustering performance.

According to the above theory, unified positive and neg-
ative pseudo-label learning based on the adaptive positive-
negative threshold strategy is proposed, which combines
pseudo-label learning with positive and negative learning
for more highly-confident supervised signals. Firstly, we
elaborate on the design of the adaptive negative threshold.
According to FlexMatch [29] and FreeMatch [31], samples
from different categories have varying levels of learning
difficulty. So each category should have a corresponding
threshold value, which can be adjusted according to the
training status.

We define the negative threshold for category a as fol-
lows:

τneg(a) = τgneg(a) ·Norm(τ lneg(a)), (8)

where τgneg(a) is a scalar reflecting the global learning status
of all categories except a, while τ lneg(a) is a K-dimensional
vector indicating the local learning status of each category
except a. Note that Norm(·) is the L1-normalization.

For samples whose maximum probability corresponds
to the category a, their negative pseudo-labels should be
constructed from non-a categories. To assess the overall
learning status of them, we define the global threshold
τgneg(a) as follows:

τgneg(a) =

∑µB
i=1 1(argmax(pi) = a)(1−max(pi))∑µB

i=1 1(argmax(pi) = a)
, (9)

which measures the global learning status by the expec-
tation of the sum of the predicted probabilities of non-a
categories.

The local learning status of non-a categories is equally
significant, which specifically reflects the difficulty of learn-
ing different categories. In this regard, we treat the expec-
tation of the predicted probability distributions over non-a
categories as the measure:

τ lneg(a) =

∑µB
i=1 1(argmax(pi) = a)p̂i∑µB
i=1 1(argmax(pi) = a)

, (10)

where p̂i denotes the result after setting max(pi) to 0 in pi. In
accordance with FreeMatch [31], we adopt the exponential
moving average (EMA) to update both τgneg(a) and τ lneg(a)
as follows:

τg,tneg(a) = m · τg,t−1
neg (a) + (1−m)τg,tneg(a), (11)

τ l,tneg(a) = m · τ l,t−1
neg (a) + (1−m)τ l,tneg(a), (12)

where m ∈ [0, 1) is a smoothing factor and t is the current
training epoch. From Eq. (8), it can be deduced that τneg(a)
is also K-dimensional. Intuitively, all categories in pi with
the probabilities lower than the corresponding thresholds in
τneg(a) will constitute the negative pseudo-label together.
According to Eq. (7), we optimize the following negative
pseudo-label learning loss to make the probabilities below
the corresponding thresholds converge to 0:

qi = c(f(A(ui))), (13)

Lnpl = − 1

µB

µB∑
i=1

log

1−
K∑
j=1

1(pij < [τneg(y
′′

i )]j)qij

 ,

(14)

where y′′i is the positive label of sample ui, i.e., y′′i =
argmax(pi).

Training only on negative classes without positive ones
can harm classification, as the model cannot learn what



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025 7

positive samples look like, making it hard to infer them from
negative class analysis alone. On datasets like ImageNet,
small batches may lack positive samples for some classes,
risking training collapse. Unlike SeCu, ClusMatch solves
this by using a pre-trained model to select a small set of
high-confidence labeled samples, ensuring balanced class
representation. Each batch mixes labeled and unlabeled
samples. This ensures all labeled samples are used within a
few batches, allowing the model to quickly see positive sam-
ples from every class. Without labeled samples, the model
might miss positive samples for specific classes over many
batches. Thus, labeled samples stabilize learning, improve
class balance, and enhance negative class learning.

3.5 Positive Pseudo-label Learning

Naturally, the category corresponding to the maximum
probability tends to be the true label of the sample. There-
fore, we propose positive pseudo-label learning, i.e., the
category whose maximum probability exceeds the positive
threshold will act as the positive pseudo-label to instruct the
strongly-augmented branch. Based on the negative thresh-
old, we construct the adaptive positive threshold as follows:

τpos(a) = 1−
K∑
j=1

[τneg(a)]j . (15)

The learning status of the negative threshold determines
the value of τpos(a). As the network becomes more and
more certain of the negative labels, the negative threshold
decreases, thus making the positive threshold larger and
larger, which indicates that the network is more capable
of recognizing the positive labels. Note that unlike τneg(a),
τpos(a) is a scalar since we only need to consider whether
the maximum probability reaches its corresponding positive
threshold. A detailed toy example of constructing positive
and negative thresholds is shown in Fig. 3. Ultimately, the
positive pseudo-labeling learning loss can be formulated as:

Lppl =
1

µB

µB∑
i=1

1(max(pi) > τpos(y
′′
i ))H(y′′i , qi). (16)

The overall training process is summarized in Algo-
rithm 1.

