
Learning Partial Differential Equations for
Computer Vision∗

Zhouchen Lin1† Wei Zhang2

1Peking University 2The Chinese University of Hong Kong

Abstract

Partial differential equations (PDEs) have been successful for solving many prob-
lems in computer vision. However, the existing PDEs are all crafted by people with
skill, based on some limited and intuitive considerations. As a result, the designed PDEs
may not be able to handle complex situations in real applications. Moreover, human in-
tuition may not apply if the vision task is hard to describe, e.g., object detection. These
two aspects limit the wider applications of PDEs. In this paper, we propose a framework
for learning a system of PDEs from real data to accomplish a specific vision task. As
the first study on this problem, we assume that the system consists of two PDEs. One
controls the evolution of the output. The other is for an indicator function that helps
collect global information. Both PDEs are coupled equations between the output im-
age and the indicator function, up to their second order partial derivatives. The way
they are coupled is suggested by the shift and the rotational invariance that the PDEs
should hold. The coupling coefficients are learnt from real data via an optimal control
technique. Our framework can be extended in multiple ways. The experimental results
show that learning-based PDEs could be an effective regressor for handling many dif-
ferent vision tasks. It is particularly powerful for those tasks that are difficult to describe
by intuition.

1 Introduction

The applications of partial differential equations (PDEs) to computer vision and image pro-

cessing date back to the 1960s [9, 14]. However, this technique did not draw much attention

until the introduction of the concept of scale space by Koenderink [16] and Witkin [30] in

the 1980s. Perona and Malik’s work on anisotropic diffusion [26] finally drew great interest

on PDE based methods. Nowadays, PDEs have been successfully applied to many problems

∗A journal version was published in [20].
†Corresponding author, Email: zlin@pku.edu.cn.

1

in computer vision and image processing [28, 7, 27, 2, 6], e.g., denoising [26], enhancement

[23], inpainting [5], segmentation [17], stereo and optical flow computation.

In general, there are two kinds of methods used to design PDEs. For the first kind of

methods, PDEs are written down directly, based on some mathematical understandings on

the properties of the PDEs (e.g., anisotropic diffusion [26], shock filter [23] and curve evolu-

tion based equations [28, 27, 2, 6]). The second kind of methods basically define an energy

functional first, which collects the wish list of the desired properties of the output image,

and then derives the evolution equations by computing the Euler-Lagrange variation of the

energy functional (e.g., chapter 9 of [28]). Both methods require good skills in choosing ap-

propriate functions and predicting the final effect of composing these functions such that the

obtained PDEs roughly meet the goals. In either way, people have to heavily rely on their

intuition, e.g., smoothness of edge contour and surface shading, on the vision task. Such

intuition should easily be quantified and be described using the operators (e.g., gradient and

Laplacian), functions (e.g., quadratic and square root functions) and numbers (e.g., 0.5 and

1) that people are familiar with. As a result, the designed PDEs can only reflect very limited

aspects of a vision task (hence are not robust in handling complex situations in real appli-

cations) and also appear rather artificial. If people do not have enough intuition on a vision

task, they may have difficulty in acquiring effective PDEs. For example, can we have a PDE

(or a PDE system) for object detection (Figure 1) that locates the object region if the object

is present and does not respond if the object is absent? We believe that this is a big challenge

to human intuition because it is hard to describe an object class, which may have significant

variation in shape, texture and pose. Although there has been much work on PDE-based

image segmentation, e.g., [17], the basic philosophy is always to follow the strong edges

of the image and also require the edge contour to be smooth. Without using additional in-

formation to judge the content, the artificial PDEs always output an “object region” for any

non-constant image. In short, current PDE design methods greatly limit the applications

of PDEs to wider and more complex scopes. This motivates us to explore whether we can

acquire PDEs that are not artificial yet more powerful.

2

Figure 1: What is the PDE (or PDE system) that can detect the object of interest (e.g., plane
in left image) and does not respond if the object is absent (right image)?

In this paper, we propose a general framework for learning PDEs to accomplish a specific

vision task. The vision task will be exemplified by a number of input-output image pairs,

rather than relying on any form of human intuition. The learning algorithm is based on the

theory of optimal control governed by PDEs [19]. As a preliminary investigation, we assume

that the system consists of two PDEs. One controls the evolution of the output. The other is

for an indicator function that helps collect global information. As the PDEs should be shift

and rotationally invariant, they must be functions of fundamental differential invariants [22].

Currently, we only consider the case that the PDEs are linear combinations of fundamental

differential invariants up to second order. The coupling coefficients are learnt from real data

via the optimal control technique [19]. Our framework can be extended in different ways.

To our best knowledge, the only work of applying optimal control to computer vision and

image processing is by Kimia et al. [15] and Papadakis et al. [25, 24]. However, the work in

[15] is for minimizing known energy functionals for various tasks, including shape evolution,

morphology, optical flow and shape from shading, where the target functions fulfill known

PDEs. The methodology in [25, 24] is similar. Its difference from [15] is that it involves

a control function that appears as the source term of known PDEs. In all existing work

[15, 25, 24], the output functions are those that are desired. While in this paper, our goal

is to determine a PDE system which is unknown at the beginning and the coefficients of the

PDEs are those that are desired.

In principle, our learning-based PDEs form a regressor that learns a high dimensional

mapping function between the input and the output. Many learning/approximation meth-

ods, e.g., neural networks, can also fulfill this purpose. However, learning-based PDEs are

3

fundamentally different from those methods in that those methods learn explicit mapping

functions f : O = f(I), where I is the input and O is the output, while our PDEs learn

implicit mapping functions ϕ: ϕ(I, O) = 0. Given the input I , we have to solve for the

output O. The input dependent weights for the outputs, due to the coupling between the out-

put and the indicator function that evolves from the input, makes our learning-based PDEs

more adaptive to tasks and also require much fewer training samples. For example, we only

used 50-60 training image pairs for all our experiments. Such a number is clearly impossi-

ble for traditional methods, considering the high dimensionality of the images and the high

nonlinearity of the mappings. Moreover, backed by the rich theories on PDEs, it is possible

to better analyze some properties of interest of the learnt PDEs. For example, the theory of

differential invariants plays the key role in suggesting the form of our PDEs.

The rest of this paper is organized as follows. In Section 2, we introduce the related

optimal control theory. In Section 3, we present our basic framework of learning-based

PDEs. In Section 4, we testify to the effectiveness and versatility of our learning-based

PDEs by five vision tasks. In Section 5, we show two possible ways of extending our basic

framework to handle more complicated vision problems. Then we conclude our paper in

Section 6.

2 Optimal Control Governed by Evolutionary PDEs

In this section, we sketch the existing theory of optimal control governed by PDEs that we

will borrow. There are many types of these problems. Due to the scope of our paper, we only

focus on the following distributed optimal control problem:

minimize J(f, u), where u ∈ U controls f via the following PDE: (1)
ft = L(⟨u⟩, ⟨f⟩), (x, t) ∈ Q,
f = 0, (x, t) ∈ Γ,

f |t=0 = f0, x ∈ Ω,
(2)

in which J is a functional, U is the admissible control set and L(·) is a smooth function.