4 EXPERIMENTS
4.1 Experimental Settings

4.1.1 Datasets
We evaluated the performance of ClusMatch on seven
mainstream datasets, which cover a large variety of in-
stances and categories, including CIFAR-10 [30], CIFAR-100
[30], STL-10 [52], and four ImageNet-related datasets, i.e.,
ImageNet-10 [11], ImageNet-Dogs [11], Tiny-ImageNet [53],
and ImageNet-1K [32].

CIFAR-10 and CIFAR-100 are the most commonly-used
datasets for image tasks, both consisting of 60,000 color
images with a size of 32x32. CIFAR-10 contains a total of
10 classes, while CIFAR-100 has a total of 20 superclasses,
each of which consists of 5 subclasses. Note that we only
consider the superclass for CIFAR-100 in this work.

Algorithm 1 Training Algorithm of ClusMatch

Input: Images X = {xi}Ni=1, number of clusters K , a
pre-trained clustering network f with parameters θf ,
balancing weights δ, β and γ, label selection ratio σ, and
momentum parameter m.
Output: Clustering Results C .
Initializing the clustering head c with parameters θc;
Selecting high-quality samples using the pre-trained f to
construct set S;
for all each epoch do

Generating K-means pseudo-labels;
for all each batch do

Calculating negative and positive thresholds accord-
ing to Eqs. (8) and (15);
Calculating supervised learning loss for the selected
samples in S by Eq. (1);
Calculating positive pseudo-label learning loss for
unselected samples by Eq. (16);
Calculating negative pseudo-label learning loss for
unselected samples by Eq. (14);
Calculating K-means pseudo-label learning loss for
unselected samples by Eq. (3);
Update parameters θf and θc with SGD optimizer by
minimizing the total loss according to Eq. (4).

end for
end for
Generating clustering results C using K-means on the
features of f .

STL-10 contains both labeled and unlabeled samples.
The labeled samples consist of 10 classes of object images,
where each class contains 1,300 images of size 96x96. There
are also 100,000 unlabeled samples which we do not use in
this work.

ImageNet-10 and ImageNet-Dogs are subsets of the Im-
ageNet dataset with image size 96x96. ImageNet-10 contains
10 random categories with a total of 13,000 training images
and ImageNet-Dogs has 19,500 images across 15 random
dog breeds.

Tiny-ImageNet is also a subset of ImageNet, comprising
200 categories, with each category consisting of 500 training
images sized at 64×64 pixels.

ImageNet-1K is a challenging large-scale image dataset,
which contains 1,281,167 images for training with size of
224×224 across 1,000 categories.

4.1.2 Compared Methods
We compared ClusMatch with traditional clustering meth-
ods and the latest deep clustering methods, including K-
means [1], SC [54], AC [55], NMF [10], AE [56], DAE [57],
DCGAN [58], DeCNN [59], VAE [60], JULE [22], DEC [38],
DAC [11], DCCM [13], IIC [61], PICA [62] , SCAN [15],
NNM [63], CC [16], MiCE [64], TCL [23], TCC [18], MoCo
[25], SimSiam [26], BYOL [27], IDFD [65], PCL [21], SeCu
[20], GCC [17] and ProPos [19].

4.1.3 Evaluation Metrics
Following the conventional practice of clustering, we
adopted Accuracy (ACC), Normalized Mutual Information
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TABLE 1: Clustering results of various methods on six widely-used datasets. The best and second-best results are shown
in bold and underline, respectively.