The meaning of the notations can be found in Table 1. To present the basic theory, some

definitions are necessary.

4

Table 1: Notations
x (x, y), spatial variable t temporal variable
Ω an open region of R2 ∂Ω boundary of Ω
Q Ω× (0, T) Γ ∂Ω× (0, T)

W Ω, Q, Γ, or (0, T) (f, g)W

∫
W

fgdW

∇f gradient of f Hf Hessian of f
℘ {∅, x, y, xx, xy, yy, · · · } |p|, p ∈ ℘ ∪ {t} the length of string p

∂|p|f

∂p
, p ∈ ℘ ∪ {t} f ,

∂f

∂t
,
∂f

∂x
,
∂f

∂y
,
∂2f

∂x2
,
∂2f

∂x∂y
,· · · , when p = ∅, t, x, y, xx, xy, · · ·

fp, p ∈ ℘ ∪ {t} ∂|p|f

∂p
⟨f⟩ {fp|p ∈ ℘}

P [f] the action of differential operator P on function f , i.e., if

P = a0 + a10
∂

∂x
+ a01

∂

∂y
+ a20

∂2

∂x2
+ a11

∂2

∂x∂y
+ · · · , then

P [f] = a0f + a10
∂f

∂x
+ a01

∂f

∂y
+ a20

∂2f

∂x2
+ a11

∂2f

∂x∂y
+ · · ·

L⟨f⟩(⟨f⟩, · · ·) the differential operator
∑
p∈℘

∂L

∂fp

∂|p|

∂p
associated to function L(⟨f⟩, · · ·)

2.1 Gâteaux Derivative of a Functional

Gâteaux derivative is an analogy and also an extension of the usual function derivative. Sup-

pose J(f) is a functional that maps a function f on region W to a real number. Its Gâteaux

derivative (if it exists) is defined as the function f ∗ on W that satisfies:

(f ∗, δf)W = lim
ε→0

J(f + ε · δf)− J(f)

ε
,

for all admissible perturbations δf of f . We may write f ∗ as
DJ

Df
. For example, if W = Q

and J(f) = 1
2

∫
Ω
[f(x, T)− f̃(x)]2dx, then

J(f + ε · δf)− J(f)

=
1

2

∫
Ω

[f(x, T) + ε · δf(x, T)− f̃(x)]2dΩ− 1

2

∫
Ω

[f(x, T)− f̃(x)]2dΩ

= ε

∫
Ω

[f(x, T)− f̃(x)]δf(x, T)dΩ + o(ε)

= ε

∫
Q

{[f(x, t)− f̃(x)]δ(t− T)}δf(x, t)dQ+ o(ε),

5

where δ(·) is the Dirac function1. Therefore,

DJ

Df
= [f(x, t)− f̃(x)]δ(t− T).

2.2 Adjoint Differential Operator

The adjoint operator P ∗ of a linear differential operator P acting on functions on W is one

that satisfies:

(P ∗[f], g)W = (f, P [g])W ,

for all f and g that are zero on ∂W and are sufficiently smooth2. The adjoint operator can be

found by integration by parts, i.e., using the Green’s formula [8]. For example, the adjoint

operator of P =
∂2

∂x2
+

∂2

∂y2
+

∂

∂x
is P ∗ =

∂2

∂x2
+

∂2

∂y2
− ∂

∂x
because by Green’s formula,

(f, L[g])Ω =

∫
Ω

f(gxx + gyy + gx)dΩ

=

∫
Ω

g(fxx + fyy − fx)dΩ

+

∫
∂Ω

[(fgx + fg − fxg) cos(N, x) + (fgy − fyg) cos(N, y)]dS

=

∫
Ω

(fxx + fyy − fx)gdΩ,

where N is the outward normal of Ω and we have used that f and g vanish on ∂Ω.

2.3 Finding the Gâteaux Derivative via Adjoint Equation

Problem (1)-(2) can be solved if we can find the Gâteaux derivative of J with respect to the

control u: we may find the optimal control u via steepest descent.

Suppose J(f, u) =
∫
Q

g(⟨u⟩, ⟨f⟩)dQ, where g is a smooth function. Then it can be proved

that
DJ

Du
= L∗

⟨u⟩(⟨u⟩, ⟨f⟩)[φ] + g∗⟨u⟩(⟨u⟩, ⟨f⟩)[1], (3)

where L∗
⟨u⟩ and g∗⟨u⟩ are the adjoint operators of L⟨u⟩ and g⟨u⟩ (see Table 1 for the notations),

1Please do not confuse with the perturbations of functions.
2We are not to introduce the related function spaces in order to make this paper more intuitive.

6

respectively, and the adjoint function φ is the solution to the following PDE:
−φt − L∗

⟨f⟩(⟨u⟩, ⟨f⟩)[φ] = g∗⟨f⟩(⟨u⟩, ⟨f⟩)[1], (x, t) ∈ Q,

φ = 0, (x, t) ∈ Γ,
φ|t=T = 0, x ∈ Ω,

(4)

which is called the adjoint equation of (2) (note that the adjoint equation evolves backward

in time!). The proof can be found in Appendix 1.

The adjoint operations above make the deduction of the Gâteaux derivative non-trivial. As

an equivalence, a more intuitive way is to introduce a Lagrangian function:

J̃(f, u;φ) = J(f, u) +

∫
Q

φ[ft − L(⟨u⟩, ⟨f⟩)]dQ, (5)

where the multiplier φ is exactly the adjoint function. Then one can see that the PDE con-

straint (2) is exactly the first optimality condition:
dJ̃
dφ

= 0, where
dJ̃
dφ

is the partial Gâteaux

derivative of J̃ with respect to φ,3 and verify that the adjoint equation is exactly the second

optimality condition:
dJ̃
df

= 0. One can also have that

DJ

Du
=

dJ̃
du

. (6)

So
DJ

Du
= 0 is equivalent to the third optimality condition:

dJ̃
du

= 0.

As a result, we can use the definition of Gâteaux derivative to perturb f and u in J̃ and

utilize Green’s formula to pass the derivatives on the perturbations δf and δu to other func-

tions, in order to obtain the adjoint equation and
DJ

Du
(for an example, see Appendix 3 for

our real computation).

The above theory can be easily extended to systems of PDEs and multiple control function-

s. For more details and a more mathematically rigorous exposition of the above materials,

please refer to [19].

3 Learning-Based PDEs

Now we present our framework of learning PDE systems from training images. As prelimi-

nary work, we assume that our PDE system consists of two PDEs. One is for the evolution
3Namely, assuming f , u and φ are independent functions.