Dataset CIFAR-10 CIFAR-100 STL-10 ImageNet-10 Imagenet-Dogs Tiny-ImageNet
NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

K-means 0.087 0.229 0.049 0.084 0.130 0.028 0.125 0.192 0.061 0.119 0.241 0.057 0.055 0.105 0.020 0.065 0.025 0.005
AC (PR 1978) 0.105 0.228 0.065 0.098 0.138 0.034 0.239 0.332 0.140 0.138 0.242 0.067 0.037 0.139 0.021 0.069 0.027 0.005

SC (NeurIPS 2004) 0.103 0.247 0.085 0.090 0.136 0.022 0.098 0.159 0.048 0.151 0.274 0.076 0.038 0.111 0.013 0.063 0.022 0.004
AE (NeurIPS 2006) 0.239 0.314 0.169 0.100 0.165 0.048 0.250 0.303 0.161 0.210 0.317 0.152 0.104 0.185 0.073 0.131 0.041 0.007
NMF (IJCAI 2009) 0.081 0.190 0.034 0.079 0.118 0.026 0.096 0.180 0.046 0.132 0.230 0.065 0.044 0.118 0.016 0.072 0.029 0.005
DAE (JMLR 2010) 0.251 0.297 0.163 0.111 0.151 0.046 0.224 0.302 0.152 0.206 0.304 0.138 0.104 0.190 0.078 0.127 0.039 0.007

DeCNN (CVPR 2010) 0.240 0.282 0.174 0.092 0.133 0.038 0.227 0.299 0.162 0.186 0.313 0.142 0.098 0.175 0.073 0.111 0.035 0.006
VAE (ICLR 2014) 0.245 0.291 0.167 0.108 0.152 0.040 0.200 0.282 0.146 0.193 0.334 0.168 0.107 0.179 0.079 0.113 0.036 0.006

DCGAN (ICLR 2016) 0.265 0.315 0.176 0.120 0.151 0.045 0.210 0.298 0.139 0.225 0.346 0.157 0.121 0.174 0.078 0.135 0.041 0.007
JULE (CVPR 2016) 0.192 0.272 0.138 0.103 0.137 0.033 0.182 0.277 0.164 0.175 0.300 0.138 0.054 0.138 0.028 0.102 0.033 0.006
DEC (ICML 2016) 0.257 0.301 0.161 0.136 0.185 0.050 0.276 0.359 0.186 0.282 0.381 0.203 0.122 0.195 0.079 0.115 0.037 0.007
DAC (ICCV 2017) 0.396 0.522 0.306 0.185 0.238 0.088 0.366 0.470 0.257 0.394 0.527 0.302 0.219 0.275 0.111 0.190 0.066 0.017

DCCM (ICCV 2019) 0.496 0.623 0.408 0.285 0.327 0.173 0.376 0.482 0.262 0.608 0.710 0.555 0.321 0.383 0.182 0.224 0.108 0.038
IIC (ICCV 2019) 0.513 0.617 0.411 - 0.257 - 0.431 0.499 0.295 - - - - - - - - -

PICA (CVPR 2020) 0.591 0.696 0.512 0.310 0.337 0.171 0.611 0.713 0.531 0.802 0.870 0.761 0.352 0.352 0.201 0.277 0.098 0.040
SCAN (ECCV 2020) 0.797 0.883 0.772 0.486 0.507 0.333 0.698 0.809 0.646 - - - - - - - - -
MoCo (CVPR 2020) 0.669 0.776 0.608 0.390 0.397 0.242 0.615 0.728 0.524 0.01 0.010 0.010 0.347 0.338 0.197 0.342 0.160 0.080

SimSiam (ICML 2020) 0.786 0.856 0.736 0.522 0.485 0.327 0.659 0.716 0.572 0.831 0.921 0.833 0.583 0.674 0.501 0.351 0.203 0.094
BYOL (NeurIPS 2020) 0.817 0.894 0.790 0.559 0.569 0.393 0.713 0.825 0.657 0.866 0.939 0.872 0.635 0.694 0.548 0.365 0.199 0.100

MiCE (ICLR 2020) 0.737 0.835 0.698 0.436 0.440 0.280 0.635 0.752 0.575 - - - 0.423 0.439 0.286 - - -
CC (AAAI 2021) 0.705 0.790 0.637 0.431 0.429 0.266 0.764 0.85 0.726 0.859 0.893 0.822 0.445 0.429 0.274 0.340 0.140 0.071

TCC (NeurIPS 2021) 0.790 0.906 0.733 0.479 0.491 0.312 0.732 0.814 0.689 0.848 0.897 0.825 0.554 0.595 0.417 - - -
IDFD (ICLR 2021) 0.711 0.815 0.663 0.426 0.425 0.264 0.643 0.756 0.575 0.898 0.954 0.901 0.546 0.591 0.413 - - -
PCL (ICLR 2021) 0.802 0.874 0.766 0.528 0.526 0.363 0.718 0.410 0.670 0.841 0.907 0.822 0.440 0.412 0.299 0.350 0.159 0.087

NNM (CVPR 2021) 0.748 0.843 0.709 0.484 0.477 0.316 0.694 0.808 0.65 - - - - - - - - -
TCL (IJCV 2022) 0.819 0.887 0.780 0.529 0.531 0.357 0.799 0.868 0.757 0.875 0.895 0.837 0.623 0.644 0.516 - - -

SeCu (ICCV 2023) 0.861 0.930 0.857 0.551 0.552 0.397 0.733 0.836 0.693 - - - - - - - - -
GCC (ICCV 2021) 0.787 0.870 0.752 0.498 0.494 0.320 0.684 0.788 0.631 0.842 0.901 0.822 0.583 0.630 0.479 0.350 0.165 0.074
GCC + ClusMatch 0.851 0.914 0.829 0.552 0.536 0.367 0.739 0.842 0.702 0.897 0.956 0.906 0.678 0.730 0.596 0.403 0.225 0.109

ProPos (TPAMI 2022) 0.853 0.921 0.844 0.576 0.576 0.409 0.819 0.905 0.808 0.895 0.941 0.884 0.650 0.668 0.546 0.471 0.318 0.188
ProPos + ClusMatch 0.890 0.949 0.893 0.601 0.592 0.426 0.863 0.929 0.854 0.939 0.977 0.949 0.745 0.798 0.685 0.482 0.408 0.232

ProPos† 0.871 0.943 0.863 0.591 0.602 0.437 0.854 0.923 0.844 0.902 0.959 0.912 0.725 0.768 0.661 0.402* 0.241* 0.121*
ProPos† + ClusMatch 0.909 0.960 0.915 0.627 0.612 0.457 0.886 0.940 0.873 0.933 0.974 0.944 0.785 0.844 0.737 0.454* 0.388* 0.213*
† indicates that ProPos uses ResNet-34 except on the Tiny-ImageNet.
∗ indicates that ProPos uses ResNet-18 with image size 224× 224 on the Tiny-ImageNet.

(NMI), and Adjusted Rand Index (ARI) as the evaluation
metrics, where larger values indicate better clustering per-
formance.

4.1.4 Implementation Details
Model. Considering that ClusMatch is a pluggable scheme,
we relied on the state-of-the-art clustering head based
method GCC [17] and the feature learning based method
ProPos [19] to build our model. Following GCC and ProPos,
we used ResNet-18 [66] as the encoder f(·) unless otherwise
stated and the clustering head c(·) is a linear layer.

Training Settings. For a fair comparison, we strictly fol-
lowed the parameter settings of GCC [17] and ProPos [19]
for pre-training. In the stage of semi-supervised fine-tuning,
we trained a total of 216 steps using SGD with a weight
decay of 0.0005 and a momentum coefficient of 0.9. Different
learning rates are adopted for the pre-trained encoder f(·)
and head c(·). Unless specified otherwise, the learning rate
for f(·) is set to 0.0002, while for c(·) it is set to 0.02. The
loss weights δ, β, and γ are all set to 0.5. The ratio σ for label
selection is 0.1 and m for EMA is set to 0.999. Especially, for
CIFAR-10, both f(·) and c(·) are trained with a learning rate
of 0.01, δ = 0.001, β = 1.0, γ = 0.5, and σ = 0.01, since
it is a relatively simple dataset. For the large-scale dataset
ImageNet-1K, we set σ = 0.2.

Augmentation. Following FixMatch [44], we applied both
weak and strong augmentation [67]. For weak augmenta-
tion, random crop and random horizontal flip are utilized.
As for strong augmentation, we adopted the RandAugment

[68] strategy, which selects augmentations from a predefined
list and combines them with different magnitudes. In the
test phase, we used the center crop and kept the image size
consistent with that during training.

4.2 Main Results

To verify the effectiveness and superiority of ClusMatch,
we compared it with the state-of-the-art clustering methods
on six commonly-used datasets. Table 1 presents the results
for the three metrics NMI, ACC, and ARI. We can see that
all metrics are improved significantly after fine-tuning GCC
and ProPos with ClusMatch on all datasets. Note that here
we reported the K-means clustering results for the features
from the encoder f(·). The results for DAE, VAE, MoCo,
SimSiam, and BYOL are cited from ProPos, where the cluster
labels are directly obtained through feature clustering.