7

Table 2: Shift and rotationally invariant fundamental differential invariants up to second
order.

i invi(ρ,O)
0,1,2 1, ρ, O
3,4,5 ||∇ρ||2 = ρ2x + ρ2y, (∇ρ)t∇O = ρxOx + ρyOy, ||∇O||2 = O2

x +O2
y

6,7 tr(Hρ) = ρxx + ρyy, tr(HO) = Oxx +Oyy

8 (∇ρ)tHρ∇ρ = ρ2xρ
2
xx + 2ρxρyρ

2
xy + ρ2yρ

2
yy

9 (∇ρ)tHO∇ρ = ρ2xO
2
xx + 2ρxρyO

2
xy + ρ2yO

2
yy

10 (∇ρ)tHρ∇O = ρxOxρxx + (ρyOx + ρxOy)ρxy + ρyOyρyy
11 (∇ρ)tHO∇O = ρxOxOxx + (ρyOx + ρxOy)Oxy + ρyOyOyy

12 (∇O)tHρ∇O = O2
xρxx + 2OxOyρxy +O2

yρyy
13 (∇O)tHO∇O = O2

xOxx + 2OxOyOxy +O2
yOyy

14 tr(H2
ρ) = ρ2xx + 2ρ2xy + ρ2yy

15 tr(HρHO) = ρxxOxx + 2ρxyOxy + ρyyOyy

16 tr(H2
O) = O2

xx + 2O2
xy +O2

yy

of the output image O, and the other is for the evolution of an indicator function ρ. The goal

of introducing the indicator function is to collect large scale information in the image so that

the evolution of O can be correctly guided. This idea is inspired by the edge indicator in [28]

(page 193). So our PDE system can be written as:

Ot = LO(a, ⟨O⟩, ⟨ρ⟩), (x, t) ∈ Q,
O = 0, (x, t) ∈ Γ,

O|t=0 = O0, x ∈ Ω;
ρt = Lρ(b, ⟨ρ⟩, ⟨O⟩), (x, t) ∈ Q,
ρ = 0, (x, t) ∈ Γ,

ρ|t=0 = ρ0, x ∈ Ω,

(7)

where Ω is the rectangular region occupied by the input image I , T is the time that the

PDE system finishes the visual information processing and outputs the results, and O0 and

ρ0 are the initial functions of O and ρ, respectively. For computational issues and the ease

of mathematical deduction, I will be padded with zeros of several pixels width around it.

As we can change the unit of time, it is harmless to fix T = 1. LO and Lρ are smooth

functions. a = {ai} and b = {bi} are sets of functions defined on Q that are used to control

the evolution of O and ρ, respectively. The forms of LO and Lρ will be discussed below.

8

3.1 Forms of PDEs

The space of all PDEs is infinite dimensional. To find the right one, we start with the proper-

ties that our PDE system should have, in order to narrow down the search space. We notice

that most vision tasks are shift and rotationally invariant, i.e., when the input image is shifted

or rotated, the output image is also shifted or rotated by the same amount. So we require that

our PDE system is shift and rotationally invariant.

According to the differential invariants theory in [22], LO and Lρ must be functions of

the fundamental differential invariants under the groups of translation and rotation. The

fundamental differential invariants are invariant under shift and rotation and other invariants

can be written as their functions. The set of fundamental differential invariants is not unique,

but different sets can express each other. We should choose invariants in the simplest form in

order to ease mathematical deduction and analysis and numerical computation. Fortunately,

for shift and rotational invariance, the fundamental differential invariants can be chosen as

polynomials of the partial derivatives of the function. We list those up to second order in

Table 2.4 As ∇f and Hf change to R∇f and RHfR
t, respectively, when the image is

rotated by a matrix R, it is easy to check the rotational invariance of those quantities. In the

sequel, we shall use invi(ρ,O), i = 0, 1, · · · , 16, to refer to them in order. Note that those

invariants are ordered with ρ going before O. We may reorder them with O going before ρ.

In this case, the i-th invariant will be referred to as invi(O, ρ).

On the other hand, for LO and Lρ to be shift invariant, the control functions ai and bi

must be independent of x, i.e., they must be functions of t only. The proof is presented in

Appendix 2.

So the simplest choice of functions LO and Lρ is the linear combination of these differen-

tial invariants, leading to the following forms:

LO(a, ⟨O⟩, ⟨ρ⟩) =
16∑
j=0

aj(t)invj(ρ,O),

Lρ(b, ⟨ρ⟩, ⟨O⟩) =
16∑
j=0

bj(t)invj(O, ρ).
(8)

4We add the constant function “1” for convenience of the mathematical deductions in the sequel.

9

Note that the visual process may not obey PDEs in such a form. However, we are NOT

to discover what the real process is. Rather, we treat the visual process as a black box and

regard the PDEs as a regressor. We only care whether the final output of our PDE system,

i.e., O(x, 1), can approximate that of the real process. For example, although O1(x, t) =

∥x∥2 sin t and O2(x, t) = (∥x∥2 + (1 − t)∥x∥)(sin t + t(1 − t)∥x∥3) are very different

functions, they initiate from the same function at t = 0 and also settle down at the same

function at time t = 1. So both functions fit our needs and we need not care whether

the system obeys either function. Currently we only limit our attention to second order

PDEs because most of the PDE theories are of second order and most PDEs arising from

engineering are also of second order. It will pose a difficulty in theoretical analysis if higher

order PDEs are considered. Nonetheless, as LO and Lρ in (8) are actually highly nonlinear

and hence the dynamics of (7) can be very complex, they are already complex enough to

approximate many vision tasks in our experiments, as will be shown in Sections 4 and 5. So

we choose to leave the involvement of higher order derivatives to future work.

3.2 Determining the Coefficients by Optimal Control Approach

Given the forms of PDEs shown in (8), we have to determine the coefficient functions aj(t)

and bj(t). We may prepare training samples (Im, Õm), where Im is the input image and Õm

is the expected output image, m = 1, 2, · · · ,M , and compute the coefficient functions that

minimize the following functional:

J
(
{Om}Mm=1 , {aj}

16
j=0 , {bj}

16
j=0

)
=

1

2

M∑
m=1

∫
Ω

[Om(x, 1)− Õm(x)]
2dΩ +

1

2

16∑
j=0

λj

∫ 1

0

a2j(t)dt+
1

2

16∑
j=0

µj

∫ 1

0

b2j(t)dt,
(9)

where Om(x, 1) is the output image at time t = 1 computed from (7) when the input image

is Im, and λj and µj are positive weighting parameters. The first term requires that the final

output of our PDE system be close to the ground truth. The second and the third terms are

for regularization so that the optimal control problem is well posed, as there may be multiple

minimizers for the first term. The regularization is important, particularly when the training

10

samples are limited.

Then we may compute the Gâteaux derivative
DJ

Daj
and

DJ

Dbj
of J with respect to aj and

bj using the theory in Section 2. The expressions of the Gâteaux derivatives can be found in

Appendix 3. Consequently, the optimal aj and bj can be computed by steepest descent.

3.3 Implementation Details
3.3.1 Initial functions of O and ρ

Good initialization increases the approximation accuracy of the learnt PDEs. In our current

implementation, we simply set the initial functions of O and ρ as the input image:

Om(x, 0) = ρm(x, 0) = Im(x), m = 1, 2, · · · ,M.

However, this is not the only choice. If the user has some prior knowledge about the in-

put/output mapping, s/he can choose other initial functions. Some examples of different

choices of initial functions can be found in Section 5.