CIFAR-10/100. With ResNet-18 [66], ClusMatch improves
6.4%, 4.4%, and 7.7% on NMI, ACC, and ARI metrics,
respectively, over GCC, and 3.7%, 2.8%, and 4.9% over
ProPos, on the CIFAR-10 dataset. Even when compared
with the most competitive method SeCu, our results are
overwhelmingly superior, especially on the NMI and ARI
metrics. For CIFAR-100, ClusMatch can get a steady boost
of 4%∼5% on all metrics based on GCC and 1%∼3% based
on ProPos.

STL-10. For the challenging STL-10, ClusMatch surpasses
GCC by 5.5%, 5.4%, and 7.1% on three metrics. The per-
formance of ProPos is also substantially improved after
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TABLE 2: Clustering results on ImageNet-1K based on
ResNet-50. * denotes that the results of SeCu are based on
our reproduction.

Method NMI ACC ARI
MoCo 0.619 0.305 0.143
TCL 0.671 0.379 0.266

SCAN 0.720 0.399 0.275
SeCu* 0.739 0.521 0.404

SeCu*+ClusMatch 0.763 0.542 0.425
ProPos 0.686 0.465 0.339

ProPos + ClusMatch 0.780 0.634 0.509

TABLE 3: Semi-supervised learning results comparison on
CIFAR-10 and CIFAR-100 under ResNet-18. 40 and 400
labeled samples are randomly selected for CIFAR-10 and
CIFAR-100, respectively. Metric: ACC.

Dataset CIFAR-10 CIFAR-100
FixMatch 0.9410 0.6228
FlexMatch 0.9448 0.6799
FreeMatch 0.9438 0.6859
ClusMatch 0.9452 0.6933

adopting ClusMatch, both with ResNet-18 [66] and ResNet-
34 [66]. In particular, ClusMatch gained 4.4% and 4.6%
improvements on NMI and ARI when using ResNet-18.
Even when ProPos uses the larger ResNet-34, its clustering
performance is still inferior to that of ClusMatch using
ResNet-18.

ImageNet-10/Dogs. On ImageNet-10, the performance of
ClusMatch is on par with that of GCC but generally ob-
tains around 3% to 4% improvements compared to Pro-
Pos. Notably, ClusMatch performs well on the fine-grained
dataset ImageNet-Dogs. Under the ResNet-18, ClusMatch
gains 10% or more improvements on all metrics compared
to GCC and ProPos, which indicates that ClusMatch does
well in fine-grained clustering.

Tiny-ImageNet. ClusMatch shows an obvious superiority
for ACC metric on Tiny-ImageNet. With 64×64 image size,
ClusMatch gains 6.0% compared to GCC and outperforms
ProPos by a large margin of 9.0%. We also found that
when the image size is set to 224×224, all the metrics of
ProPos drop drastically, close to 7%, but the performance
of ClusMatch drops slightly, only about 2%, which also
demonstrates the robustness of our ClusMatch.

4.3 Results on the ImageNet-1K Dataset

To assess the performance of ClusMatch in scenarios
with large-scale data, we also conducted experiments on
ImageNet-1K. For the fairness of the experiments, all meth-
ods used ResNet-50 [66] as the backbone. The results are
shown in Table 2. We copied the results of several compared
methods from TCL [23] and SeCu [20]. The results of SeCu
[20] and SeCu+ClusMatch come from our reproduction
based on its released code, since the checkpoint is not given.
For ProPos [19] and ProPos+ClusMatch, we measured the
three metrics using the released checkpoint.

As can be seen from Table 2, ClusMatch achieves the
best results on all three metrics. Specifically, the ACC of
ClusMatch reaches 63.4%, which is more than twice that

TABLE 4: Effectiveness of positive, negative, and K-means
pseudo-label learning loss. Method: ProPos + ClusMatch.
Metric: ACC.