3.3.2 Initialization of {ai} and {bi}

We initialize {ai(t)} successively in time while fixing bi(t) ≡ 0, i = 0, 1, · · · , 16. Suppose

the time stepsize is ∆t when solving (7) with finite difference. At the first time step, without

any prior information, Om(∆t) is expected to be ∆tÕm + (1 −∆t)Im. So ∂Om/∂t|t=∆t is

expected to be Õm − Im and we may solve {ai(0)} such that

s({ai(0)}) =
1

2

M∑
m=1

∫
Ω

[
16∑
j=0

aj(0)invj(ρm(0), Om(0)))− (Õm −O0)

]2

dΩ

is minimized, i.e., to minimize the difference between the left and the right hand sides of (7),

where the integration here should be understood as summation. After solving {ai(0)}, we

can have Om(∆t) by solving (7) at t = ∆t. Suppose at the (k + 1)-th step, we have solved

Om(k∆t), then we may expect that Om((k + 1)∆t) = ∆t
1−k∆t

Õm + 1−(k+1)∆t
1−k∆t

Om(k∆t) so

that Om((k + 1)∆t) could move directly towards Õm. So ∂Om/∂t|t=(k+1)∆t is expected to

be 1
1−k∆t

[Õm −Om(k∆t)] and {ai(k∆t)} can be solved in the same manner as {ai(0)}.

11

3.3.3 Choice of Parameters

When solving (7) with finite difference, we use an explicit scheme to solve Om(k∆t) and

ρm(k∆t) successively. However, the explicit scheme is conditionally stable: if the temporal

stepsize is too large, we cannot obtain solutions with controlled error. As we have not investi-

gated this problem thoroughly, we simply borrow the stability condition for two-dimensional

heat equations ft = κ(fxx + fyy):

∆t ≤ 1

4κ
min((∆x)2, (∆y)2),

where ∆x and ∆y are the spatial stepsizes. In our problem, ∆x and ∆y are naturally chosen

as 1, and the coefficients of Oxx + Oyy and ρxx + ρyy are a7 and b7, respectively. So the

temporal stepsize should satisfy:

∆t ≤ 1

4max(a7, b7)
. (10)

If we find that the above condition is violated during optimization at a time step k, we will

break ∆t into smaller temporal stepsizes δt = ∆t/K, such that it satisfies condition (10),

and compute Om(k ·∆t+ i ·δt), i = 1, 2, ..., K, successively until we obtain Om((k+1)∆t).

We have found that this method works for all our experiments.

And there are other parameters to choose. As it does not seem to have a systematic way

to analyze their optimal values, we simply fix their values as: M = 50 ∼ 60, ∆t = 0.05 and

λi = µi = 10−7, i = 0, · · · , 16.

4 Experimental Results

In this section, we present the results on five different computer vision/image processing

tasks: blur, edge detection, denoising, segmentation and object detection. As our goal is to

show that PDEs could be an effective regressor for many vision tasks, NOT to propose better

algorithms for these tasks, we are not going to compare with state-of-the-art algorithms in

every task.

12

Figure 2: Partial results on image blurring. The top row are the input images. The middle
row are the outputs of our learnt PDE. The bottom row are the groundtruth images obtained
by blurring the input image with a Gaussian kernel. One can see that the output of our PDE
is visually indistinguishable from the groundtruth.

For each task, we prepare sixty 150×150 images and their ground truth outputs as training

image pairs. After the PDE system is learnt, we apply it to test images. Part of the results

are shown in Figures 2-10, respectively. Note that we do not scale the range of pixel values

of the output to be between 0 and 255. Rather, we clip the values to be between 0 and 255.

Therefore, the reader can compare the strength of response across different images.

For the image blurring task (Figure 2), the output image is expected to be the convolution

of the input image with a Gaussian kernel. It is well known [28] that this corresponds to

evolving with the heat equation. This equation is almost exactly learnt using our method. So

the output is nearly identical to the groundtruth.

For the image edge detection task (Figure 3), we want our learnt PDE system to approxi-

mate the Canny edge detector. One can see that our PDEs respond strongly at strong edges

and weakly at weak edges. Note that the Canny detector outputs binary edge maps while our

PDEs can only output smooth functions. So it is difficult to approximate the Canny detector

at high precision.

13

Figure 3: Partial results on edge detection. The top row are the input images. The middle
row are the outputs of our learnt PDEs. The bottom row are the edge maps by the Canny
detector. One can see that our PDEs respond strongly at strong edges and weakly at weak
edges.

Figure 4: Partial results on image denoising. The top row are the input noisy images. The
middle row are the outputs of our learnt PDEs. The bottom row are the outputs by the
method in [10]. One can see that the results of our PDE system are comparable to those by
[10] (using the original code by the authors).

14

For the image denoising task (Figure 4), we generate input images by adding Gaussian

noise to the original images and use the original images as the ground truth. One can see that

our PDEs suppress most of the noise while preserving the edges well. So we easily obtain

PDEs that produce results comparable with those by [10] (using the original code by the

authors), which was designed with a lot of wits.

While the above three vision problems can be solved by using local information only,

we shall show that our learning-based PDE system is not simply a local regressor. Rather,

it seems that it can automatically find the features of the problem to work with. Such a

global effect may result from the indicator function that is supposed to collect the global

information. We testify this observation by two vision tasks: image segmentation and object

detection.

For the image segmentation task, we choose images with the foreground relatively darker

than the background (but the foreground is not completely darker than the background so

that a simple threshold can well separate them, see the second row of Figure 6) and prepare

the manually segmented masks as the outputs of the training images (first row of Figure 5),

where the black regions are the background. The segmentation results are shown in (Fig-

ure 6), where we have thresholded the output mask maps of our learnt PDEs with a constant

threshold 0.5. We see that our learnt PDEs produce fairly good object masks. This may be

because our PDEs correctly identify that graylevel is the key feature. We also test the active

contour method by Li et al. [17] (using the original code by the authors). As it is designed

to follow the strong edges and to prefer smooth object boundaries, its performance is not as

good as ours.

For the object detection task, we require that the PDEs respond strongly inside the object

region while they do not respond (or respond much more weakly) outside the object region.

If the object is absent in the image, the response across the whole image should all be weak

(Figure 1). It should be challenging enough for one to manually design such PDEs. As a

result, we are unaware of any PDE-based method that can accomplish this task. The existing

PDE-based segmentation algorithms always output an “object region” even if the image does

15

(a)

(b)

(c)

(d)

Figure 5: Examples of the training images for image segmentation (top row), butterfly de-
tection (second and fourth rows) and plane detection (third and fourth rows). In each group
of images of (a)∼(c), on the left is the input image and on the right is the groundtruth output
mask. In (d), the left images are part of the input images as negative samples for train-
ing butterfly and plane detectors, where their groundtruth output masks are all-zero images
(right).

16

Figure 6: Partial results of graylevel-based segmentation. The top row are the input images.
The second row are the masks of foreground objects by thresholding with image-dependent
thresholds. The third row are the mask obtained by thresholding the mask maps output by
our learnt PDEs with a constant threshold 0.5. The bottom row are the segmentation results
of [17] (best viewed on screen).

17

Figure 7: Partial results of detecting butterflies on images containing butterflies. The top row
are the input images. The middle row are the output mask maps of our learnt PDEs. The
bottom row are the segmentation results of [17] (best viewed on screen).

not contain the object of interest. In contrast, we will show that as desired the response of our

learnt PDEs can be selective. In order to testify that our PDEs are able to identify different

features, for this task we choose two data sets from Corel [1]: butterfly and plane. We select

50 images from each data set as positive samples and also prepare 10 images without the

object of interest as negative samples (second to fourth rows of Figure 5). We also provide

their groundtruth object masks in order to complete the training data.

The background and foreground of the “butterfly” and “plane” data sets (first rows of

Figures 7 and 9) are very complex, so object detection is very difficult. One can see that our

learnt PDEs respond strongly (the brighter, the stronger) in the regions of objects of interest,

while the response in the background is relatively weak5 (the second rows of Figures 7 and

9), even if the background also contains strong edges or rich textures, or has high graylevels.

In contrast, artificial PDEs [17] mainly output the rich texture areas. We also apply the

learnt object-oriented PDEs to images of other objects (the second rows of Figures 8 and

10). One can see that the response of our learnt PDEs is relatively low across the whole

5Note that as our learnt PDEs only approximate the desired vision task, one cannot expect that the outputs
are exactly binary.

18

Figure 8: Partial results of detecting butterflies on images without butterflies. The top row
are the input images. The middle row are the output mask maps of our learnt PDEs. The
bottom row are the segmentation results of [17] (best viewed on screen). Please be reminded
that the responses may appear stronger than they really are, due to the contrast with the dark
background.

Figure 9: Partial results of detecting planes on images containing planes. The top row are
the input images. The middle row are the output mask maps of our learnt PDEs. The bottom
row are the segmentation results of [17] (best viewed on screen).

19

Figure 10: Partial results of detecting planes on images without planes. The top row are the
input images. The middle row are the output mask maps of our learnt PDEs. The bottom
row are the segmentation results of [17] (best viewed on screen). Please be reminded that
the responses may appear stronger than they really are, due to the contrast with the dark
background.

image6. In comparison, the method in [17] still outputs the rich texture regions. It seems

that our PDEs automatically identify that the black-white patterns on the wings are the key

feature of butterflies and the concurrent high-contrast edges/junctions/corners are the key

feature of planes. The above examples show that our learnt PDEs are able to differentiate

the object/non-object regions, without requiring the user to teach them what features are and

what factors to consider.

5 Extensions

The framework presented in Section 3 is in the simplest formulation. It can be extended

in multiple ways to handle more complex problems. Since we could not exhaust all the

possibilities, we only present two examples.

6As clarified at the beginning of this Section, we present the output images by clipping values, not scaling
values, to [0, 255]. So we can compare the strength of response in different images.

20

5.1 Handling Vectored-Valued Images
5.1.1 Theory

For color images, the design of PDEs becomes much more intricate because the correlation

among different channels should be carefully handled so that spurious colors do not appear.

Without sufficient intuitions on the correlation among different channels of images, people

either consider a color image as a set of three images and apply PDEs independently [5], or

use LUV color space instead, or from some geometric considerations [29]. For some vision

problems such as denoising and inpainting, the above mentioned methods may be effective.

However, for more complex problems, such as Color2Gray [11], i.e., keeping the contrast

among nearby regions when converting color images to grayscale ones, and demosaicking,

i.e., inferring the missing colors from Bayer raw data [18], these methods may be incapable

as human intuition may fail to apply. Consequently, we are also unaware of any PDE related

work for these two problems.

Based on the theory presented in Section 3, which is for grayscale images, having PDEs

for some color image processing problems becomes trivial, because we can easily extend the

framework in Section 3 for learning a system of PDEs for vector-valued images. With the ex-

tended framework, the correlation among different channels of images can be automatically

(but implicitly) modelled. The modifications on the framework in Section 3 include:

1. A single output channel O now becomes multiple channels: Ok, k = 1, 2, 3.

2. There are more shift and rotationally invariant fundamental differential invariants. The

set of such invariants up to second order is as follows:

{
1, fr, (∇fr)

t∇fs, (∇fr)
tHfm∇fs, tr(Hfr), tr(HfrHfs)

}
where fr, fs and fm could be the indicator function ρ or either channel of the output

image. Now there are 69 elements in the set.

3. The initial function for the indicator function is the luminance of the input image.

21

Figure 11: Comparison of the results of Photoshop Grayscale (second row), our PDEs (third
row) and Color2Gray [11] (fourth row). The first row are the original color images. These
images are best viewed on screen.

22

4. The objective functional is the sum of J’s in (9) for every channel (with 16 changed to

68).

Note that for vectored-valued images with more than three channels, we may simply increase

the number of channels. It is also possible to use other color spaces. However, we deliber-

ately stick to RGB color space in order to illustrate the power of our framework. We use the

luminance of the input image as the initial function of the indicator function because lumi-

nance is the most informative component of a color image, in which most of the important

structural information, such as edges, corners and junctions, is well kept.

5.1.2 Experiment

We test our extended framework on the Color2Gray problem [11]. Contrast among nearby

regions is often lost when color images are converted to grayscale by naively computing their

luminance (e.g., using using Adobe Photoshop Grayscale mode). Gooch et al. [11] proposed

an algorithm to keep the contrast by attempting to preserve the salient features of the color

image. Although the results are very impressive, the algorithm is very slow: O(S4) for an

S×S square image. To learn the Color2Gray mapping, we choose 50 color images from the

Corel database and generate their Color2Gray results using the code provided by [11]. These

50 input/output image pairs are the training examples of our learning-based PDEs. We test

the learnt PDEs on images in [11] and their websites7. All training and testing images are

resized to 150 × 150. Some results are shown in Figure 11.8 One can see (best viewed on

screen) that our PDEs produce comparable visual effects to theirs. Note that the complexity

of mapping with our PDEs is only O(S2): two orders faster than the original algorithm.

5.2 Multi-Layer PDE Systems
5.2.1 Theory

Although we have shown that our PDE system is a good regressor for many vision tasks,

it may not be able to approximate all vision mappings at a desired accuracy. To improve
7http://www.cs.northwestern.edu/∼ago820/color2gray/
8Due to resizing, the results of Color2Gray in Figure 11 are slightly different from those in [11].

23

Full image Zoomed region BI SA [18] DFAPD [21] BI + 13 layers

Figure 12: Comparison of demosaicing results on Kodak images 17, 18 and 23. The first
column are the full images. The second column are the zoomed-in regions in the full images.
The third to sixth rows are the demosaicing results of different methods. These images are
best viewed on screen.

their approximation power, a straightforward way is to introduce higher order differential

invariants or use more complex combinations, beyond current linear combination, of funda-

mental invariants. However, the form of PDEs will be too complex to compute and analyze.

Moreover, numerical instability may also easily occur. For example, if we use third order

differential invariants the magnitude of some invariants could be very small because many

derivatives are multiplied together9. A similar situation also happens if a bilinear combina-

tion of the invariants is used. So it is not advised to add more complexity to the form of

PDEs.

Recently, deep architectures [13, 3], which are composed of multiple levels of nonlinear

9We normalize the grayscales to [0, 1] when computing.