Lkpl Lppl Lnpl CIFAR-10 CIFAR-100
0.561 0.521

✓ 0.806 0.560
✓ 0.895 0.584

✓ 0.563 0.561
✓ ✓ 0.898 0.585

✓ ✓ 0.881 0.567
✓ ✓ 0.940 0.585
✓ ✓ ✓ 0.949 0.592

TABLE 5: Effectiveness of our adaptive threshold strategy.
Method: ProPos + ClusMatch. Metric: NMI.

Method CIFAR-10 CIFAR-100 Imagenet-Dogs Tiny-ImageNet
Fixed threshold 0.887 0.572 0.728 0.467

ClusMatch 0.890 0.601 0.745 0.482

of the classical unsupervised method MoCo. ClusMatch
exhibits significant gains over ProPos, with 9.4%, 16.9%, and
17.0% improvements on the three metrics, respectively. By
incorporating ClusMatch with SeCu, the results can also be
further improved. On the whole, the overwhelming results
indicate that ClusMatch can maintain excellent performance
even with large-scale datasets.

4.4 Results under Semi-Supervised Learning Settings

We conducted additional experiments on CIFAR-10 and
CIFAR-100 to verify the effectiveness of our approach in
semi-supervised learning. Following the settings in image
clustering, we adopted ResNet-18 as the backbone net-
work for all three compared methods and primarily fo-
cused on the 20 superclasses of CIFAR-100. In this section,
no pre-training was performed, and the experiments were
conducted under semi-supervised learning with randomly
initialized parameters. We randomly selected 40 and 400
labeled samples for CIFAR-10 and CIFAR-100, respectively.
We randomly ran the experiments two times and reported
the average accuracy. As shown in Table 3, our method
achieves better results than these three semi-supervised
learning methods, demonstrating the effectiveness of Clus-
Match.

4.5 Ablation Study and Overall Analysis

We conducted sufficient ablation experiments to explore the
effectiveness of our proposed components, including posi-
tive and negative pseudo-label learning, K-means pseudo-
label learning, adaptive positive and negative threshold
strategy, label selection strategy, and data augmentation.
To demonstrate the robustness of ClusMatch, we also ana-
lyzed the sensitivity of hyperparameters, including the label
selection ratio and the weight of each loss. Note that for
experiments involving ImageNet-1K, we utilized ResNet-
50 as the backbone, while ResNet-18 is used for all other
datasets

4.5.1 Effectiveness of Each Component
Positive, Negative, and K-means Pseudo-label Learning.
Pseudo-label learning is essential in our approach, which
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Fig. 4: Effect of label selection ratio σ on ImageNet-1K. Method: ProPos + ClusMatch. Metric: ACC.

TABLE 6: Effectiveness of augmentation. α(·) means weak
augmentation, and A(·) means strong augmentation. Met-
ric: ACC.

Upper Path Middle Path CIFAR-10 CIFAR-100
α(·) α(·) 0.613 0.452
A(·) A(·) 0.494 0.558
α(·) A(·) 0.917 0.532
A(·) α(·) 0.949 0.592

can provide more supervised signals for model training.
We also proposed K-means pseudo-label learning to warm
up the entire clustering network to quickly familiarize the
network with the samples during the early stages of train-
ing. As shown in Table 4, when we remove all these three
pseudo-label learning strategies, the ACC drops sharply,
especially on CIFAR-10, with a decrease of 38.8%. By adding
each pseudo-label learning module, there is a significant
improvement in the results. Moreover, the best result is
achieved when all methods are combined.

Adaptive Positive-negative Threshold Strategy. The adap-
tive threshold strategy can filter out the noisy signals,
thereby enhancing the confidence of the generated positive
and negative pseudo-labels. To prove the effectiveness of
our dynamic threshold strategy, we fixed the positive and
negative thresholds to 0.99 and 0.01, respectively, serving as
the baseline. Comparison results are shown in Table 5, we
can find that our proposed adaptive threshold strategy has
a stable NMI improvement of about 2% over the baseline on
three different datasets.

Augmentation. In ClusMatch, we combined strong and
weak augmentations to train the entire network, which
plays a crucial role in the experimental results. To verify
its validity, we studied different combinations of weak and
strong augmentation. As shown in Fig. 2, the upper path
of ClusMatch is used for logits generation, and the middle
path can generate labels. We presented the results in Table 6,
when only weak or strong augmentation is applied to both
branches, there is a significant accuracy drop, especially
for CIFAR-10, where the drop reaches 33.6% and 45.5%,
respectively. When we applied strong augmentation on the
upper path to generate logits and weak augmentation on
the middle path to generate pseudo-labels, the results are

TABLE 7: Effectiveness of label selection strategy. Method:
ProPos + ClusMatch. Metric: ACC.

Method GCC + ClusMatch ProPos + ClusMatch
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Random 0.939 0.579 0.870 0.521
Ours 0.949 0.592 0.914 0.536

TABLE 8: Comparison between ClusMatch and SCAN. Met-
ric: ACC.

Dataset CIFAR-10 CIFAR-100
GCC 0.870 0.494

GCC+SCAN 0.901 0.523
GCC+ClusMatch 0.914 0.536

the best, which is in line with that in semi-supervised
learning [44].

Label Selection Strategy. In the label selection phase, we de-
sign two simple but effective strategies for clustering head
based and feature learning based methods, respectively, to
select high-quality samples for supervised learning. In order
to show the superiority of our strategy, we compare it with
the scheme that randomly selects samples. As presented
in Table 7, it is obvious that the accuracy decreases in
varying degrees when the samples are randomly selected. In
particular, ClusMatch based on ProPos drops significantly
by 4.4% on ACC for CIFAR-10.

Comparison with Self-labeling Strategy of SCAN. SCAN
is also a post-processing method to improve the clustering
performance, and we also compared our ClusMatch with
it. Note that the self-labeling phase of SCAN relies on a
head-based clustering method. Since ProPos is a feature-
based method, we mainly compared GCC+ClusMatch with
GCC+SCAN. As shown in Table 8, ClusMatch improves by
1.3% over SCAN’s postprocessing strategy on both CIFAR-
10 and CIFAR-100.

4.5.2 Parameter Sensitivity Analysis
Label Selection Ratio σ. σ is a key parameter in ClusMatch
that determines the number of samples for supervised learn-
ing. From Table 9, we can see that for CIFAR-10, the best per-
formance is achieved when σ is set to 0.01. For other datasets
except ImageNet-1K, the results are relatively stable when
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TABLE 9: Effect of label selection ratio. Method: ProPos + ClusMatch.

σ
CIFAR-10 CIFAR-100 ImageNet-Dogs Tiny-ImageNet

NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI
0.01 0.890 0.949 0.894 0.592 0.603 0.441 0.690 0.729 0.614 0.474 0.319 0.190
0.1 0.866 0.928 0.856 0.601 0.592 0.426 0.745 0.798 0.685 0.482 0.408 0.232

0.15 0.875 0.936 0.871 0.596 0.594 0.436 0.759 0.793 0.696 0.480 0.421 0.241
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(a) Parameter sensitivity analysis of δ
with β = 0.5 and γ = 0.5.
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(b) Parameter sensitivity analysis of β
with δ = 0.5 and γ = 0.5.
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(c) Parameter sensitivity analysis of γ
with δ = 0.5 and β = 0.5.

Fig. 5: Effects of loss weights on CIFAR-100. Metric: ACC.

(a) ProPos on CIFAR-10 (b) ClusMatch on CIFAR-10 (c) ProPos on CIFAR-100 (d) ClusMatch on CIFAR-100

Fig. 6: Visualization of feature representations with t-SNE.
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(a) Positive threshold evolution.
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(b) Negative threshold evolution.

Fig. 7: Evolution of positive and negative thresholds on
CIFAR-10 and CIFAR-100. Method: ProPos + ClusMatch.
Metric: ACC.

σ varies in [0.1, 0.15]. To simplify the parameter settings,
we uniformly take σ = 0.1. Considering the large scale of
ImageNet-1K, we performed a separate ablation experiment
for σ. As shown in Fig. 4 (a), when only a small number
of samples are selected, i.e., σ = 0.01, ClusMatch suffers
a large performance degradation for the lack of highly-

confident supervised signals, resulting in underfitting of the
model. As σ varies in the range of [0.1, 0.15, 0.2, 0.4, 0.5], the
performance improves sharply and reaches its best when σ
is set to 0.2. We also explored the relationship between clus-
tering performance, the number and the quality of selected
samples. As shown in Fig. 4 (b), the ACC of ClusMatch
does not strictly monotonically increase as more and more
samples are selected; it is also affected by the accuracy
of the selected samples, i.e., the quality of the samples.
When σ varies between [0.01, 0.1, 0.15, 0.2], the number of
selected samples has a dominant effect on the results. The
more samples are selected, the more high-quality supervised
signals and, consequently, the higher the accuracy. However,
when σ is greater than 0.2, the quality of the samples plays
a decisive role. Therefore, as the accuracy of the selected
samples drops sharply, the ACC begins to decrease.