24

operations, are proposed for learning highly varying functions in vision and other artificial

intelligence tasks [4]. Inspired by their work, we introduce a multi-layer PDE system. The

forms of PDEs of each layer are the same, i.e., linear combination of invariants up to second

order. The only difference is in the values of the control parameters and the initial values

of all the functions, including the indicator function. The multi-layer structure is learnt by

adopting a greedy strategy. After the first layer is determined, we use the output of the

previous layer as the input of the next layer. The expected output of the next layer is still

the ground truth image. The optimal control parameters for the next layer are determined as

usual. As the input of the next layer is expected to be closer to the ground truth image than

the input of the previous layer, the approximation accuracy can be successively improved.

If there is prior information, such a procedure could be slightly modified. For example, for

image demosaicing, we know that the Bayer raw data should be kept in the output full-color

image. So we should replace the corresponding part of the output images with the Bayer

raw data before feeding them to the next layer. The number of layers is determined by the

training process automatically, e.g., the layer construction stops when a new layer does not

result in output images with smaller error from the ground truth images.

5.2.2 Experiment

We test this framework on image demosaicking. Commodity digital cameras use color fil-

ter arrays (CFAs) to capture raw data, which have only one channel value at each pixel.

The missing channel values for each pixel have to be inferred in order to recover full-color

images. This technique is called demosaicing. The most commonly used CFAs are Bayer

pattern [12, 18, 21]. Demosaicing is very intricate as many artifacts, such as blur, spuri-

ous color and zipper, may easily occur, and numerous demosaicing algorithms have been

proposed (e.g., [12, 18, 21]). We show that with learning-based PDEs, demosaicing also

becomes easy.

We used the Kodak image database10 for the experiment. Images 1-12 are used for training

10The 24 images are available at http://www.site.uottawa.ca/∼edubois/demosaicking

25

Table 3: Comparison on PSNRs of different demosaicing algorithms. “BI + 1 layer” de-
notes the results of single-layer PDEs using bilinearly interpolated color images as the initial
functions. Other abbreviations carry the similar meaning.

BI AP [12] SA [18] DFAPD [21]
Avg. PSNR (dB) 29.62± 2.91 37.83± 2.57 38.34± 2.56 38.44± 3.04

BI + 1 layer BI + 13 layers DFAPD + 1 layer DFAPD + 3 layers
Avg. PSNR (dB) 36.25± 2.32 37.80± 2.05 38.95± 2.93 38.99± 2.90

and images 13-24 are used for testing. To reduce the time and memory cost of training, we

divide each 512 × 768 image to 12 non-overlapping 150 × 150 patches and select the first

50 patches with the richest texture, measured in their variances. Then we downsample the

patches into Bayer CFA raw data, i.e., keeping only one channel value, indicated by the

Bayer pattern, for each pixel. Finally, we bilinearly interpolate the CFA raw data (i.e., for

each channel the missing values are bilinearly interpolated from their nearest four available

values) into full-color images and use them as the input images of the training pairs. Note that

bilinear interpolation is the most naive way of inferring the missing colors and many artifacts

can occur. For comparison, we also provide results of several state-of-the-art algorithms

[12, 18, 21] with the matlab codes provided by their authors. From Table 3, one can see that

the results of multi-layer PDEs initialized with bilinear interpolation (BI) are comparable

to state-of-the-art algorithms (also see Figure 12). Learning-based PDEs can also improve

the existing demosaicing algorithms by using their output as our input images (see Table 3

for an example on DFAPD [21]). Figure 13 shows the advantage of multi-layer PDEs over

one-layer PDEs and the existence of an optimal layer number for both the training and the

testing images.

6 Conclusions and Future Work

In this paper, we have presented a framework of using PDEs as a general regressor to ap-

proximate the nonlinear mappings of different vision tasks. The experimental results on a

number of vision problems show that our theory is very promising. Particularly, we obtained

PDEs for some problems where PDE methods have never been tried, due to their difficulty

26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
36

36.5

37

37.5

38

38.5

39

Layer

P
S

N
R

 (
dB

)

training
testing

1 2 3 4 5 6 7
38.8

39

39.2

39.4

39.6

39.8

40

40.2

40.4

40.6

Layer

P
S

N
R

 (
dB

)

training
testing

BI + Multi-Layer DFAPD + Multi-Layer

Figure 13: Average PSNRs of each layer’s output on training and testing images.

in mathematical description. However, the current work is still preliminary; we plan to push

our research in the following directions.

First, we will apply our framework to more vision tasks to find out to what extent it works.

Second, an obvious limitation of learning-based PDEs is that all the training and testing

images should be of the same size or resolution and with objects of interest roughly at the

same size. It is important to consider how to learn PDEs for differently sized/scaled images.

Third, the time required to learn the PDEs is very long. Although the computation can easily

be parallelized, better mechanisms, e.g., better initialization, should be explored. Fourth, it is

attractive to analyze the learnt PDEs and find out their connections with the biological vision;

we hope to borrow some ideas from the biological vision. And last, it is very important to

explore how to further improve the approximation power of learning-based PDEs, beyond

the multi-layer formulation. We hope that someday learning-based PDEs, in their improved

formulations, could be a general framework for modeling most vision problems.

References

[1] Corel photo library, corel corp., ottawa, ont., canada k1z 8r7.

[2] G. Aubert and P. Kornprobst. Mathematical Problems in Image Processing. Springer-

Verlag, 2002.

27

[3] Y. Bengio, P. Lamblin, P. Popovici, and H. Larochelle. Greedy layer-wise training of

deep networks. In NIPS, 2006.

[4] Y. Bengio and Y. Le Cun. Scaling learning algorithms towards AI. Large Scale Kernel

Machines, MIT Press.

[5] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting. In SIG-

GRAPH, pages 417–424, 2000.

[6] F. Cao. Geometric Curve Evolution and Image Processing, Lecture Notes in Mathe-

matics, No. 1805, Springer-Verlarg. 2003.

[7] Vicent Caselles, Jean-Michel Morel, Guillermo Sapiro, and A. Tannenbaum (eds.).

Special issue on partial differential equations and geometry-driven diffusion in image

processing and analysis. IEEE Trans. Image Processing, 7(3), 1998.

[8] A. Friedman. Partial Differential Equations of Parabolic Type, Prentice-Hall. 1964.

[9] D. Gabor. Information theory in electron microscopy. Laboratory Investigation,

14:801–807, 1965.

[10] G. Gilboa, N. Sochen, and Y.Y. Zeevi. Image enhancement and denoising by com-

plex diffusion processes. IEEE Trans. Pattern Analysis and Machine Intelligence,

26(8):1020–1036, 2004.

[11] Amy A. Gooch, Sven C. Olsen, Jack Tumblin, and Bruce Gooch. Color2gray: salience-

preserving color removal. ACM Transactions on Graphics, 24(3):634–639, August

2005.

[12] B. K. Gunturk, Y. Altunbask, and R. M. Mersereau. Color plane interpolation using

alternating projections. IEEE Trans. Image Process., 11(9):997C1013, 2002.

[13] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets.

Neural Computation, 18:1527–1554, 2006.

28

[14] A.K. Jain. Partial differential equations and finite-difference methods in image pro-

cessing, part 1. Journal of Optimization Theory and Applications, 23:65–91, 1977.

[15] B. Kimia, A. Tannenbaum, and S.W. Zucker. On optimal control methods in computer

vision and image processing, 1994. in B. ter Haar Romeny (ed.) Geometry-Driven

Diffusion in Computer Vision, Kluwer Academic Publishers.

[16] J. Koenderink. The structure of images. Biological Cybernetics, 50:363–370, 1984.

[17] C. Li, C. Xu, C. Gui, and M. Fox. Level set evolution without re-initialization: A new

variational formulation. In Proc. Computer Vision and Pattern Recognition, 2005.

[18] X. Li. Demosaicing by successive approximations. IEEE Trans. Image Process.,

14(2):267–278, 2005.

[19] J.-L. Lions. Optimal Control Systems Governed by Partial Differential Equations.

Springer-Verlarg, 1971.

[20] Risheng Liu, Zhouchen Lin, Wei Zhang, Kewei Tang, and Zhixun Su. Toward design-

ing intelligent PDEs for computer vision: An optimal control approach. Image and

Vision Computing, 31(1):43–56, 2013.

[21] Daniele Menon, Stefano Andriani, and Giancarlo Calvagno. Demosaicing with direc-

tional filtering and a posteriori decision. IEEE Trans. Image Process., 16(1):132–141,

2007.

[22] P. Olver. Applications of Lie Groups to Differential Equations, Springer-Verlarg. 1993.

[23] S.J. Osher and L. I. Rudin. Feature-oriented image enhancement using shock filters.

SIAM J. Numerical Analysis, 27(4):919–940, 1990.

[24] Nicolas Papadakis, Thomas Corpetti, and Etienne Mémin. Dynamically consistent

optical flow estimation. In Proc. Intn’l Conf. Computer Vision, 2007.

29

[25] Nicolas Papadakis and Etienne Mémin. Variational optimal control technique for the

tracking of deformable objects. In Proc. Intn’l Conf. Computer Vision, 2007.

[26] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion.

IEEE Trans. Pattern Analysis and Machine Intelligence, 12(7):629–639, 1990.

[27] G. Sapiro. Geometric Partial Differential Equations and Image Analysis. Cambridge

University Press, 2001.

[28] Bart M. ter Haar Romeny. Geometry-Driven Diffusion in Computer Vision. Kluwer

Academic Publishers, 1994.

[29] D. Tschumperlé and R. Deriche. Vector-valued image regularization with PDE’s: A

common framework for different applications. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2005.

[30] A. Witkin. Scale-space filtering. In Proc. Int. Joint Conf. Artificial Intelligence, 1983.

Appendix 1: Proof of (3)-(4)

Suppose Φ is the operator that maps u to the solution f to PDE (2), i.e., f = Φ(u), and given

u and its perturbation δu, we define

r = lim
ε→0

Φ(u+ ε · δu)− Φ(u)

ε
.

Then we have(
DJ

Du
, δu

)
Q

= lim
ε→0

J(Φ(u+ ε · δu), u+ ε · δu)− J(Φ(u), u)

ε

= lim
ε→0

J(f + ε · r + o(ε), u+ ε · δu)− J(f, u)

ε

=

∫
Q

(
g⟨f⟩(⟨u⟩, ⟨f⟩)[r] + g⟨u⟩(⟨u⟩, ⟨f⟩)[δu]

)
dQ

=
(
g⟨f⟩(⟨u⟩, ⟨f⟩)[r], 1

)
Q
+
(
g⟨u⟩(⟨u⟩, ⟨f⟩)[δu], 1

)
Q

=
(
g∗⟨f⟩(⟨u⟩, ⟨f⟩)[1], r

)
Q
+
(
g∗⟨u⟩(⟨u⟩, ⟨f⟩)[1], δu

)
Q
,

(11)

30

where g∗⟨f⟩ and g∗⟨u⟩ are the adjoint operators of g⟨f⟩ and g⟨u⟩, respectively. If we define φ as

the solution to the adjoint equation (4), then we can prove that(
g∗⟨f⟩(⟨u⟩, ⟨f⟩)[1], r

)
Q
=

(
δu, L∗

⟨u⟩(⟨u⟩, ⟨f⟩)[φ]
)
Q
. (12)

The proof is deferred to the end of this appendix. Combining the above with (11), we have

that (
DJ

Du
, δu

)
Q

=
(
g∗⟨u⟩(⟨u⟩, ⟨f⟩)[1] + L∗

⟨u⟩(⟨u⟩, ⟨f⟩)[φ], δu
)
Q
,

and hence
DJ

Du
= g∗⟨u⟩(⟨u⟩, ⟨f⟩)[1] + L∗

⟨u⟩(⟨u⟩, ⟨f⟩)[φ].

Now we prove (12). From (2) we have

((Φ(u))t, φ)Q = (L(⟨u⟩, ⟨Φ(u)⟩), φ)Q , ∀φ. (13)

and

((Φ(u+ ε · δu))t, φ)Q = (L(⟨u+ ε · δu⟩, ⟨Φ(u+ ε · δu)⟩), φ)Q , ∀φ. (14)

Subtract (14) with (13), we have that (note that f = Φ(u)):

((Φ(u+ ε · δu)− Φ(u))t, φ)Q
= (L(⟨u+ ε · δu⟩, ⟨Φ(u+ ε · δu)⟩)− L(⟨u⟩, ⟨Φ(u)⟩), φ)Q
=

(
ε · L⟨u⟩(⟨u⟩, ⟨f⟩[δu] + L⟨f⟩(⟨u⟩, ⟨f⟩)[Φ(u+ ε · δu)− Φ(u)], φ

)
+ o(ε), ∀φ.

Dividing both sides with ε and let ε → 0, we see that

(rt, φ)Q =
(
L⟨u⟩(⟨u⟩, ⟨f⟩)[δu], φ

)
Q
+
(
L⟨f⟩(⟨u⟩, ⟨f⟩)[r], φ

)
Q
, ∀φ. (15)

Integrate by parts, we have:

(r, φ)Ω|T0 − (r, φt)Q =
(
δu, L∗

⟨u⟩(⟨u⟩, ⟨f⟩)[φ]
)
Q
+
(
r, L∗

⟨f⟩(⟨u⟩, ⟨f⟩)[φ]
)
Q
, ∀φ. (16)

Now that φ satisfies (4), we have that

(r, φ)Ω|T0 = 0, and
(
g∗⟨f⟩(⟨u⟩, ⟨f⟩)[1], r

)
Q
=

(
−φt − L∗

⟨f⟩(⟨u⟩, ⟨f⟩)[φ], r
)
Q
.

Combining the above with (15), we arrive at:(
g∗⟨f⟩(⟨u⟩, ⟨f⟩)[1], r

)
Q
=

(
−φt − L∗

⟨f⟩(⟨u⟩, ⟨f⟩)[φ], r
)
Q
=

(
δu, L∗

⟨u⟩(⟨u⟩, ⟨f⟩)[φ]
)
Q
.