Loss Weights. We also performed sensitivity analysis on
the loss weights, δ, β, and γ. As shown in Fig. 5, we
can observe that even with varying weights, the accuracy
shows great stability, which demonstrates our method is
insensitive to the proposed K-means, positive, and negative
pseudo-label learning losses, further proving the robustness
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Fig. 8: Case study on Tiny-ImageNet. We present the clustering results of four classes, with the green text representing
the right results of ClusMatch and the red text for the wrong results of ProPos. An example (boxed in orange) of error
correction is also shown to visualize the effectiveness of ClusMatch.

of our ClusMatch. To unify the parameters and simplify the
settings, we set all loss weights to 0.5.

4.6 Qualitative Study
We also visualized the features of ClusMatch by t-SNE [69]
to demonstrate the property of discriminability. The evolu-
tion of positive and negative thresholds is also presented for
better illustration of adaptive threshold. Finally, a case study
is conducted to illustrate the error-correction capability of
our ClusMatch.

4.6.1 Visualization of Features
To verify that ClusMatch can help the network learn more
discriminative representations, we visualized the features
from encoder f(·) by t-SNE [69]. The visualization results of
ClusMatch and ProPos on CIFAR-10 and CIFAR-100 are pre-
sented in Fig. 6. It is apparent that, for ClusMatch, samples
within the same category are more tightly grouped, while
those from different categories are distinctly separated,
demonstrating a more clear demarcation. For instance, on
CIFAR-10, the samples of category 2 exhibit a scattered
distribution in the feature space of ProPos, whereas in Clus-
Match, the corresponding samples are clustered together,
which can also be observed for samples of categories 9, 18,
and 19 on CIFAR-100.

4.6.2 Evolution of Positive and Negative Thresholds
As shown in Fig. 7, we also presented the evolution of
positive and negative thresholds for the ProPos+ClusMatch

method on CIFAR-10 and CIFAR-100. As these thresholds
differ from different classes, we showed the mean values
across all categories to give a depiction of the overall
changes. We can observe that the positive threshold in-
creases while the negative threshold decreases, which aligns
with expectations.

4.6.3 Case Study

In order to visually demonstrate the benefits that our
approach brings to existing clustering methods, we also
conduct a case study. From Fig. 8, we can see that Clus-
Match exhibits stronger resistance to interference compared
to ProPos, mitigating confusion between target items and
foreground or surrounding items. For example, in the sixth
image of the first row, ClusMatch accurately identifies the
soccer without being influenced by the foreground panda.
Similar occurrences can be observed in the twelfth image of
the first row and the first image of the second row.

Additionally, ProPos tends to confuse certain classes,
such as airliners and airships, whereas ClusMatch can rec-
tify such errors through fine-tuning. Taking the image boxed
in orange as an example, we show how its prediction to dif-
ferent classes changes as training progresses. It is apparent
that, despite it wrongly assigning this image to the airship
class initially, ClusMatch is able to gradually correct it to the
true airliner class.
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5 CONCLUSION AND FUTURE WORK

In this paper, we introduce ClusMatch, a deep clustering
method based on the semi-supervised framework. Clus-
Match is pluggable for existing deep clustering methods
and can further improve their performance. To satisfy the
semi-supervised learning setting, we first propose two se-
lection strategies to choose a few high-quality samples
for supervised learning. For the unselected samples, we
come up with novel unified positive and negative pseudo-
label learning to obtain richer supervised signals. In order
to further improve the confidence of generated pseudo-
labels, an adaptive positive and negative threshold strat-
egy is designed, which can dynamically filter out low-
confidence pseudo-labels according to the learning status
of the model. Finally, we validate the effectiveness and
superiority of ClusMatch on six widely-used datasets and
one large-scale dataset. In future work, we plan to extend
ClusMatch to unbalanced datasets, particularly long-tailed
datasets, characterized by a large number of samples in
minority classes (head classes) and few samples in majority
classes (tail classes).
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