31

Appendix 2: Shift Invariance of PDEs

We prove that the coefficients aj and bj must be independent of x.

Proof: We prove for LO only. We may rewrite

LO(a(x, t), ⟨O⟩, ⟨ρ⟩) = L̃O(⟨O⟩, ⟨ρ⟩,x, t),

and it suffices to prove that L̃O is independent of x.

By the definition of shift invariance, when I(x) changes to I(x − x0) by shifting with a

displacement x0, O(x) and ρ(x) will change to O(x − x0) and ρ(x − x0), respectively. So

the pair (ρ(x− x0), O(x− x0)) fulfils (7), i.e.,

∂O(x− x0)

∂t
= L̃O(⟨O(x− x0)⟩, ⟨ρ(x− x0)⟩,x, t)
= L̃O(⟨O⟩(x− x0), ⟨ρ⟩(x− x0),x, t).

(17)

Next, we replace x− x0 in the above equation with x and have:

∂O(x)

∂t
= L̃O(⟨O⟩(x), ⟨ρ⟩(x),x+ x0, t). (18)

On the other hand, the pair (ρ(x), O(x)) also fulfils (7), i.e.,

∂O(x)

∂t
= L̃O(⟨O⟩(x), ⟨ρ⟩(x),x, t). (19)

Therefore,

L̃O(⟨O⟩(x), ⟨ρ⟩(x),x+ x0, t) = L̃O(⟨O⟩(x), ⟨ρ⟩(x),x, t),

∀x0 that confines the input image inside Ω.

So L̃O is independent of x.

�

Appendix 3: The Gâteaux Derivatives

We use (6) to compute the Gâteaux derivatives. The Lagrangian function is:

J̃({Om}Mm=1, {aj}16j=0, {bj}16j=0; {φm}Mm=1, {ϕm}Mm=1)

= J({Om}Mm=1, {aj}16j=0, {bj}16j=0) +
M∑

m=1

∫
Q

φm [(Om)t − LO(a, ⟨Om⟩, ⟨ρm⟩)] dQ

+
M∑

m=1

∫
Q

ϕm [(ρm)t − Lρ(b, ⟨ρm⟩, ⟨Om⟩)] dQ,

(20)

32

where φm and ϕm are the adjoint functions.

To find the adjoint equations for φm, we perturb LO and Lρ with respect to O. The

perturbations can be written as follows:

LO(a, ⟨O + ε · δO⟩, ⟨ρ⟩)− LO(a, ⟨O⟩, ⟨ρ⟩)

= ε ·
(
∂LO

∂O
(δO) +

∂LO

∂Ox

∂(δO)

∂x
+ · · ·+ ∂LO

∂Oyy

∂2(δO)

∂y2

)
+ o(ε)

= ε
∑
p∈℘

∂LO

∂Op

∂|p|(δO)

∂p
+ o(ε)

= ε
∑
p∈℘

σO;p
∂|p|(δO)

∂p
+ o(ε),

Lρ(b, ⟨ρ⟩, ⟨O + ε · δO⟩)− Lρ(b, ⟨ρ⟩, ⟨O⟩)

= ε
∑
p∈℘

σρ;p
∂|p|(δO)

∂p
+ o(ε),

(21)

where

σO;p =
∂LO

∂Op

=
16∑
i=0

ai
∂invi(ρ,O)

∂Op

, and σρ;p =
∂Lρ

∂Op

=
16∑
i=0

bi
∂invi(O, ρ)

∂Op

.

Then the difference in J̃ caused by perturbing Ok only is

δJ̃k = J̃(· · · , Ok + ε · δOk, · · ·)− J̃(· · · , Ok, · · ·)

=
1

2

∫
Ω

[(
(Ok + ε · δOk)(x, 1)− Õk(x)

)2

−
(
Ok(x, 1)− Õk(x)

)2
]

dΩ

+

∫
Q

φk {[(Ok + ε · δOk)t − LO(a, ⟨Ok + ε · δOk⟩, ⟨ρk⟩)

− [(Ok)t − LO(a, ⟨Ok⟩, ⟨ρk⟩)]} dQ

+

∫
Q

ϕk {[(ρk)t − Lρ(b, ⟨ρk⟩, ⟨Ok + ε · δOk⟩)]

− [(ρk)t − Lρ(b, ⟨ρk⟩, ⟨Ok⟩)]} dQ

= ε

∫
Ω

(
Ok(x, 1)− Õk(x)

)
δOk(x, 1)dΩ + ε

∫
Q

φk(δOk)tdQ

−ε

∫
Q

φk

∑
p∈℘

σO;p
∂|p|(δOk)

∂p
dQ− ε

∫
Q

ϕk

∑
p∈℘

σρ;p
∂|p|(δOk)

∂p
dQ+ o(ε).

(22)

As the perturbation δOk should satisfy that

δOk|Γ = 0 and δOk|t=0 = 0,

due to the boundary and initial conditions of Ok, if we assume that

φk|Γ = 0,

33

then integrating by parts, the integration on the boundary Γ will vanish. So we have

δJ̃k = ε

∫
Ω

(
Ok(x, 1)− Õk(x)

)
δOk(x, 1)dΩ + ε

∫
Ω

(φk · δOk)(x, 1)dΩ

−ε

∫
Q

(φk)tδOkdQ− ε

∫
Q

∑
p∈℘

(−1)|p|
∂(σO;pφk)

∂p
δOkdQ

−ε

∫
Q

∑
p∈℘

(−1)|p|
∂|p|(σρ;pϕk)

∂p
δOkdQ+ o(ε)

= ε

∫
Q

[(
φk +Ok(x, 1)− Õk(x)

)
δ(t− 1)

− (φk)t − (−1)|p|
∂|p|(σO;pφk + σρ;pϕk)

∂p

]
δOkdQ+ o(ε).

(23)

So the adjoint equation for φk is
∂φm

∂t
+
∑
p∈℘

(−1)|p| (σO;pφm + σρ;pϕm)p = 0, (x, t) ∈ Q,

φm = 0, (x, t) ∈ Γ,

φm|t=1 = Õm −Om(1), x ∈ Ω,

(24)

in order that dJ̃

dOk
= 0. Similarly, the adjoint equation for ϕk is

∂ϕm

∂t
+
∑
p∈℘

(−1)|p| (σ̃O;pφm + σ̃ρ;pϕm)p = 0, (x, t) ∈ Q,

ϕm = 0, (x, t) ∈ Γ,
ϕm|t=1 = 0, x ∈ Ω,

(25)

where

σ̃O;p =
∂LO

∂ρp
=

16∑
i=0

ai
∂invi(ρ,O)

∂ρp
, and σ̃ρ;p =

∂Lρ

∂ρp
=

16∑
i=0

bi
∂invi(O, ρ)

∂ρp
.

Also by perturbation, it is easy to check that:

dJ̃
dai

= λiai −
∫
Ω

M∑
m=1

φminvi(ρm, Om)dΩ,

dJ̃
dbi

= µibi −
∫
Ω

M∑
m=1

ϕminvi(Om, ρm)dΩ.

So by (6), the above are also the Gâteaux derivatives of J with respect to ai and bi, respec-

tively.

34

